Multi-objective Dynamic Aperture Optimization for NSLS-II Ring

Yongjun Li Energy Sciences Directorate, BNL IAS program on HEP Conference 2016, Hong Kong

Outline

- Multi-objective genetic algorithm (MOGA)
- Existing optimizations on dynamic aperture
- New efficient method with MOGA
- Applications on NSLS-II storage ring
- Correlation between nonlinear driving terms and dynamic aperture

Genetic Algorithm (GA)

Genetic Algorithm (GA) mimics the evolution of nature:

Crossover: children inherit genetic codes from parents

Mutation: change the children's genetic information

Selection: only these "elites" survive and reproduce

Multi-Objective Optimization

An example for two

objectives ranking

Within a same rank, all candidates are equally good

Pareto frontier OF₂ Worse (a) OF_{2c} (c) Better OF_{2d} d (b) OF_{1c} OF_{1d} OF₁ Better Worse

Deb, Kalyanmoy - Natural selection: Non-dominated sorting in N-dimension space

Review of existing methods

 Method 1: minimizing the nonlinear driving terms with specific weights, i.e. MAD

Review of existing methods

- Method 2: brute-force MOGA driven by direct tracking
 - L. Yang, Y. Li, et al. (PRST-AB, 2011)
 - M. Borland, integrated to ELEGANT

Optimizing DA Area

130 2%) [*mm*²] 105 90 75 100 90 60 80 45 70 30 60 50L 60 140 120 160 80 100 DA Area(dp=0) $[mm^2]$ Objective func. are DA areas. Constraints are fixed ellipse Variables are 6 geom. sext. BROOKHAVEN Lingyun Yang March 5-9, 2012 7 / 16

Works very successfully, but, Difficulties:

- No physics is behind
- Very time-consuming in direct DA tracking, especially when your computer is not powerful, or your ring is big.

Motivation

 A strong correlation between DA and NDTs does exist .(L. Yang & Y. Li @BNL, M. Borland & L. Wang @ANL and SLAC)

Correlation of NDT and DA Yang and Li, PRST-AB

Figure 3. Automatic reduction of the driving terms after the optimization although DA is set as one of the objectives during the optimization.

M. Borland & L. Wang

An efficient method

- Using MOGA driven by NDT computing rather than DA tracking
 - Be efficient: computing NDTs is much cheaper than DA tracking
 - Be of "physics": having small low order NDTs is an necessary condition for larger DA

Applications on NSLS-II ring

- Energy: 3GeV
- Emittance: 2nm bare, 1nm with 3x6.8m DWs
- Lattice: 30-standard DBAs (Chasman-Green)

Requirements for DA:

DA >= 15mm at high-beta straight for efficient injection

Energy acceptance >2.5% for sufficient beam lifetime

Tolerate numerous insertion devices and engineering errors

Simply case: Chromaticity +7/+7

- Purpose: high linear chromaticity to stabilize beam at high stored beam current
- Optimization procedure:
 - Tuning chromatic sextupoles to achieve +7/+7 linear chromaticity
 - Tuning 6 families geometrical sextupoles to optimize DA and energy acceptance
 - Penalty functions: first and second order driving terms:
 *h*_{abcd,e}, where a+b+c+d+e = 3 and 4 (totally ~ 30 terms)

 $\xi_{x,y} = +7/+7$ Dynamics: chromaticity

Tune dependence on amplitudes

Dynamic aperture and energy acceptance

Demanding case: Low alpha Lattice

Purpose: to short bunch length by reducing momentum compactor from **5e-4** to **3.4e-06**

 Linear chromaticity to +2/+2

2. Minimize higher order momentum compactions to have a stable longitudinal motion

3. Have sufficient DA and energy acceptance

Objective 1: chromaticity control

- linear chromaticity close to +2/+2
- 2. Large high-order chromaticities

Objective 2: longitudinal stability

Objective 3: dynamic aperture and energy acceptance

Sufficient dynamic

Correlation between DAs and NDTs

A: small NDTs and large DAs B: small NDTs but small DAs C: large NDTs and small DAs

1. Having small NDTs is an necessary but insufficient condition for having a large DA 2. Sufficient population per generation is the key parameter to get some good solutions

New characterization with square matrix and sufficient conditions

(2)

We may now write this in the form

$$X = MX_0$$

where to 4th order, we define the 14×1 monomial array

$$ilde{X}_0 = (x_0 \quad p_0 \quad x_0^2 \quad x_0 p_0 \quad p_0^2 \quad \dots \quad p_0^4)$$
 (3)

with $k = \pm 1, \pm 2, \dots$ *I* is the identity matrix and τ^{\dagger} the matrix with 1's just above the diagonal:

$$\tau^{\dagger} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \tau = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad (7)$$

Li-Hua Yu

Summary

- MOGA driven by the nonlinear driving terms is very efficient
- Having small low order NDTs is an necessary, but insufficient condition for have a decent DA.
- The number of populations is the key parameter. **Parallel** computation capability is preferable.
- Tracking simulation is the finial criteria to select the best solutions from the last generation
- New approach of characterization of nonlinear dynamics is under development