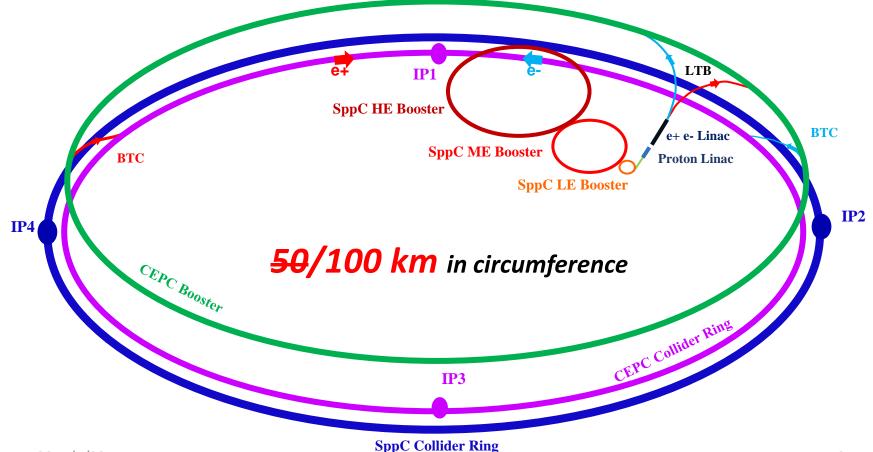


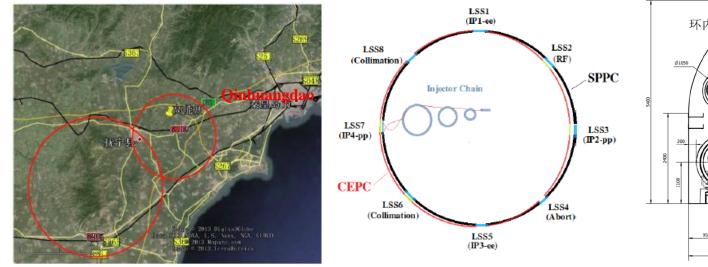
R&D Progress of the High Field Magnet Technology for CEPC-SPPC

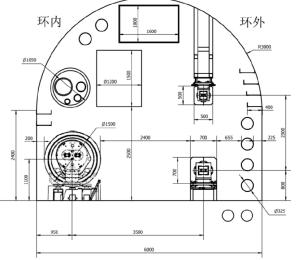
Qingjin XU


On behalf of the SPPC magnet working group

Institute of High Energy Physics (IHEP) Chinese Academy of Sciences (CAS)

