Linear and Circular Colliders: A few topics

Luminosity Gamma-gamma Beam polarization

> Kaoru Yokoya, KEK 2016.1.20

Luminosity Comparison

Scaling of LC Luminosity to Lower Energies

- One of the advantages of circular collider is the high luminosity at low energy region
- ILC is not suited for E_{CM}<250GeV
- TDR gives serious study results only down to E_{CM}=250GeV
 - No serious study to Z-pole and W-pair
- Often asked to give luminosity values at such energies
- Simplest scaling low
 - Same beta \rightarrow L proportional to E
- This is a bit optimistic
 - Increased beam divergence angle due to larger geometric emittance would cause background
 - Require deeper beam collimation
 - Final quad should be shorter
 - Linac beam dynamics with lower beam energy

Efforts for Low Energy Operation of ILC

• Z-pole is anyway impossible

10Hz Operation

- Use every other electron pulse for positron production $E_e=150$ GeV and collision experiment $E_e=E_{CM}/2$
 - \rightarrow every other pulse with different energies
- Operate the electron linac at doubled rate (10Hz)
- This is mentioned in TDR
- Some components already included in TDR
 - Doubled rep rate of Damping Ring (stronger wiggler, more RF)
 - But details are left out
- There are also other possibilities,
- But no resources now
- If both ILC & CEPS be built, ... we do not need this mode

Gamma-gamma Collider

- Advantage of LC
 - Not impossible with circular colliders, but the luminosity would be much lower
 - $\gamma\gamma$ luminosity is ~ 1/3 of e+e- luminosity
- Nonetheless, ILC has not been optimized for $\gamma\gamma$
 - γγ community is not strong enough
- Crossing angle
 - γγ requires larger crossing angle (25mrad thought to be the optimum) for avoiding low energy electrons from multiple Compton scattering
 - ILC TDR: 14mrad
 - It is hard to change the crossing angle after construction
 - Do not want to move the beam dump

750 GeV Diphoton Resonance?

- If this be true, can be a good target of ILC $\gamma\gamma$
 - $E_{\gamma} \simeq 0.8E_{e}$
 - $E_{\gamma\gamma}$ =700-800GeV is best suited with ILC after extension to E_{CM} = 1TeV
- Expected luminosity > 10³⁴
- Laser technology would be mature by that time
 - Strong motivation would accelerate laser development
 - $\lambda_L = 2\mu m$ optimum
- If this possibility to be considered seriously, it can be taken into account now

Beam Polarization

- One of the advantages of the ILC is the collision of polarized beams
 - Electron: 80% in TDR
 - Positron: 30% TDR baseline, can be raised to =60%

Positron Polarization

Photon Collimator

 Higher photon polarization, hence higher positron polarization, can be obtained by collimating the photons from undulator

Depolarization by Beam-Beam Interaction

- 2 reasons of depolarization
 - Below 1% level at ILC
 - But can be significant at CLIC 3TeV
- Precession in B-B field
 - B-B magnetic field causes depolarization
 - For the ring parameters, depolarization per collision is
 - $<\Delta P > = 0.3E-4$ to 1E-4 for FCC-Z to FCC-t **3E-4 for CEPC-H**
 - But the effect does not accumulate over multiple turns.
- Spin-flip radiation

 - $<\Delta P> = (7/12) Y^2 n_{\gamma}$ per collision $n_{\gamma} = number of photons / electron/collision$ Y' = Upsilon parameter

 - negligible at ILC 500GeV (but not at CLIC 1TeV)
 - For the ring, $<\Delta P>$ = 0.33E-8 (FCC-H), 1.25E-8 (FCC-t), 2.6E-8 (CEPC-H) Depolarization time ~100min for CEPC-H

Beam Polarization in Circular Colliders

- Use of beam polarization
 - Energy calibration
 - Z mass = 91.1876 +- 0.0021 GeV measured at LEP 2.3 x 10⁽⁻⁵⁾
 - ~5% polarization enough for this purpose
 - Polarized colliding beam experiments (longitudinal polarization) like at HERA
 - Need spin rotator
 - 30-40 % polarization at least
- How to get polarized beam
 - Spontaneous radiative polarization (Sokolov-Ternov effect)
 - Injection and acceleration of polarized beam

Depolarization due to Energy Spread

2016/1/20 IAS, Yokoya

16

Radiative Polarization Time

- No energy spread problem at FCC-Z and CEPC-Z
- But spontaneous polarization too slow

		FCCee (4IP)			CEPC		
		Z	W	Н	Z	W	Н
Circumference	km	100	100	100	54.374	54.374	54.374
Bending radius	km	10.424	10.424	10.424	6.094	6.094	6.094
E beam	GeV	45.6	80.4	120	45.6	80.4	120
$\sigma_{\rm E}$ (SR)	MeV	24	74	167			156
$\sigma_{\scriptscriptstyle \sf E}$ (with BS)	MeV	28	84	185			192
U0	GeV	0.037	0.355	1.76	0.063	0.607	3.01
Pol τ	hours	240	14.1	1.90	44.7	2.62	0.35
Beam life		6.7	1.4	0.5			0.8

For Faster Polarization

- LEP type asymmetric wiggler can increase α +, hence reduce the polarization time.
- But the energy spread and SR loss also increase.

$$\sigma_E \propto \sqrt{rac{I_3}{I_2}} \quad U_0 \propto I_2 \quad I_3 = \oint ds / \left| \rho \right|^3, \quad I_2 = \oint ds /
ho^2$$

- Hence, $A_p = A_E^2 \times A_U$ $A_p = \text{improvement factor of } \tau_p$ $A_E = \text{increase of } \sigma_E, A_U = \text{increase of } U_0$
- Polarized beam experiment at FCC-Z, at least A_p~100 needed
 - A_E only up to 1.5-2 allowed (energy spread depol.)
 - Hence $A_{\cup} \sim 40$, \rightarrow beam current must lowered by 1/40
 - Local SR too large at asymmetric wigglers
 - Moreover, spin rotator needed for longitudinal polarization
- Pilot bunch can be used for energy calibration
 - Long beam life (no beam beam)
 - 2-3 hours are enough for CEPC to reach the polarization level needed for calibration (Most realistic foe CEPC)

Injection and Acceleration of Polarized Beam

- Injection/acceleration of polarized beams seems feasible
- What's needed?
 - Polarized beam source
 - For positron,
 - CBAF?
 - Compton seems feasible
 - Undulator like ILC?
 - Required intensity much lower than in ILC
 - Resonance crossing in the booster ring (and maybe prebooster ring) → double Siberian snake
 - Spin rotator in the collider ring (for longitudinal polarization)
 - Local synchrotron radiation is an issue
- Note the depolarization due to the energy spread still exists

My Conclusion on Beam Polarization

- Sokolov-Ternov can still be used for energy calibration at CEPC-Z (54km) and (perhaps) at FCC-W
 - A bit slow but may be possible at FCC-Z
 - If the energy calibration is the only purpose at these energies, pre-polarized beam not needed
 - Issue to be studied is the expected accuracy of the calibration
 - Can we reach 1e-6 (0.1% of $\sigma_{\scriptscriptstyle E}$)
 - How large is the energy difference between the pilot bunches and the colliding bunches?
- Collision of longitudinally polarized beam is very hard even with pre-polarized beam