Di-photon at 750 GeV (A first read)

LianTao Wang (王连涛) U. Chicago

Jan. 21, IAS HKUST

Excess around 750 GeV?

Certainly too early to claim victory. But, tantalizing...

Exactly 4 years ago, $m_{\gamma\gamma} \approx 125$

 \pm 2 σ Expected CLs

Back to 750

"signal rate": 4-5 fb? Large. Same order as the SM Higgs to diphoton rate.

Di-photon resonance

1 million X^0 hn γ

Di-photon resonance

- Can be spin 0 or 2.
 - Not spin-1. Landau-Yang theorem.
 - Completely identical to the argument of the 125 GeV di-photon resonance.
- Spin 0 is much more compelling than spin-2.
 - Very difficult to write down a complete model of spin-2.

How can neutral particle goes to photon, which only couples to charged particles

For the SM higgs, they are top quark and W boson

Can top and/or W do it for the X(750)?

No. Can not (just) be top or W.

750 GeV res. can not be alone. Must have more new physics!!

- Say X couples to top and or W, with arbitrary coupling.
 - ▶ BR(di-photon) is less than 10⁻⁴.
 - 4 fb to di-photon means 10s -100 pb to ttbar and or WW.
 - A factor of 4 or 5 in the production rates between 8 and 13 TeV.
 - ▶ ttbar and/or WW signal of at least pb at 8 TeV.

Possible to have pb(s) level tt or WW resonance at Run 1?

- No.	final state	\parallel 700 GeV	$750~{\rm GeV}$	
	$t\overline{t}$ (narrow)	\parallel 540 fb	450 fb	CMS [6]
	$t\bar{t}$ (wide)	620 fb	$520~{\rm fb}$	CMS [6]

 $WW (\ell \nu j j) \parallel 60 \text{ fb} \qquad 70 \text{ fb} \qquad \text{ATLAS [10]}$

 Must be more new physics in addition to the 750 GeV resonances!!

Production

- Unlikely from qqbar.
 - Suppressed by small quark masses, otherwise suffer from sever flavor constraints.
- Possibly (like the Higgs)

Need more new physics here as well, colored!

What kind of scalar?

- CP even, real scalar.
 - ▶ Typically will mix with the Higgs.
 - More constraining
 - Decays like Higgs with tiny BR to di-photon.
 - Difficult to work.
- CP odd, pseudo-scalar.
 - Much better candidate.

$$\mathcal{L}_{\rm int} = \frac{y_f}{\Lambda_f} \eta (i\overline{f_L}Hf_R + \text{h.c.}) + \frac{c_B}{\Lambda_g} \frac{g^{\prime 2}}{16\pi^2} \eta B_{\mu\nu} \tilde{B}^{\mu\nu} + \frac{c_W}{\Lambda_g} \frac{g^2}{16\pi^2} \eta W^a_{\mu\nu} \tilde{W}^{a\mu\nu} + \frac{c_g}{\Lambda_g} \frac{\alpha_s}{4\pi} \eta G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

with SM top

$$\mathcal{L}_{\text{int}} = \frac{y_f}{\Lambda_f} \eta (i\overline{f_L}Hf_R + \text{h.c.}) + \frac{c_B}{\Lambda_g} \frac{g'^2}{16\pi^2} \eta B_{\mu\nu} \tilde{B}^{\mu\nu} + \frac{c_W}{\Lambda_g} \frac{g^2}{16\pi^2} \eta W^a_{\mu\nu} \tilde{W}^{a\mu\nu} + \frac{c_g}{\Lambda_g} \frac{\alpha_s}{4\pi} \eta G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

M. Low, A. Tesi, LTW

- Need anomaly contribution for large di-photon BR.
- Will have $Z\gamma$ and ZZ.

$Z\gamma$, ZZ the next things to look for

- Also WW, ttbar, hh.

- And everything under 750

NP models

 $M_{NP} > 0.5 M_{X.}$

Vector like fermions.

We are already puzzled by m_h (125), naturalness problem.

- We are already puzzled by m_h (125), naturalness problem.
- Now another (pseudo)scalar?
 - Can make things much worse.
 - Not controlling weak scale masses in an obvious way. Even landscape may not help.

- We are already puzzled by m_h (125), naturalness problem.
- Now another (pseudo)scalar?
 - Can make things much worse.
 - Not controlling weak scale masses in an obvious way. Even landscape may not help.
- However, the 750 GeV pseudo-scalar may be the first hint of a natural theory.

0		Scale factor/	p
π^{o} DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
2γ	(98.823±0.034) %	δ S=1.5	67

π^0 decay modes	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>р</i> (MeV/c)
2γ	(98.823 ± 0.034) 9	% S=1.5	67

– " $\pi^{0''}$ of a new QCD?

- Will have many other "mesons" (typically 10s), will carry SM quantum numbers (colored, etc).

π^0 decay modes	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>р</i> (MeV/c)
2γ	(98.823±0.034) %	∕₀ S=1.5	67

– " $\pi^{0''}$ of a new QCD?

- Will have many other "mesons" (typically 10s), will carry SM quantum numbers (colored, etc).

- $\Lambda = 10 \text{ TeV}$: new gluon and quarks

TeV(s), resonances

η: 750 GeV

π^0 DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>р</i> (MeV/c)
2γ	(98.823±0.034) %	∕₀ S=1.5	67

- " π^{0} " of a new QCD?

- Will have many other "mesons" (typically 10s), will carry SM quantum numbers (colored, etc).

- $\Lambda = 10 \text{ TeV}$: new gluon and quarks

TeV(s), resonances

η: 750 GeV

Natural. But mass no relation with weak scale.

Natural to have 750 with reasonable parameters

Di-photon rate in composite Higgs

Di-photon rate in composite Higgs

New QCD vs composite Higgs

- The presence of ttbar.

- Presence of top-partner.

Alternative: 2-step decav

If $m_a << M_X \approx 750$ GeV, LHC may not be able to resolve the two photons. So it could be a di-photon resonance.

May need m_a < GeV. No compelling reason. Life time of a challenging

Knapen et al Strassler et al

Alternative: 2-step decav

If $m_a << M_X \approx 750$ GeV, LHC may not be able to resolve the two photons. So it could be a di-photon resonance.

May need m_a < GeV. No compelling reason. Life time of a challenging

Knapen et al Strassler et al

- Good "straw man" to test experimentally.
- Need a lot more new physics to complete the story.

Big picture

- Likely to be a (pseudo)scalar at 750 GeV.
- Large rate to di-photon. Need additional new physics!
 - ▶ Both charged and colored.
 - Perhaps around 500 GeV to TeV-ish, exact range model dependent.
- Looking good for being part of a natural theory.
 - New physics span over a decade of energy beyond TeV.

Beyond the LHC, future facilities

Big ring ++

 The motivation for having a very large ring, with the goal of a super proton collider with higher energy (10s to 100 TeV), would be super strong.

Completely unravel a new layer of new physics.

Another 50+ years exciting discoveries.

 Lepton colliders, such as CLIC(to lesser extent the ILC), can cover some ground, especially the new charge particles. But unlikely the full story.

