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DESIGN GOALS 
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SPPC Design Goal Evolution  

• Pre-CDR 
– About 50 km in tunnel length, 20-T magnets to reach 70 TeV or 

above, high luminosity 
– Further development (together with CEPC): 61 km, longer long 

straight sections for collimation (partial double-ring for CEPC) 

• CDR 
– 100-km tunnel 
– Different visions: 16T-100TeV, 20T-125TeV, 12T-75TeV/20T-

125TeV 
– CDR SPPC design goals: First Phase: 12 Tesla, >70 TeV; Ultimate 

Phase:  20-24 Tesla, 125-150 TeV 
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Parameter Unit Value 
PreCDR CDR Ultimate 

Circumference km 54.4 100 100 
C.M. energy TeV 70.6  75 125-150 
Dipole field T 20 12 20-24 
Injection energy  TeV 2.1  2.1 4.2 
Number of IPs 2 2 2 
Nominal luminosity per IP cm-2s-1 1.2e35 1.0e35 - 
Beta function at collision m 0.75 0.75 - 
Circulating beam current  A 1.0  0.7 - 
Bunch separation ns 25 25 - 
Bunch population 2.0e11 1.5e11 - 
SR power per beam MW 2.1 1.1 - 
SR heat load per aperture @arc W/m 45  13 - 

SPPC main parameters 
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PROGRESS IN PRELIMINARY 
CONCEPTUAL DESIGN 
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• Main working topics 
– General parametric design 
– Collider accelerator physics 

• Layout and lattice design 
• Luminosity leveling 
• Collimation 
• Beam-beam effects 
• Injection/extraction 
• Instabilities 
• Bunch filling schemes 
• …. 

– Schematic design on the injector chain 
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Parametric design 
• General parameters 

– Maintaining parameter lists (according to the design goals) 
• Layout designs 

– Eight arcs and long straight sections, and sufficiently long LSSs 
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C=61 km 
LSS1/LSS5: 3.5 km 
LSS3/LSS7: 1.04 km 
Other LSS: 0.65 km 



Lattice designs 
• We have been studying the lattice for different SPPC 

layouts or design goals 
– Pre-CDR: 54 km, 71 TeV; CDR: 61 km, 71 TeV, 100 km, 100 TeV.  
– Will start on 100 km, 75 TeV, using 12-T magnets (present baseline) 

• Design methods and constraints 
– Arc filling factor: >0.78 
– Dispersion suppression methods: half-bend (easy to match, 

uniform quads), full-bend (higher filling factor), LHC-like 
(compatible to CEPC, future direction) 

– Lattices for LSSs: IRs, collimation, separation and recombination 
– Different lattice at injection energy and during ramping: larger 

beta*  
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See Su Feng’s Talk 



Some lattice design results  
C=54, 61 km; Similar arc design 

Dynamic aperture studies 
at collision energy 
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Luminosity Leveling 
• Nominal luminosity defines the one at the collision starting, and 

it changes during the collision 
• Integrated luminosity is more important for physics, so we 

exploit different schemes to maintain high instantaneous 
luminosity over collision period or average luminosity. 

• Maximum luminosity is limited by the detector pile-up and 
beam-beam effects 

• At SPPC, methods to increase instantaneous luminosity: 
– As emittance shrinks quickly due to synchrotron radiation, we can 

control the emittance heating to allow modest emittance damping 
– Changing beta* with smaller emittance 
– Allowing beam-beam effect to go up to 0.03   

• Other measures 
– Smaller bunch spacing (5 or 10 ns instead of 25 ns) to reduce pile-up 
– Shorter turnaround time to increase average luminosity 
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Different luminosity leveling schemes 
a) Constant B-B; b) Maximum B-B 0.03; c) Maintaining nominal lumi.; 
d) 10 ns spacing; e) beta* changing; f) 5 ns spacing   

C.M. energy: 100 TeV 



Beam Collimation 
• Beam collimation is extremely important and difficult 

for SPPC (Stored energy: 6.3 GJ @PreCDR) 
– Heavy beam losses: beam-beam interactions, transverse and 

longitudinal diffusion, residual gas scattering, instabilities and so 
on (peak loss: MW level) 

