

Development of a 40 T hybrid magnet at CHMFL

Yunfei Tan High Magnetic Field Laboratory, CAS (CHMFL) Jan.19, 2017

Science Island Anhui Province

P. R. China

Science Island ---- a very beautiful peninsula! Area: 2.6 km2

Magnets Constructed at CHMFL

	Magnets	Magnet Field, T	Bore, mm	Power, MW	Current Status
	WM1	38.5*	32	25.2	Open for users
Desistive	WM2	25	50	15	Testing
Magnets	WM3	19.5	200	20	Testing
integrie i e	WM4	27.5*	32	10	Open for users
	WM5	35*	50	24	Open for users
	SM1	8-10	100	/	Testing
Currente	SM2	20	52	shield	Outsert Cryostat
nductina	SM3	20	54		Resistive Insert 5 Coils
Magnet	SM4	9.4	400	Supporting / Structure	S Outsert Terminal
Hybrid Magnet	HM1	45 T Resistive insert 34 T SC outsert 11 T	32	Superconducting Outsert Coils Ousert Magnet Support Column	- to - Bus Joints - to - Bus Joints Superconducting Current Buses Thermal Shield Support Column
				45 T Hyb	rid Magnet <mark>JAS</mark>

Photo of a Bitter Magnet

Performance Analysis of Resistive Magnet

AUG 27 2013 08:55:52

Forces within the Bitter Magnet

Stress along the radius

Displacement distribution in the Bitter plates

The assembled Bitter magnet

Magnet Supporting System

28 MW power supply, deionized water system and the central control system

Specifications

Rated output voltage	500 V, 600 V, or 700 V
Rated output current	2×20 kA
Ripple and noise	50 ppm
Stability (8 hours)	10 ppm
Efficiency	>90%

Hybrid Magnet at CHMFL

It consists of a SC outsert and two interchangeable watercooled inserts with inner bores of 32 and 50 mm.

Specifications

No.	Field (T)	Bore (mm)	Temp. (K)	Current/ Power
HSM	11	800	4.5	13.41kA
HWM1	34	32		26.1MW
HWM2	31	50		26.1MW

The hybrid magnet is the best way to generate the highest steady high field.

Resistive Insert

	07 20100	98 (1982)		-
	100000	00000		
				8
100			200 11	Ω.
<u>p</u>	11	98		
- -		•		
_				
1			2	

Coil В С D E F A Conductor type Florida-Bitter-type Current (kA) 39.8 Inner radius (mm) 19.0 49.0 81.0 116.0 178.0 244.0 Outer radius (mm) 47.0 350.0 79.0 114.0 175.0 241.0 Height (mm) 234.8 356.6 386.9 662.8 653.2 652.7 Disc thickness(mm) 6.2 7.44 7.44 9.48/18.96 9.48/18.96 6.32/12.64 Insulation thickness(mm) 0.15 Number of turns 37 47 51 93/4 49/10 48/10 Material CuAg CuAg CuAg Cu Cu Cu

The resistive insert consists of 6 subcoils, all the resitive coils are made of Bitter conductors.

Specifications

Development of Resistive Coils

Overview of Superconducting Outsert

MAIN PARAMETERS OF THE SUPERCONDUCTING OUTSERT

	Coil A	
-	Grade I	
Type of winding	layer	
Conductor type	Nb ₃ Sn	
Conduit material		
Strands configuration	(2SC+1Cu)×4×4×5	
CICC size (mm×mm)	22.0×15.0	
Conduit thickness (mm)	2.2	
Void fraction of conductor (%)	~ 30	
Compressive peak load a, (MPa)	10.20	
Number of turns	104 (2 layer × 52 turns/layer)	
Inner diameter of winding (mm)	930.0	
Outer diameter of windings (mm)	996.0	
Height of windings (mm)	1196.0	
Turn insulation (mm)	0.5	
Layer/pancake insulation (mm)	1.0	
Nominal current (A)		
Operation temperature (K)		
Maximum field at the windings (T) b	12.732	
Temperature margin w/o degradation (K) ^b	2.15	
Temperature margin with 15 % degradation (K) ^b	1.91	
Total length of the superconducting wire (km)	66.7	
Field contribution at center (individual coils) (T)	1.20 ^b (1.14) ^c	· / · · · · · · ·
Field contribution at center (combined coils) (T)		11.200 (11.0)
Combined inductance (H)		1.02975
Combined stored energy (MJ)		102.362 ^b (92.589) ^c

Different CICC structures manufactured for different devices

Performance Degradation of Nb3Sn CICC

Nb₃Sn CICC design at CHMFL

✓ Reduce void Fraction
✓ Elongate twist pitch of the first stage
✓ Decrease electro-magnetic pressure

Provide better mutual support between superconducting strands in the CICC and prevent degradation of strand performances.