HKUST, Jan. 19th, 2017


CEPC-SPPC

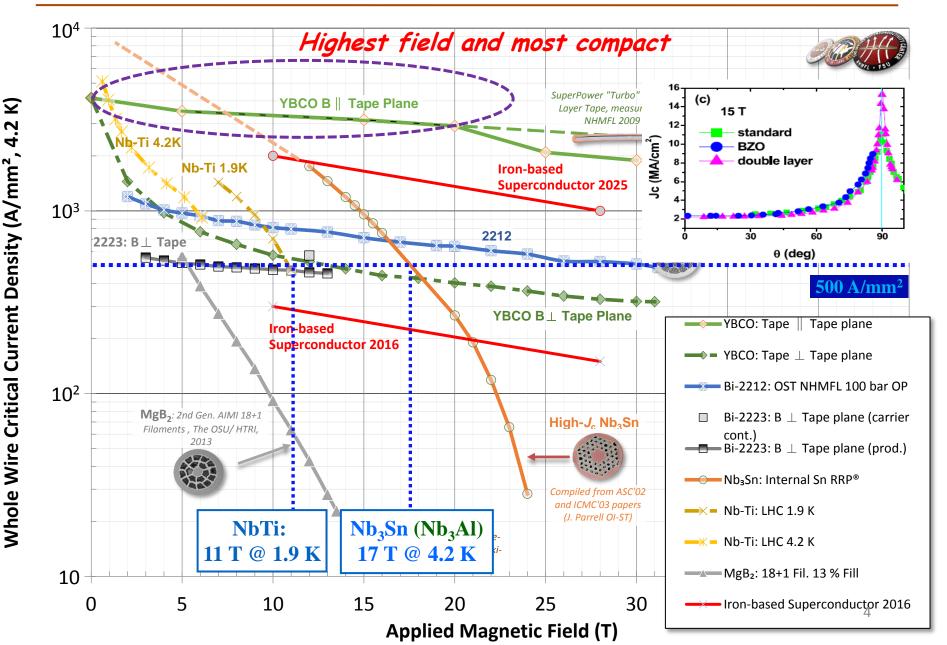

CEPC is an 240-250 GeV Circular Electron Positron Collider, proposed to carry out high precision study on Higgs bosons, which can be upgraded to a 70 TeV or higher pp collider **SPPC**, to study the new physics beyond the Standard Model.

Specifications of the SPPC Magnets

SPPC		Main dipoles	$E[GeV] = 0.3 \times B[T] \times \rho[m]$					
	<i>km</i> in circumference	• Field strength	: 20~12 Tesla ?					
C.M. enTimelin	ergy 70 TeV or higher e	• Aperture diameter: 40~50 mm						
Pre-stud	ly: 2013-2020	• Field quality:	10 ⁻⁴ at the 2/3 aperture radius					
R&D: Eng. De	2020-2030 sign: 2030-2035	• Outer diamete	r: 900 mm in a 1.5 m cryostat					
Constru	5	• Tunnel cross s	ection: 6 m wide and 5.4 m high					

SPPC accelerator complex

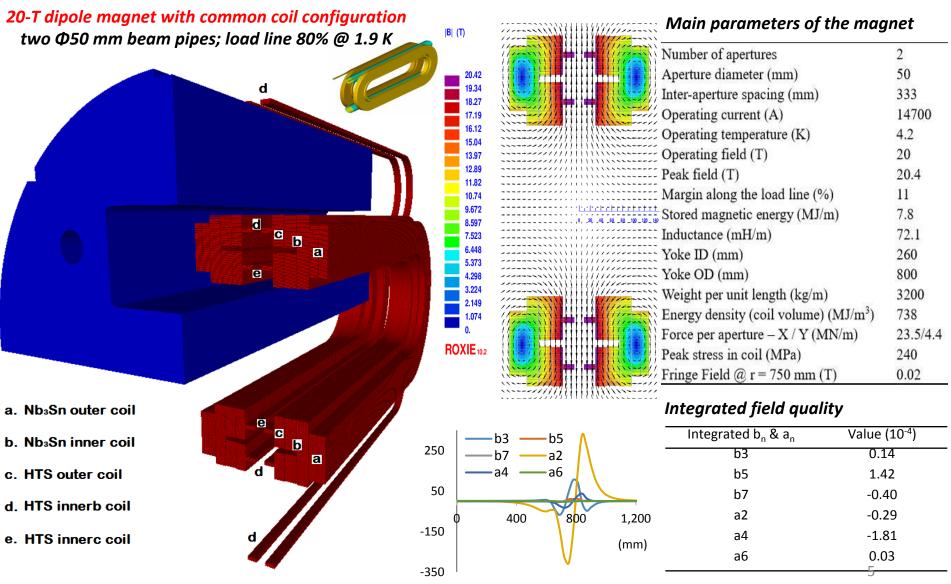
6-m Tunnel for CEPC-SPPC. Left: SPPC collider. Right: CEPC collider (bottom) and Booster (top)