– Quench protection of SC magnets 
– Machine protection   
– Hands-on maintenance 
– Cleaning of physics debris 
– Reducing experiment background 

• Key issues: lattice, methods, materials  
• New idea: Transverse and longitudinal collimation in the same LSS 

almost proved by simulations (FCC is also studying the scheme) 
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 Single Diffractive Effect: energy loss at transverse 
collimators, more important at higher beam energy 

 Very long straight sections to host both transverse and 
longitudinal collimators 
 

Collimation scheme for SPPC 

Beam losses by MERLIN Tracking Lattice for the collimation section 
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• Bunch filling scheme: important for bunching filling factor, 
related to injector chain, main ring injection  
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Bunch filling scheme 
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BT: a p-RCS batch with 112 bunches 
   112*25ns=2.8μs; 
t1: p-RCS extraction kicker rise time 400ns; 
t2: MSS injection kicker rise time 0.9μs; 
t3: MSS extraction kicker rise time 1.5μs;  
t4: SS injection/extraction kicker rise time 0.9μs; 
t5: SPPC injection kicker rise time 0.88μs;  
t6: SPPC beam dump kicker rise time 3.0μs 
 

Version for 
100km-100TeV 



• Instabilities: mainly on electron cloud effects, and also 
impedance issues related to beam screen.  

• Beam-beam effects: phenomenon study, simulations just 
started; both incoherent and coherent effects; PACMAN 
effects.   

• Injection: multiple injections from SS to SPPC in one SS 
cycle, to reduce the beam-stored energy less than 5-10 
MW  

• Extraction: very important for machine protection; very 
high reliability; beam dilution method at the dump 
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Other accelerator physics studies 



Impedance and Instabilities 
• Analysis on key impedance contributions: beam screens and 

collimators 
• Study on wall impedance for multilayer chamber: analytical 

and simulations 
– Beam screen: stainless steel (0.6mm) with coating copper (50um), now 

also HTS  
– Injection protection collimator: hBN (hexagonal boron nitride) coating 

with Ti (5  um) 
– Others 

• Electron cloud study in different sections;  
     characteristics measurements (with a NSFC fund) 
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Injector Chain Design Concept 

• Injector chain by itself is a very complicated and powerful 
accelerator system, large enough by a single stage  

• Rich physics programs for each stage 
• No close reference accelerators (scaled up by large factors)  

– Totally new, different from LHC or Tevatron (building-up by steps) 
• Design work on each accelerator started: scheme, lattice 

and even more details (not only feeding the collider but 
also independent physics program) 

• Key technical challenges should be identified, so needed 
R&D program can be pursued. 
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p-Linac: proton superconducting linac 

p-RCS: proton rapid cycling synchrotron 

MSS: Medium-Stage Synchrotron 

SS: Super Synchrotron 

Injector chain 
(for proton beam, 2.1 TeV) 

Ion beams have 
dedicated linac (i-Linac) 
and RCS (i-RCS) 
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Major parameters for the injector chain 
Value Unit   Value Unit 

p-Linac MSS     
 Energy 1.2 GeV Energy 180 GeV 
Average current 1.4 mA Average current 20 uA 
Length ~300 m Circumference 3500 m 
RF frequency 325/650 MHz RF frequency 40 MHz 
Repetition rate 50 Hz Repetition rate 0.5 Hz 
Beam power 1.63 MW Beam power 3.67 MW 
p-RCS SS     
Energy 10 GeV Energy 2.1 TeV 
Average current 0.19 mA Accum. protons 2.55E14   
Circumference 900 m Circumference 7200 m 
RF frequency 36-40 MHz RF frequency 200 MHz 
Repetition rate 25 Hz Repetition period 30 s 
Beam power 3.4 MW Protons per bunch 2.0E11   
      Dipole field 8.3 T 

20 Will use high-Q ferrite-loaded RF cavities for RCS and MSS 



SS – Super Synchrotron 
• Layout and preliminary lattice design: race-type lattice 
• Dynamic aperture calculations 
• Extraction considerations: multiple extractions, 10 Hz 
• Fast ramping issue: 30-s cycling time, 8.3-T SC magnet, very 

challenging 

21 



STUDIES ON KEY TECHNICAL ISSUES 
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• Although there are many technical challenges in 
building SPPC and the injector chain, most of them 
can be waited to be solved a few years before 
construction. Actually we have identified two key 
technologies for long-term and early R&D: 
– High-field SC magnets: extremely challenging, needing 

very heavy R&D efforts with global collaboration 
– Beam screen: potential show-stopper, very complicated 

