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Total Width and Decay Branching Ratios

The Higgs boson mass is the only free parameter in the SM,
everything else is predicted in the model...
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SM @ 125 GeV:T', 4.07 MeV < smaller than the experimental
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Measurements at LHC

Events/5 GeV

Identify Higgs bosons from their
decay signature = only known
decays can be studied.

Tag production using information
other than the Higgs decay
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Always measure the product of
cross section and branching ratio

o xBR

No model independent way to
separate o from BR.
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Tagging Production

From other activities in candidate events...
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Coupling Extraction

Parametrizing deviations from SM using scale parameters: (SM: K= 1) i4
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K, is the scale factor to the total Higgs decay width
Kh =) ki -BR(H —> xx) —femersMdeee 5 42 =" k2 - BR,,, (H — xx)

- BRq,, (H — xx)
With non-SM decays N K,Z _ ZKZ . SM
* 1-BR

non—-SM

Benchmark models with different assumptions. Most models at LHC assume

no non-SM decays (BR =0). More generally: BR =BR, +BR

non—SM non—SM exotic
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Status of the LHC Measurements

All measurements are consistent with the expectations of a 125 GeV
Standard Model Higgs boson.
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Relevant couplings are measured with a precision of 10-30%. Alternative
spin/CP hypotheses tested are disfavored at 95% CL or higher.

See presentation for details by Guido Tonelli yesterday
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Prospects at HL-LHC

Significant improvements are expected from the ongoing and future
LHC program
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But theoretical and experimental challenges limit the precision to a few
percent in the best cases. Percent-level precision possible in some ratios.
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Cases for a Precision Higgs Program

Since the couplings of the 125 GeV Higgs boson are found to be very
close to SM = deviations from BSM physics must be small.

Typical effect on coupling from heavy state M or new physics at scale M:

2
A~(ﬁj ~6% @ M~1TeV
(Han et al., hep-ph/0302188, Gupta et al. arXiv:1206.3560, ...)

How large are potential deviations from BSM physics? How well do we
need to measure them to be sensitive?

To be sensitive to a deviation A, the measurement precision needs
to be much better than A, at least A/3 and preferably A/5!

— Need percent-level or better measurements!
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Cross Sections
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Production Rates

ee compared with pp collisions

Smaller production cross sections, cleaner events and
better signal-to-background ratios.

pp collisions at 14 TeV, 3 ab™!

Procons > (ob) FEvents (10°) ete collisions at 250 GeV. 5 ab™!
ool 195 148 ' Process o (fb) Events
VBE 193 19.7 ZH 212 1.06 x 10°
VH 2.62 7.8 vvH 6.72 3.36 x 10*
ttH 0.61 1.8 ete H 0.63 3.15 x 103

Running at ZH with an instantaneous luminosity of 2x10* cm™s ™" :
Higgs processes ~0.004 Hz
All other processes ~ 2 Hz (not including yy processes)
Running at Z pole with an instantaneous luminosity of 5x10* cm™s™":
Event rate ~ 20 kHz

(For comparison, ATLAS aims an average data-recording rate of 10 kHz
for HL-LHC).
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Higgs Samples

Numbers of Higgs bosons produced:
pp collisions in 3000 fb™*: 170 millions (2 x for two experiments)
ee collisions in 5ab™: 1 million

Only a small faction of events produced at the LHC will be recorded and
analyzable. This rate is estimated to be about 0.5% from Run 1 experiences.
In comparison, every Higgs event (almost) will be recorded and contribute
to the Higgs measurements.

At the end, the statistics of Higgs samples are not so much different between
the LHC and CEPC for example. What is different is the "flavor" composition
of the sample:

pp collisions: dominated by Higgs decay final states with ¢ ory

ee collisions: demoncratically distributed according to BR
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Clean: Events and Theory

e'e” > ZH — uubb + X

pp—>H+X—>bb+X

.
.

Ao /o for pp at 14 TeV
Process QCD scale PDF+a, Total (linear sum)  Theoretical uncertainties are large
— 0 7 EC ) ..
ggl +8% =77 +15% or dominant for pp collisions, but

tfH +8% +9% +17% _

are much smaller than experimental
VBE - =0.5% =37 £47% uncertainties in ee collisions
VH +3% +2% +5%
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Higgs Boson Production in ee Collisions

At \/_ ~240-250 GeV, ee — ZH production is maximum and
dominates with a smaller contribution from ee — vvH.

Beyond that, the cross section decreases asymptotically as
1/s for ee — ZH and increases logarithmically for ee — vvH.
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Decay-Blind Tagging Higgs Boson

Unique to lepton colliders, the energy and momentum of the Higgs
boson in ee — ZH can be measured by looking at the Z kinematics

only: E, :\/;—EZ, p, =—p,

CEPC Preliminary

3000 Z— pus f Ldt =5 ab™

—— CEPC Simulation

— S+B Fit
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Background
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000
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= 1000

{} 1 1
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qHH T
}[1'vcc)il[Ge‘ ]

Recoil mass reconstruction: ,
2 - |2
M ecoil :(\/g_ EZ) _|pZ|

= identify Higgs without looking at Higgs.

Measure o (ee — ZH) independent of its decay !
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Higgs Decay Classifications I

Examining the other activities in the events / LF
to study Higgs boson decays and measure [ g

o(ee — ZH)xBR(H — XX)

thus allowing the measurements of Higgs
decay BR without assumptions.

|dentify expected decay modes and search for unexpected ones;
Key performance for the analyses are:

Lepton identification and measurements;

Jet angular and momentum resolutions;

Jet flavor tagging;
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Accessible Decay Modes

SM decay Accessible?
mode branching ratio (HL-)LHC Higgs factories
H — bb 57.7% vox* -
H — gg 8.57% <
H — ce 2.91% X .
H — ss 2.46 x 1071 < ?
H— 1T 6.32%

H — 2.19 x 1074
H— WW 21.5%
H— ZZ 2.64%
H — "‘Ir-"':r' 023%}
H — Z~ 0.15%

* Not all production mode.

