SPPC Study Status

Tang Jingyu for the SPPC team IAS Program for High Energy Physics January 23-26, 2017, HKUST

Main topics

- Design goals
- Progress in preliminary conceptual design
- Studies on key technical issues
- Summary

DESIGN GOALS

SPPC Design Goal Evolution

- Pre-CDR
 - About 50 km in tunnel length, 20-T magnets to reach 70 TeV or above, high luminosity
 - Further development (together with CEPC): 61 km, longer long straight sections for collimation (partial double-ring for CEPC)
- CDR
 - 100-km tunnel
 - Different visions: 16T-100TeV, 20T-125TeV, 12T-75TeV/20T-125TeV
 - CDR SPPC design goals: First Phase: 12 Tesla, >70 TeV; Ultimate Phase: 20-24 Tesla, 125-150 TeV

SPPC main parameters

Parameter	Unit		Value	
		PreCDR	CDR	Ultimate
Circumference	km	54.4	100	100
C.M. energy	TeV	70.6	75	125-150
Dipole field	Т	20	12	20-24
Injection energy	TeV	2.1	2.1	4.2
Number of IPs		2	2	2
Nominal luminosity per IP	cm ⁻² s ⁻¹	1.2e35	1.0e35	-
Beta function at collision	m	0.75	0.75	-
Circulating beam current	А	1.0	0.7	-
Bunch separation	ns	25	25	-
Bunch population		2.0e11	1.5e11	-
SR power per beam	MW	2.1	1.1	-
SR heat load per aperture @arc	W/m	45	13	-

PROGRESS IN PRELIMINARY CONCEPTUAL DESIGN

- Main working topics
 - General parametric design
 - Collider accelerator physics
 - Layout and lattice design
 - Luminosity leveling
 - Collimation
 - Beam-beam effects
 - Injection/extraction
 - Instabilities
 - Bunch filling schemes

•

- Schematic design on the injector chain

Parametric design

- General parameters
 - Maintaining parameter lists (according to the design goals)
- Layout designs
 - Eight arcs and long straight sections, and sufficiently long LSSs

Lattice designs

- We have been studying the lattice for different SPPC layouts or design goals
 - Pre-CDR: 54 km, 71 TeV; CDR: 61 km, 71 TeV, 100 km, 100 TeV.
 - Will start on 100 km, 75 TeV, using 12-T magnets (present baseline)
- Design methods and constraints
 - Arc filling factor: >0.78
 - Dispersion suppression methods: half-bend (easy to match, uniform quads), full-bend (higher filling factor), LHC-like (compatible to CEPC, future direction)
 - Lattices for LSSs: IRs, collimation, separation and recombination
 - Different lattice at injection energy and during ramping: larger beta*

Some lattice design results

C=54, 61 km; Similar arc design

2.1

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

160.

 $D_{(m)}$ 2.0

9.905

18.93

19.81

(1)

(2)

(3)

9.905

18.93

19.81

9.905

18.93

19.81

9.905

18.93

19.81

Dynamic aperture studies at collision energy

19.81

19.81

19.81

(T)

(T)

(T)

Luminosity Leveling

- Nominal luminosity defines the one at the collision starting, and it changes during the collision
- Integrated luminosity is more important for physics, so we exploit different schemes to maintain high instantaneous luminosity over collision period or average luminosity.
- Maximum luminosity is limited by the detector pile-up and beam-beam effects
- At SPPC, methods to increase instantaneous luminosity:
 - As emittance shrinks quickly due to synchrotron radiation, we can control the emittance heating to allow modest emittance damping
 - Changing beta* with smaller emittance
 - Allowing beam-beam effect to go up to 0.03
- Other measures
 - Smaller bunch spacing (5 or 10 ns instead of 25 ns) to reduce pile-up
 - Shorter turnaround time to increase average luminosity

Different luminosity leveling schemes a) Constant B-B; b) Maximum B-B 0.03; c) Maintaining nominal lumi.; d) 10 ns spacing; e) beta* changing; f) 5 ns spacing

Beam Collimation

- Beam collimation is extremely important and difficult for SPPC (Stored energy: 6.3 GJ @PreCDR)
 - Heavy beam losses: beam-beam interactions, transverse and longitudinal diffusion, residual gas scattering, instabilities and so on (peak loss: MW level)
 - Quench protection of SC magnets
 - Machine protection
 - Hands-on maintenance
 - Cleaning of physics debris
 - Reducing experiment background
- Key issues: lattice, methods, materials
- New idea: Transverse and longitudinal collimation in the same LSS almost proved by simulations (FCC is also studying the scheme)

Collimation scheme for SPPC

- Single Diffractive Effect: energy loss at transverse collimators, more important at higher beam energy
- Very long straight sections to host both transverse and longitudinal collimators

Lattice for the collimation section

Beam losses by MERLIN Tracking 14

Bunch filling scheme

• Bunch filling scheme: important for bunching filling factor, related to injector chain, main ring injection

Other accelerator physics studies

- Instabilities: mainly on electron cloud effects, and also impedance issues related to beam screen.
- Beam-beam effects: phenomenon study, simulations just started; both incoherent and coherent effects; PACMAN effects.
- Injection: multiple injections from SS to SPPC in one SS cycle, to reduce the beam-stored energy less than 5-10 MW
- Extraction: very important for machine protection; very high reliability; beam dilution method at the dump

Impedance and Instabilities

- Analysis on key impedance contributions: beam screens and collimators
- Study on wall impedance for multilayer chamber: analytical and simulations
 - Beam screen: stainless steel (0.6mm) with coating copper (50um), now

also HTS

- Injection protection collimator: hBN (hexagonal boron nitride) coating with Ti (5 um)
- Others
- Electron cloud study in different sections; characteristics measurements (with a NSFC fund)

Injector Chain Design Concept

- Injector chain by itself is a very complicated and powerful accelerator system, large enough by a single stage
- Rich physics programs for each stage
- No close reference accelerators (scaled up by large factors)
 Totally new, different from LHC or Tevatron (building-up by steps)
- Design work on each accelerator started: scheme, lattice and even more details (not only feeding the collider but also independent physics program)
- Key technical challenges should be identified, so needed R&D program can be pursued.