(vacuum, beam instability, mechanical support, cryogenics, 
magnet aperture), needing to develop special structure 
and material coating  

• Recently adjusted SPPC goals 
– Reducing magnetic field but requiring all-HTS technology 
– 12-T/75-TeV: four times lower synchrotron radiation load 

per meter   
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R&D plan of the 20-T magnet technology 
• 2015-2020 
Development of a 12-T operational field Nb3Sn twin-aperture 
dipole; Fabrication and test of 2~3 T HTS (Bi-2212 or YBCO) coils in 
a 12-T background field, and basic study on tape superconductors 
for accelerator magnets (field quality, fabrication method, quench 
protection). 
• 2020-2025  
Development of 15-T Nb3Sn twin-aperture dipole and quadrupole 
with 10-4 field uniformity; Fabrication and test of 4~5 T HTS (Bi-
2212 or YBCO) coils in a 15-T background field. 
• 2025-2030  
Nb3Sn coils + HTS coils (or only one of them) to realize the 20-T 
dipole and quadrupole with 10-4 field uniformity; Development of 
the prototype SPPC dipole/quadrupole and infrastructure build-up. 
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Old planning, the new one is under preparation 
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Cos-theta  dipole  

High efficiency, complicated ends with hard-way bending 
Common coil dipole  

Simplest structure with large bending radius, low efficiency 

Canted cos-theta dipole 
Lowest stress level in coil, low efficiency 

Magnetic & mechanical design study: coil configuration, field quality, stress management, … 

(2015-2020) 

R&D plan of the 20-T magnet technology 

Block type dipole 
Simpler structure with hard-way bending, low efficiency 



Magnet design, prototyping and 
infrastructure 

• Work is focused on: 
– Design Study of the SPPC Dipole Magnet 
– R&D Steps for the SPPC Dipole Magnet 
– Development of Nb3Sn Rutherford Cable 
– R&D of High Field ReBCO Tape by SSTC 
– R&D of Bi-2212 Superconductor by NIN 
– Preparation for the Model Magnet R&D 

• Very slow building-up of infrastructure 
• Domestic and international collaborations 
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Promoting collaboration on HTS technology 
• SPPC high-field superconducting magnets: HTS has a great 

potential for future superconducting magnets, especially with 
expectation of a large reduction in cost. 

• China has a good ground in high-temperature superconductors, 
both in basic research and applications. We use SPPC as a 
driving force to unify domestic institutions to develop HTS, 
especially iron-based HTS. A collaboration has been established. 

27 



Beam screen and vacuum 
• Synchrotron radiation poses critical challenges to the 

cryogenic vacuum in next-generation pp colliders. Beam 
screen (shielding the light) is seen a potential stopper of 
the colliders. 

• Screen structure under study: ante-chamber for absorbing 
photos, HTS coating to reduce impedance, high-
temperature 45-65 K to reduce cryogenic load 
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• Beam instrumentation and controls 
– Very fast and reliable beam instrumentation and controls for 

both machine protection and sophisticated beam manipulations 
(emittance blow-up, luminosity leveling etc.) 

• Machine protection 
– It is tough to deal with 6.3 GJ energy at max in beam, and also 

huge energy stored in magnets. A workable and reliable 
machined protection system is critical for operating the 
machines  

• RF systems 
– It is interesting to develop high-Q ferrite-loaded RF cavities for 

two fast ramping synchrotrons: p-RCS and MSS  

• Cryogenics 
– Efficiency is important for super-large scale cryogenic system. 
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Summary 

• We have been making progress on SPPC study steadily, 
covering the scope and many challenging topics. 

• Study with newly defined SPPC goals will start soon. 
• Strong domestic collaboration on HTS technology will 

support the SPPC magnet development.  
• SPPC chapter in the CDR report will be ready by end 2017. 
• Much welcome international experts join SPPC study. 
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THANKS FOR ATTENTION! 
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