Precision QCD Study at Future e+e- Colliders

Hua Xing Zhu Massachusetts Institute of Technology

IAS program on High Energy Physics HKUST Jockey Club, Institute for Advance Study Jan. 23, 2017

Motivation

☆ QCD is a non-abelian Yang-Mills theory with very rich phenomena:

- Asymptote freedom, confinement, jet formation, quark gluon plasma, color superconductivity ...
- ☆ Yet it's definition is simple:

☆ For example, the non-abelian gauge interaction leads to

- running of strong coupling
- running of heavy quark mass

Legacy of LEP from 14 to 209 GeV

3

- QCD as the correct theory of strong interaction undoubtedly established from many different measurements at LEP:
 - Running of α_s through event shapes and jet rates measurement
 - Running of b-quark mass through 3-jet rate in b-quark event
 - Combined Fits of QCD gauge structure constant

QCD at future e+e- study

- While e+e- collider is not a QCD machine, it has unique advantage over hadron colliders for understanding QCD at a more precise level
 - Fixed initial state energy
 - Absent of underlying events
- A future e+e- machine will support a rich program of precision QCD study
 - More precision in α_s measurement
 - Understanding of non-global observable
 - Finer structure of multi-jet events
 - Testing models of hadronization
 - o Monte-Carlo Tuning
 - Fragmentation function
 - Interplay with EW, Higgs, BSM

```
o .....
```

QCD at future e+e- study

- While e+e- collider is not a QCD machine, it has unique advantage over hadron colliders for understanding QCD at a more precise level
 - Fixed initial state energy
 - Absent of underlying events
- A future e+e- machine will support a rich program of precision QCD study
 - More precision in α_s measurement
 - O Understanding of non-global observable
 - Finer structure of multi-jet events
 - Testing models of hadronization
 - Monte-Carlo Tuning
 - Fragmentation function
 - Interplay with EW, Higgs, BSM

o

Event shape

Remarkable theoretical progress over the last decade for event shape calculation. The state of the arts:

• NNLO QCD + NLO EW for e+e- to 3 jets

N3LL resummation for thrust, heavy jet mass, C parameter form Soft-Collinear Effective Theory

Hoang, Kolodrubetz, Mateu, Stewart, 2015 6

$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p}_i| |\vec{p}_j| \sin^2 \theta_{ij}}{(\sum_i |\vec{p}_i|)^2}$$

- Simultaneous fit of α_s and non-perturbative corrections (Analytic power corrections).
 Consistent between thrust, heavy jet mass and C parameter
- The biggest effect is the -8%
 corrections when adding the non-perturbative fit corrections

Issue with nonperturbative modeling

- MC power corrections: estimate NP effects from difference of hadron and parton level MC
- Significant difference between MC power corrections and analytic power corrections
- ↔ While α_s fit using MC power corrections tend to agree better with world average, one should be careful that MC use LO matrix in its prediction
- Future e+e- collider with different/higher energy will be important to address this issue

Next-to-Leading Power logs in event shape

 $\frac{d\sigma}{d\tau} \sim \frac{\ln^m \tau}{\tau} (\text{Leading Power}) + \ln^m \tau (\text{Next-to-Leading Power}) + \dots$

- While the leading power large logarithms are under good control, the subleading power logarithms are far from understood
- Recently the full set of operators for NLP corrections have been obtained in SCET

[Kolodrubetz, Moult, Stewart, 16]; Feige, Kolodrubetz, Moult, Stewart, forthcoming]

First O(α²) analytic result for leading logarithms at NLP for thrust

$$\frac{1}{\sigma_0} \frac{\mathrm{d}\sigma^{(2,2)}}{\mathrm{d}\tau} = \left[-32C_F^2 + 8C_F(C_F + C_A) \right] \ln^3 \tau$$
$$= 8C_F(C_A - 3C_F) \ln^3 \tau \,.$$

- (Right Fig.) Comparison of analytic and numerical NLP log for beam thrust at hadron collider
- Resummation of NLP logarithms may be important to further reduced theoretical uncertainties in event shape fit

Lorena, Moult, Tackmann, Stewart, HXZ, 2016

Jet rates extraction: NNLO frontier

- The fixed order revolution in the past decade make extraction of five-jet rate at NLO and three-jet rate at NNLO possible
- For jet rates, parton level MC predictions agree well with pQCD calculation, indicating that MC power corrections gives sensible estimate
- Dominant theoretical uncertainties from scale variations: call for NNLO/N3LO calculation and resummation

High-precision αs measurements from LHC to FCC-ee, 1512.05194

Resummation two-jet rate

- ☆ For a long time two-jet rate can only be resumed at NLL accuracy
- Recent progress: resumming two-jet rate at NNLL with ARES method

* NNLL resummation leads to sizable reduction of scale uncertainties for twojet rate with Durham algorithm. Promising for precision determination of α_s .

