

Status of CEPC software

Gang Li for the CEPC study group <u>li.gang@mail.ihep.ac.cn</u>

Institute of High Energy Physics, CAS

Outline

- Introduction
- Status of CEPC software
 - preCDR stage
 - Towards CDR
- Long term plan
- Summary

Software: a chain of (G)SRCA

- Generator: usually independent
- Simulation: flexible to edit/ change geometry
- Rec/Cal: cope with the changes of detector and maximize the performance
- Analysis: precision

Why we need a dedicated software?

- CEPC: HZW (top?) physics
 - H (Higgs): first priority
 - Z and W (electroweak): large FREE data @ 250GeV
 - W@160GeV and Z@91GeV necessary?
- Answer 1: Demonstrate and evaluate the physics potential of HZW(top)

Why we need a dedicated software?

- Pre-CDR: Detector model from ILD with some modifications
- Next CDR&TDR:
 - Alternative choice: silicon
 - Detector geometry: smaller for less expense
 - Key technical problems: MDI, active cooling, B ...
 - More precise vertex for jet flavor identification
- Answer 2: Optimize the detector design to balance physics and expense

Status at pre-CDR

Detector: CEPC_v1

Dedicated homemade tools developed for CEPC conceptual design

Reconstruction at PreCDR

- Fully validated simulation reconstruction chain
- Developing and optimization needed

A dedicated analysis framework Novices can start from root ...

Feed all types of particle object to the combination engine for further processing

ee+X, $\mu\mu+X$, jj+ee, $jj+\mu\mu$...

Towards CDR&TDR

Two tasks of software

Designing/optimizing detector and answering key questions

Systematics control

- Calibration
- Dedicated physics object algorithms: e, μ , τ , γ , jet
- MC/theoretical inputs

Geometry tools preparation

C. Fu: Simplified Calorimeter geometry, applied to both CEPC & SPPC Detector design

/Mokka/init/globalModelParameter SiCalEndcapEta1, 4

/Mokka/init/globalModelParameter SiCalEndcapEta2 4

/Mokka/init/globalModelParameter SiCalBuildBarrel 1

/Mokka/init/globalModelParameter SiCalXCellSize 2.5

/Mokka/init/globalModelParameter SiCalYCellSize 2.5

/Mokka/init/globalModelParameter SiCalEndcapOuterR 6120

Will PFA oriented detector adequate to 100 TeV pp collision?

Defect free, deep ECAL style

SPPC detector: exploration

C. Young: Solenoid + Dipole pairs for 100 TeV pp collider

Regular meeting~6 students

Calo-Optimization

Guidance from experienced people can make the study more efficiently

Januar	y 2016				
	19 Jan C 05 Jan C	alorimeter Optimization Rewl			
December 2015					
	15 Dec 0	Calorimeter Optimization			

Higgs precision in pre-CDR

ΔM_H	Γ_H	$\sigma(ZH)$	$\sigma(\nu\bar{\nu}H) \times \mathrm{BR}(H \to b\bar{b})$
5.9 MeV	2.8%	0.51%	2.8%
Decay mode		$\sigma(ZH) \times BR$	BR
$H ightarrow b ar{b}$		0.28%	0.57%
$H \to c \bar{c}$		2.2%	2.3%
H ightarrow gg		1.6%	1.7%
$H\to\tau\tau$		1.2%	1.3%
$H \rightarrow WW$		1.5%	1.6%
$H \rightarrow ZZ$		4.3%	4.3%
$H\to\gamma\gamma$		9.0%	9.0%
$H ightarrow \mu \mu$		17%	17%
$H \to \mathrm{inv}$		_	0.28%

Physics objects: isolated lepton

Semi-Leptonic Decay

2016/01/18-21

Physics objects: photon

E (50 GeV) vs θ without θ correction (Arbor_v3_Diag_SL6)

E (50 GeV) vs θ with θ correction (Arbor_v3_Diag_SL6)

E vs 0

σνsθ

Jet algorithm

- LCFIplus also from iLCSoft, which includes jetclustering and flavor-tagging
- Jet performances are same between CEPC and ILD for b, c and light jets
- New approaches are needed, for examples, the estimation of jet correlation, gluon vs. uds, jet charge ...

Latest results

Flavor tagging

Long term goal --- a real experiment

New framework: a team formed

- CEPC Software framework:
 - a. Developed from iLCSoft
 - b. Sufficient for R&D & optimization studies
 - c. Has difficulties to support experimental data taking & processing
- Future requirements
 - a. Parallel computing
 - b. Data base handling
 - c. User friendly, efficiency, etc
 - d. Need top level engineering/ organization

IAS workshop@HKUST

Summary

- CEPC soft, based on iLCSoft, has some homemade tools
- Sufficient at present stage
- But cannot support a real experiment
- New software framework proposed
 - Good top level design is indispensable
 - New ideas, new developments should be implemented for physics potential and attracting more (young) people
 - Expertise, experiences and all types of corporation are welcome