Injector chain (for proton beam, 2.1 TeV)

19

Major parameters for the injector chain

	Value	Unit		Value	Unit
p-Linac			MSS		
Energy	1.2	GeV	Energy	180	GeV
Average current	1.4	mA	Average current	20	uA
Length	~300	m	Circumference	3500	m
RF frequency	325/650	MHz	RF frequency	40	MHz
Repetition rate	50	Hz	Repetition rate	0.5	Hz
Beam power	1.63	MW	Beam power	3.67	MW
p-RCS			SS		
Energy	10	GeV	Energy	2.1	TeV
Average current	0.19	mA	Accum. protons	2.55E14	
Circumference	900	m	Circumference	7200	m
RF frequency	36-40	MHz	RF frequency	200	MHz
Repetition rate	25	Hz	Repetition period	30	S
Beam power	3.4	MW	Protons per bunch	2.0E11	
			Dipole field	8.3	Т

Will use high-Q ferrite-loaded RF cavities for RCS and MSS

SS – Super Synchrotron

- Layout and preliminary lattice design: race-type lattice
- Dynamic aperture calculations
- Extraction considerations: multiple extractions, 10 Hz
- Fast ramping issue: 30-s cycling time, 8.3-T SC magnet, very challenging

STUDIES ON KEY TECHNICAL ISSUES

- Although there are many technical challenges in building SPPC and the injector chain, most of them can be waited to be solved a few years before construction. Actually we have identified two key technologies for long-term and early R&D:
 - High-field SC magnets: extremely challenging, needing very heavy R&D efforts with global collaboration
 - Beam screen: potential show-stopper, very complicated (vacuum, beam instability, mechanical support, cryogenics, magnet aperture), needing to develop special structure and material coating
- Recently adjusted SPPC goals
 - Reducing magnetic field but requiring all-HTS technology
 - 12-T/75-TeV: four times lower synchrotron radiation load per meter

R&D plan of the 20-T magnet technology

2015-2020

Old planning, the new one is under preparation

Development of a 12-T operational field Nb₃Sn twin-aperture dipole; Fabrication and test of 2~3 T HTS (Bi-2212 or YBCO) coils in a 12-T background field, and basic study on tape superconductors for accelerator magnets (field quality, fabrication method, quench Assume with enough funding! protection).

2020-2025

Development of 15-T Nb₃Sn twin-aperture dipole and quadrupole with 10⁻⁴ field uniformity; Fabrication and test of 4~5 T HTS (Bi-2212 or YBCO) coils in a 15-T background field.

• 2025-2030

Nb₃Sn coils + HTS coils (or only one of them) to realize the 20-T dipole and quadrupole with 10⁻⁴ field uniformity; Development of the prototype SPPC dipole/quadrupole and infrastructure build-up.

R&D plan of the 20-T magnet technology

(2015-2020)

Magnetic & mechanical design study: coil configuration, field quality, stress management, ...

Cos-**th**eta dipole High efficiency, complicated ends with hard-way bending

Block type dipole Simpler structure with hard-way bending, low efficiency

Common coil dipole Simplest structure with large bending radius, low efficiency

Canted cos-theta dipole Lowest stress level in coil, low efficiency

Magnet design, prototyping and infrastructure

- Work is focused on:
 - Design Study of the SPPC Dipole Magnet
 - R&D Steps for the SPPC Dipole Magnet
 - Development of Nb3Sn Rutherford Cable
 - R&D of High Field ReBCO Tape by SSTC
 - R&D of Bi-2212 Superconductor by NIN
 - Preparation for the Model Magnet R&D
- Very slow building-up of infrastructure
- Domestic and international collaborations

Promoting collaboration on HTS technology

- SPPC high-field superconducting magnets: HTS has a great potential for future superconducting magnets, especially with expectation of a large reduction in cost.
- China has a good ground in high-temperature superconductors, both in basic research and applications. We use SPPC as a driving force to unify domestic institutions to develop HTS, especially iron-based HTS. A collaboration has been established.

Beam screen and vacuum

- Synchrotron radiation poses critical challenges to the cryogenic vacuum in next-generation pp colliders. Beam screen (shielding the light) is seen a potential stopper of the colliders.
- Screen structure under study: ante-chamber for absorbing photos, HTS coating to reduce impedance, high-temperature 45-65 K to reduce cryogenic load

- Beam instrumentation and controls
 - Very fast and reliable beam instrumentation and controls for both machine protection and sophisticated beam manipulations (emittance blow-up, luminosity leveling etc.)
- Machine protection
 - It is tough to deal with 6.3 GJ energy at max in beam, and also huge energy stored in magnets. A workable and reliable machined protection system is critical for operating the machines
- RF systems
 - It is interesting to develop high-Q ferrite-loaded RF cavities for two fast ramping synchrotrons: p-RCS and MSS
- Cryogenics
 - Efficiency is important for super-large scale cryogenic system.

Summary

- We have been making progress on SPPC study steadily, covering the scope and many challenging topics.
- Study with newly defined SPPC goals will start soon.
- Strong domestic collaboration on HTS technology will support the SPPC magnet development.
- SPPC chapter in the CDR report will be ready by end 2017.
- Much welcome international experts join SPPC study.

THANKS FOR ATTENTION!