Towards better understand of non-global logarithms

- Non-global logarithms (Dasgupta, Salam, 2002): observable only sensitive to a portion of phase space. Example: Sterman-Weinberg jet cross section
- ☆ Many more exmaples:

 light-jet mass, narrow jet broadening,exclusive jet mass, jet veto, gaps between jet, jet substructure, isolated photon

First reason why they are interesting!

Large logarithms α₅nlogmβ do not exponentiate

 Leading non-global logarithms at large Nc govern by non-linear evolution equation (Banfi, Marchesini, Smye, 2002)

$$\partial_L G_{kl}(L) = \int \frac{d\Omega(n_j)}{4\pi} \frac{p_k \cdot p_l}{(p_k \cdot \hat{p}_j) \left(\hat{p}_j \cdot p_l\right)} \left[\Theta_{\text{in}}^{n\bar{n}} G_{kj}(L) G_{jl}(L) - G_{kl}(L) \right]$$

- ☆ If Θ_{in}=1, this reduced to the famous Balitsky/Korchegov equation. The possibility of observing BFKL dynamics in jet physics is another reason why they are interesting. e+e- collider provides the cleanest environment for discover
- Significant renew interests since 2010: Banfi, Becher, Caron-Huot, Chien, Delenda, Dusgupta, Hagiwara, Hatta, Hornig, Kelley, Khelifa-Kerfa, Larkoski, Lee, Lorena, Moult, Neill, Neubert, Pecjak, Schabinger, Schwartz, Shao, Spannowsky, Stewart, Ueda, von Manteuffel, Walsh, HXZ, Zuberi …

First result for an realistic observable: light jet mass

- Highly non-trivial "factorization" theorem
- Infinite many soft operator S_m, mixed under renormalization
- Non-trivial convolution between soft and hard function

$$\sigma(M_L^2) \sim \int_0^\infty d\omega_L J(M_L^2 - Q\omega_L) \otimes$$

- Including non-global
 logarithms leads to better
 agreement with data
- Substantial nonperturbative corrections
 expected based on
 experience with heavy jet
 mass: shift the peak

 ρ_L

 $1 d\sigma$

 $\sigma \, \mathrm{d} \rho_L$

Revealing the finer structure of QCD amplitudes

 Scattering amplitudes: the most perfect microscopic structures in the universe (Dixon, 1105.0771)

Infrared singularities of n-particle on-shell scattering amplitudes factorize into a hard function, n collinear jet function, and a soft function which depends only on the four velocity of the jets.

- \Rightarrow For a two-jet event at e+e-, Q→ p₁p₂, the structure is trivial ((μ²/2p₁·p₂)^{nε})
- ★ It's only from three or more jets events $Q \rightarrow p_1 p_2 p_3 \dots$ that one can see the non-trivial structures through the Lorentz invariants constructed from $p_1 p_2 p_3 \dots$
- Early resummation study on three-jet event shape: thrust minor, D parameter.
 [Banfi, Dokshitzer, Marchesini, Zanderighi, 2001]
- A general N-jet event shape: N-jettiness (Tackmann, Waalewijn, Stewart, 2009)

3-jettiness in e+e-

The simplest example having non-trivial structure is 3-jettiness in e+e- collider

$$\tau \equiv \sum_{k} \min_{\{q_i\}} \frac{2q_i \cdot p_k}{Q^2}$$

$$\sum_{i}^{3} q_i^{\mu} = (Q, 0, 0, 0) \qquad \qquad q_i^2 = 0$$

- The born configuration has only three \mathbf{x} parsons in the final state, and 3-jettiness vanishes
- The born configuration can be \mathbf{x} parameterized by two dimensionless variable ranged from 0 to 1

$$y = \frac{q_1 \cdot q_3}{Q^2}, \qquad z = \frac{q_2 \cdot q_3}{Q^2}$$

The event is dijet like in the boundary of y- \mathbf{x} z triangle 14

Seeing the IR structure of QCD amplitudes

- NLL 3-jettiness distribution for different born configuration, and ratio to Benz configuration, assuming 100% quark-gluon discrimination
- ☆ At Leading log, the normalized cross section is insensitive to the shape of born configuration.
- * At NLL, the born sensitivities enter through large angle soft gluon radiation

Soft correlation become dipolelike at one and two loop due to conformal symmetry in the IR

Seeing the IR structure of QCD amplitudes

J. Gao, HXZ, work in progress

Μ

At L Measuring the deviation from 1 will be a direct orn
 conf proof of the non-trivial IR dynamics, and will be
 At N useful to constraint Monte-Carlo tools

Soft correlation become dipolelike at one and two loop due to conformal symmetry in the IR

Summary

- I have talked about a number of theoretical QCD topics in e+ecolliders that is closest to my heart
 - Precision determination of α_s from event shape and jet rates
 - Non-global observables
 - More differential observables that can test the finer structure of QCD
- The field is healthy: a lot of interesting unsolved problems; is evolving: new observables/techniques to be and will be invented to help us understanding our real world QFT at colliders. Stay tuned.

Thank you for your attention!