2017/1/23

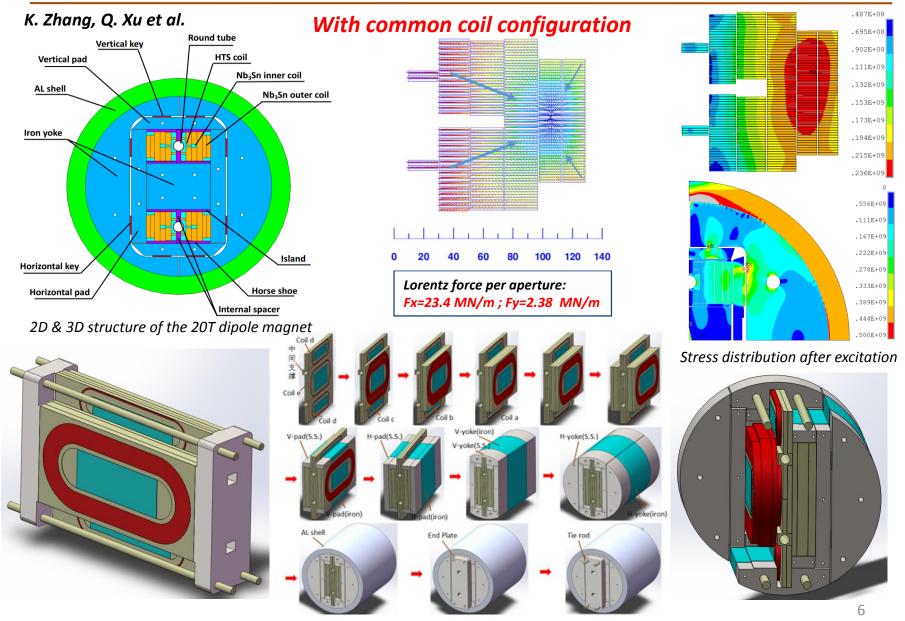
50 km and 100 km options.

The CEPC-SPPC ring sited in Qinhuangdao,

Refer to CEPC-SPPC Pre-CDR, Mar. 2015: <u>http://cepc.ihep.ac.cn/preCDR/volume.html</u>


How to design a "good" accelerator magnet?

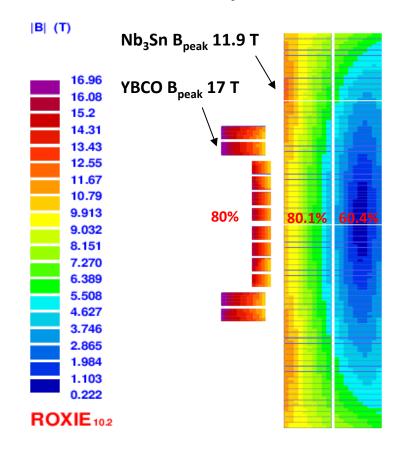
Concept of the SPPC 20-T Dipole Magnet


Q. Xu et al.

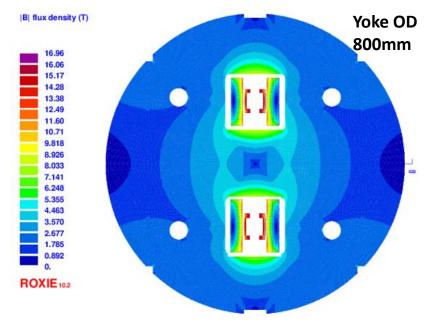
With common coil configuration

Q. Xu et. al., 20-T Dipole Magnet with Common Coil Configuration: Main Characteristics and Challenges, IEEE Trans. Appl. Supercond., VOL. 26, NO. 4, 2016, 4000404

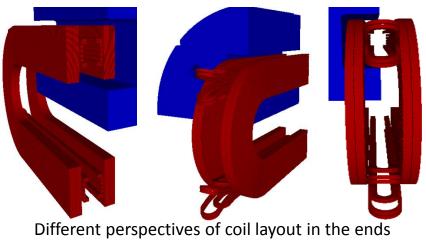
Concept of the SPPC 20-T Dipole Magnet


K. Zhang et. al., 2-D Mechanical Design Study of a 20-T Two-in-One Common-Coil Dipole Magnet for High-Energy Accelerators, IEEE Trans. Appl. Supercond., VOL. 26, NO. 4, 2016, 4003705