Improved CICC structure High Magnetic Field Lab,CAS

Selection of Superconducting strands

Specification of Nb₃Sn strands

Wire diameter (mm)	Ø0.81±0.005
Bare wire diameter (mm)	0.806
Cr plated (µm)	1-2
Cu/non-copper	1.0±0.1
d _{eff} (µm)	≪80
Critical current, Ic (A) (4.2K,12T,0.1µV/cm)	≥540 (non-Cu Jc≥2100A/mm²)
RRR	≥ 100
n value	≥20
Twist pitch (mm)	15 ± 3
Hysteresis loss (7T-0-7T cycle) (kJ/m³)	≤1600

Design of CICC

Specifiction of Cable						
	线圈A	线圈B	线圈C	线圈D		
电缆配置	(2Sc+1Cu) × 4×4×5	((2Sc+1Cu)×3 + (1Sc+2Cu))× 3×5	(1Sc+2Cu)) ×3×4×5	((1Sc+2Cu)× 3 + 3Cu)×3× 4		
超导股线数目	160	105	60	36		
铜股线数目	80	75	120	108		

			1
Specification	of	CICC)
		_	

	线圈A	线圈B	线圈C	线圈D
导体尺寸(mm×mm)	22×15	20. 2×13. 4	20. 2×13. 4	15×14.4
铠甲材料	Modified 316LN			
铠甲厚度(mm)	2.2	2.2	2.2	2
空隙率(%)	~30	~30	~30	~30
最大磁压(Mpa)	10.2	10.13	8.97	10.3

Performance analysis of Superconducting Outsert

Mechanical performances analysis of the SC Outsert

Thermal and electro-magnetic performances analysis of SC Outsert

Performance Test of Model Coil

Performance tests of the model coil included: DC operation, fast discharging, AC losses, cyclic loading, etc.

Processing of SC Coils

 \diamond

 \diamond

Nb3Sn superconducting fable

Nb3Sn CICC

Superconducting cable (top) and conductor (bottom) processing

11T/800mm outsert

support Superconducting coil winding manufacturing superconducting coil (2014); assembly (2015).

Test of Superconducting Magnet

Commissioning of Hybrid Magnet

混合磁体 混合磁体总场强: 40.01 Tesla 超导磁体场强: 10.00 Telsa 水冷磁体场强: 30.01 Telsa 🕖 🔂 м 🐟 н 🔍 🗣 🗶 🗉 🙆 🖬 🚑 😫 н 800 40.0 混合磁体 37.5 内水冷磁体 35.0 -32.5 —— 外超导磁体 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 -2.5 +08:00 12:00:00.000 +08:00 13:00:00.000 +08:00 14:00:00.000 +08:00 15:00:00.000 +08:00 16:00:00.000 +08:00 -13 2016-11-13 2016-11-13 2016-11-13 2016-11-13 2016-11-13

(● 媒体追踪	更多
Þ	中科院研制成功世界一流稳态磁体装置(新华社,11…□2∞	2016-11-15
۲	稳态强磁场实验装置在合肥调试成功(安徽新闻联播…□️️️◎	2016-11-15
۲	中国研制成功世界第二高磁场强度的稳态磁体装置□□□□	2016-11-15
۲	(中新社视频)中国自主研制的稳态强磁场装置试验…□◙◙	2016-11-15
•	科学岛建成超强混合磁体装置(安徽日报)□□□□	2016-11-15

水浴磁体实验平台ld Lab,CAS

Summary

- Three resistive magnets have been constructed at CHMFL, the highest field can arrive 38.5T.
- The commissioning of our hybrid magnet can provide 40 T central field, a higher field more than 45 T can be expected.
- The resistive magnets developed in our lab will be a best test facility for developing HTS Insert.

Thanks for your attention!