Concept of the SPPC 16T Dipole Magnet


C. Wang, Q. Xu et al.

With Combined Common-coil and Block-type configuration


16-T dipole magnet with two Φ45 mm beam pipes and the load line of 80% @ 4.2K

Field distribution in coils with an operating current of 0.8kA in ReBCO and 12kA in Nb₃Sn in the 1st quadrant. Nb₃Sn provides 11.2 T and ReBCO provides 4.8 T.

Field distribution in the straight section of the magnet

All-HTS 20T magnet?

- Precondition (Iron based conductor, ReBCO, Bi-2212)
- > The Je of the HTS conductors is high enough for accelerator application
- The cost is lower than or similar with the LTS conductors
- Mechanical performance is qualified

Main challenges of the HTS technology

- ➢ Field quality control: 10⁻⁴ field uniformity needed for accelerators
- Quench protection: quench propagation speed of HTS conductors is about two orders of magnitude lower than the LTS case
- Cable fabrication: how to fabricate high-current cable with tapes?
- Coil layout: compact, high efficiency, stress control, ...

Advantages of the all-HTS magnet:

Possibility of reducing the cost significantly (Iron based conductor, ReBCO)
 Possibility of raising the operation temperature of the magnet (4.2K -> ?K)

20T vs. 16T

- To realize the 20T or 16T magnets and be capable of mass production, we need
- Significantly further reduce the cost of superconductors (Nb₃Sn and HTS), i.e., to 1/5 or 1/10 of the present price
- Qualify the HTS conductors in mechanical performance, field quality control, quench protection, and cables and coils should be easy to fabricate
- Difficulty /Time needed for R&D /Grant needed for R&D
- > 16T all Nb₃Sn or Nb₃Sn+HTS: /normal 5~10 years /~10M RMB per year
 > 16T all HTS: /very difficult 10~20 years /~30M RMB per year
 > 20T Nb₃Sn+HTS: /difficult 10~15 years /~20M RMB per year
 > 20T all HTS: /very difficult 15~20 years />30M RMB per year
- Cost
- ➢ Nb₃Sn+HTS: cost of 16T magnet is about 50% of the 20T magnet
- All HTS: cost of 16T magnet is about 70% of the 20T magnet

SPPC Design Scope (201701 version)

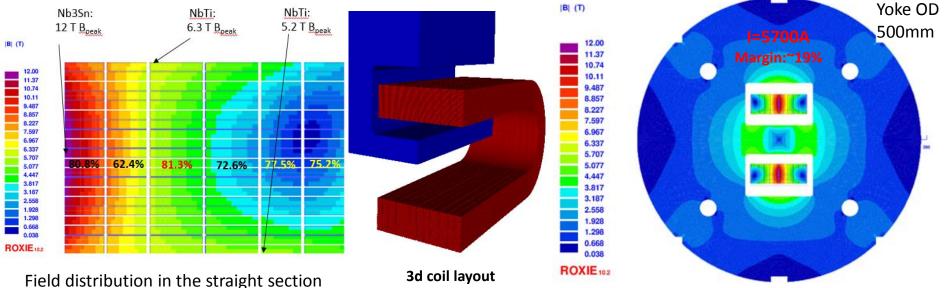
Baseline design

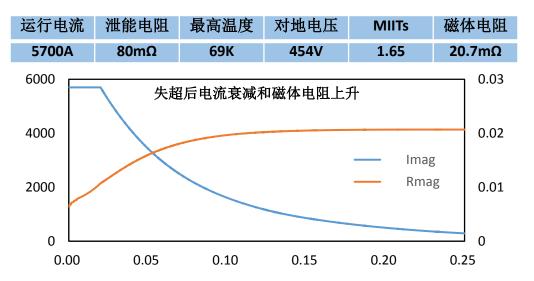
Y. Wang, J. Tang, Q. Xu et al.

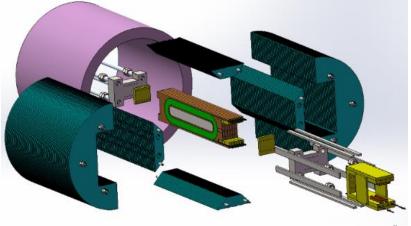
- Tunnel circumference: 100 km
- Dipole magnet field: 12 T, using iron-based HTS technology
- Center of Mass energy: >70 TeV
- Injector chain: 2.1 TeV

Upgrading phase

- Dipole magnet field: 20 -24T, iron-based HTS technology
- Center of Mass energy: >125 TeV
- Injector chain: 4.2 TeV (adding a high-energy booster ring in the main tunnel in the place of the electron ring and booster)

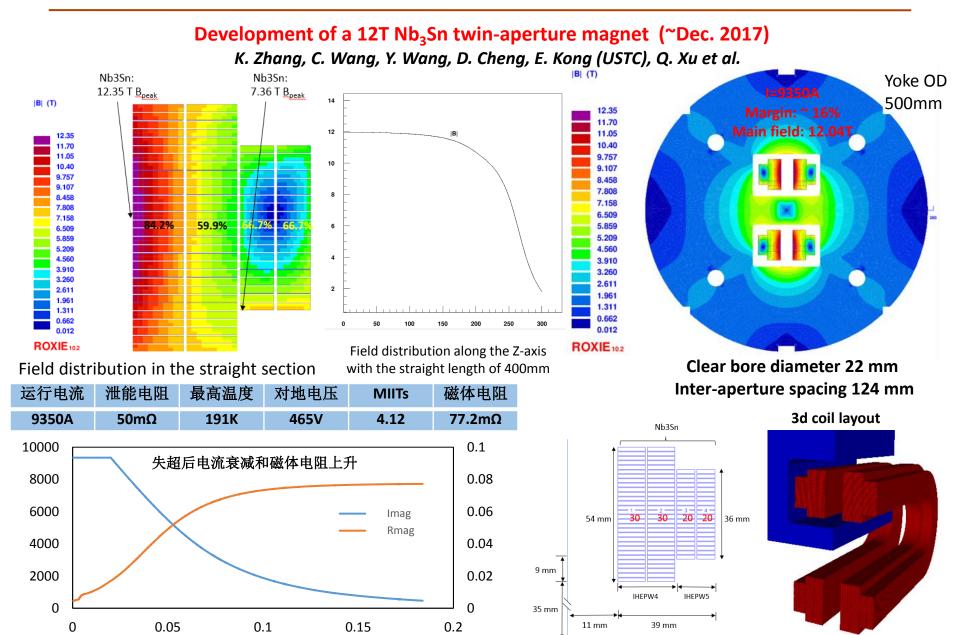

Development of high-field superconducting magnet technology

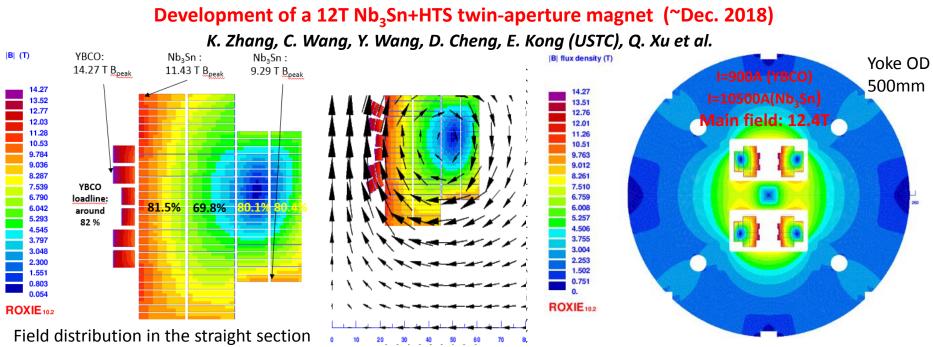

- Starting to develop required HTS magnet technology before applicable ironbased HTS wire is available (in 5~10 years)
- models by ReBCO (or Bi-2212) and LTS wires can be used for specific studies: stress management, quench protection, field quality control and fabrication methods 10


High Field Magnet R&D 2016-2018

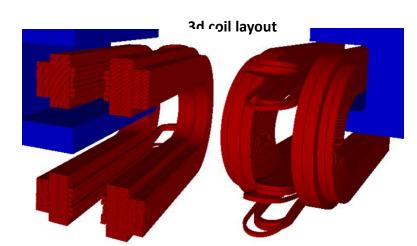
Development of a 12T NbTi+Nb₃Sn subscale magnet (~mid of 2017)

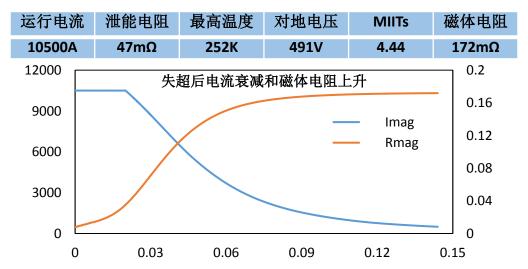
C. Wang, K. Zhang, Y. Wang, D. Cheng, E. Kong (USTC), Q. Xu et al.





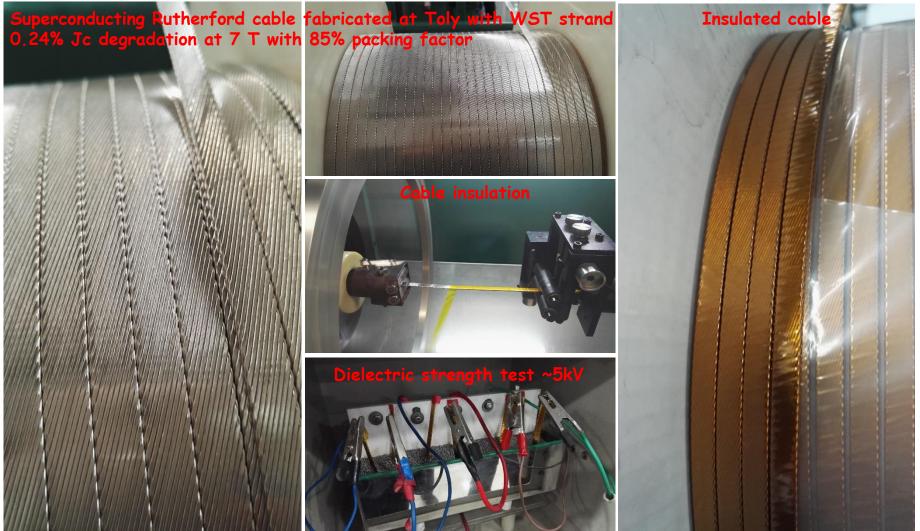
Components and assembly


High Field Magnet R&D 2016-2018



High Field Magnet R&D 2016-2018

Clear bore diameter 32mm Inter-aperture spacing 124 mm



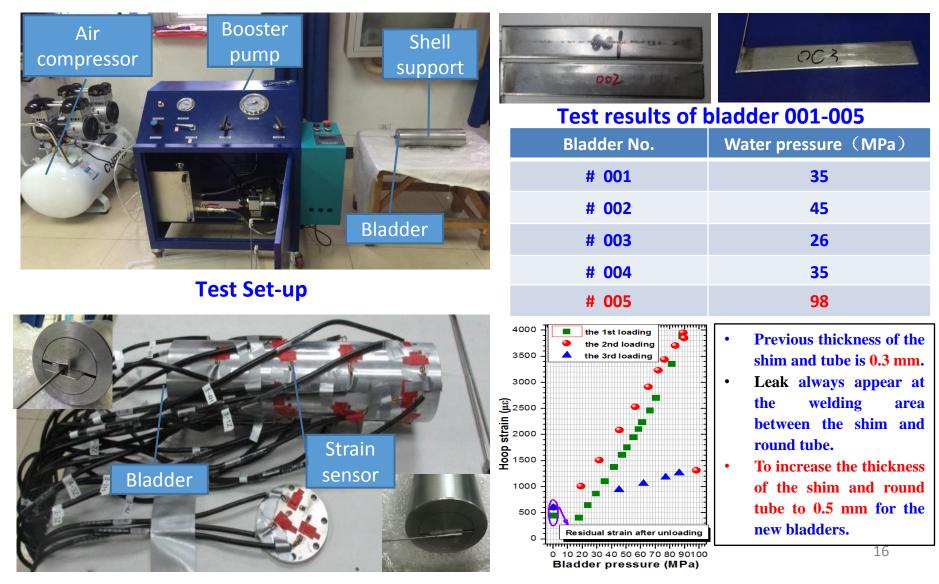
Superconducting Rutherford Cable R&D

Collaboration between WST, Toly Electric and IHEP

Y. Zhu (WST), H. Liao (Toly), H. Wang (Changtong), Q.Xu et al. ~300 m superconducting Rutherford Cable has been fabricated by Toly Electric with WST NbTi strand; Nb₃Sn cable will be fabricated in ~3 months; R&D of Bi-2212 cable to be discussed.

Superconducting Rutherford Cable R&D

Collaboration between WST, Toly Electric and IHEP


Y. Zhu (WST), H. Liao (Toly), H. Wang (Changtong), Q.Xu et al.

	Pitch	Nb		Ti	11股*0.70mm		11股*0.74mm				Comments				
	length	fa	1	填充	率	87.0%		91.8%							
	60					Ic (A)		Ic (A)			Not acceptable		table		
	45			性能	je.	5T		7 T		5T		7T		Almost	
	52			绞缆	前	314.8		195.6	375.2		2	228.4	acceptable		ble
	52													Acceptable	
				绞缆	后	305.0		189.0	358.2		2	218.1			
	260			绞缆前后 Ic损降(%)		3.1		3.4	4.5			4.5			
	240 -					•									
N	l b₃Sn 缆编号	计 填充率		线号		测试编	运动 经缆前 Ic(A)			绞缆后 Ic(A)		Ic损降 (A)	降幅/%		
	А	8	6.:	5%				A-1	A-1			248		15	5.7
	С	9	1.	2%	% 2013		3-13102B		263			240		23	8.7
	D	9	4.′	7%				D-1				232		31	11.8
	Е	9	0.:	3%	2012	013-13104A		E-1		258		241		17	6.6
	F	9	1.	3%	2015			F-1		238		238		20	7.8

Development of key components for magnet assembly

Collaboration between AVIC (中航工业北京航空材料研究院) and IHEP

H. Yuan (AVIC), K. Zhang, C. Wang, Y. Wang, D. Cheng, E. Kong (USTC) et al.

Development of key components for magnet assembly

Collaboration between AVIC (中航工业北京航空材料研究院) and IHEP

H. Yuan (AVIC), K. Zhang, C. Wang, Y. Wang, D. Cheng, E. Kong (USTC) et al.

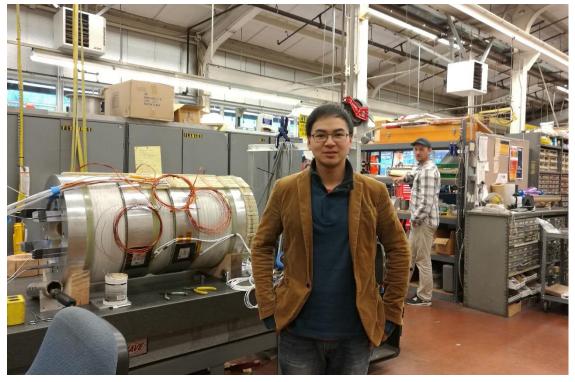
Latest progress: 102 Mpa achieved!

Infrastructure for model coil/magnet fabrication

高场超导线圈/磁体制作平台

Can wind the coil on horizontal surface, vertical surface or inclined surface (-45~90 degree)

Domestic and International Collaboration


IHEP & LBNL Collaboration on High Field Magnet R&D

Progress in 2016:

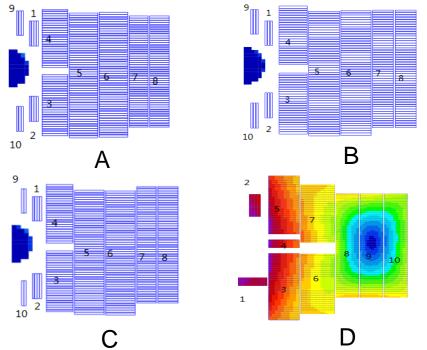
sent a student to LBNL to work with US colleagues on the Nb₃Sn & HTS magnet R&D: Mechanical design study, Jc measurement of superconductors, fabrication and test of HTS coils, ...

Plan for 2017:

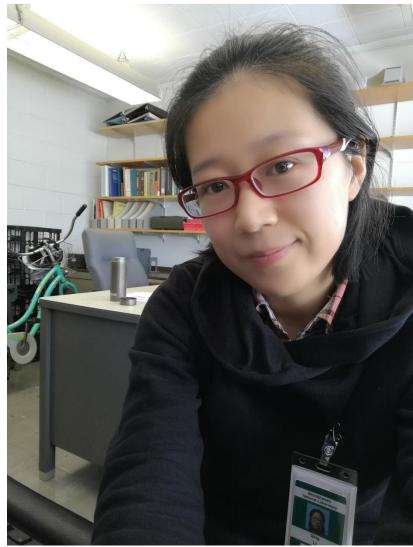
- a) Send new students to LBNL for joint-training.
- b) Joint efforts on the R&D of $Nb_3Sn \& HTS$ magnets.

Graduate student Kai Zhang stays at LBNL from Oct. 2016 for one year study on high field magnet technology

Jc measurement of Bi-2212 short sample


Subscale test structure

IHEP & BNL Collaboration on High Field Magnet R&D


Progress in 2016:

sent a young staff to BNL to work with US colleagues on the design study and coil layout optimization of the 20-T dipole magnets for SPPC. **Plan for 2017:**

- a) Send new staff to BNL for joint-training.
- b) Joint efforts on the R&D of the HTS magnets.

A. Innermost blocks "3+4" style; **B.** Innermost blocks "3+3" style; **C.** Innermost blocks "2+4" style; **D.** Innermost blocks: one vertical, the other horizontal.

Qing Li stayed at BNL for one month working with BNL colleagues on the design optimization of the SPPC magnets

Summary

- SPPC needs thousands of high field accelerator magnets to bend and focus the high energy proton beams.
- Latest baseline: 12T all-HTS (iron-base superconductor) magnets with 100km circumference and >70TeV center-ofmass energy.
- Upgrading phase: 20~24T all-HTS (iron-base superconductor) magnets with 100km circumference and >125TeV center-of-mass energy.
- Starting to develop HTS magnet technology before applicable iron-based wire is available (in 5~10 years): model magnet R&D with ReBCO (or Bi-2212) and LTS conductors to study stress management, quench protection, field quality control and fabrication methods.

Welcome more collaborators to join us!

Thanks