Limitations: statistics at Higgs factories,
trigger and systematics at (HL-)LHC
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CEPC Expected Precisions

Event rate & Branching ratio
measurements
Table 3.12  Estimated precisions of Higgs boson property measurements at the CEPC. All the numbers refer
to relative precision except for My and BR(H — inv) for which AMp and 95% CL upper limit are quoted
respectively.
[ — — = — | r - - - - — - — — — = —
~ AMy | Tw | o(ZH) o(wvH) xBR(H  bb) |
" 59Mev | 28% 0.51% 2.8% |
C — —— — 1 - - - — — — — — — — — —
Decay mode :_ a(ZH) x BR | BR
o bb | 0.28% | 0.57%
H— cc | 2.2% | 2.3%
H — gg | 1.6% 1.7%
H—rTT | 1.2% | 1.3%
H—-WW 1.5% | 1.6%
H - 77 | 4.3% | 4.3%
H 4y | 9.0% | 0.0%
H — pp | 17 % 17%
H — v : — | 0.28%
_____ 5
19/01/2016 IAS Hongkong 18

See the presentation by Manqi Ruan yesterday for details. Jianming Qian (University of Michigan) 17



Detectors for ee Colliders

We know how to build detectors for ee colliders:
e Collision environment at a Higgs factory is not that much different
than that at LEP — low rates and low occupancies;
e Significant progress since LEP — detector R&D, design studies for
ILC and experiences at LHC.

The challenge is to build them to maximize physics potential at a reasonable
cost.

See the presentations yesterday afternoon and the presentation by Yuanning Gao this afternoon for

detailed detector designs for ee colliders. Jianming Qian (University of Michigan) 18



Requirements for Precision Measurements

Hermeticity and 4w coverage
Good tracking momentum resolution = low mass, large and strong fields

Efficient and accurate flavor tagging = precision vertex detector;

Good jet angular and momentum resolutions for S-B separations
= Fine calorimeter granularity to facilitate particle flow reconstructions

Model-independent measurements = inclusiveness of triggers

Excellent lepton identification and measurement, ...

CEPC performance assumption

Detector acceptance TPC (97%), FTD, ECAL, HCAL (99.5%)

Tracking efficiency ~ 100% within geometry acceptance

Tracking performance A(1/pr) ~2x107° (1/GeV)

ECAL energy resolution 16%/VE & 1%

HCAL energy resolution 60%/VE & 1%

Jet energy resolution 3—4% = £ 30% @ E =50 GeV
ENE

Impact parameter resolution 5 pum

(take ILD as a reference design)
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Recoiling Mass Distributions

ete” — HZ with Z — e*e” or p*u- CMS Si lati
imuiation

> 1800 . .
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S 1400 |~ ww
li - — Tvy Zee,Wev
1200— It- ] .
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800 inZZ > 00+ X
soof TLEP study
400— -
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,__;'l":"‘” i rH**,*,*,*,*ﬁ,*,**,*,*.H,*,*,*,*.*,* e
%D 60 70 80 90 100 110 120 130 140 15D
Recoil Mass (GeV) et ~
AVAV,

ZH : detector resolution dominates the width,
radiation dominates the high-mass tail.

Key performance issues:
Lepton momentum resolution (detector);

Minimize the impact of the radiations:
e.g. small angle ECAL coverage will be important.
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Track Momentum Resolution

#Events/0.5GeV/c?

Separation of ZH and ZZ through Z — ¢/ recoil mass reconstruction
Reconstruction and identification of H— uu decay
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Track Resolution of Existing Detectors

g
a2 [ = Muon system only
= CMS
—— Full system
1:_ --e=- |nner tracker only
n
}o
'
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" . ,Ej.’
10 e ;
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102
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A
ALEPH: =2L —8x10™ GeV™
p;
A
ATLAS: =PL 3107 GeV™
p;
A
cMS: =P ~1x10™ Gev™
p;

A factor of five improvement
over the best resolution of
existing detectors.
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Track Momentum Resolution
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Jet Energy Resolution

The argument is often made based on the separation of
ee > WWvv and ee — ZZvv in hadronic final states.

60 % E

AE/E = 30%/Sqrt(E [GeV]) makes W-Z separation possible

These processes are not really relevant for CEPC running at \/— ~ 250 GeV.
But good jet energy resolution is critical for precision Higgs physics.

Jianming Qian (University of Michigan) 24



Jet Energy Resolution

At \/_ ~ 250 GeV, jet energy resolutions are critical for

« H—>WW" and ZZ" decays in hadronic final states;
« ZH — qqH recoil mass reconstruction;

. separation of vvH — vvbb and ZH — vvbb processes

oooooo

300
[]ZH (m =125 GeV)
[ ww-— ddda

[ Ww— qglv

8 zz— g9
[]zz— qau

[1z— a9

250

200

150

100

Entries/2.0GeV
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100 110 120
Mq?l

recoil

CEPC Prelimina
Z—qq; JLdt =5ab™

130 140
[GeV]

150

/H withZ —>qq

Large branching ratio ~ 70%
Critical for the 5,,, measurement:
Ac,,

~0.65%

GZH

Good recoiling mass distribution is
important to reduce the impact of
large single- and di-boson backgrounds.
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Jet Energy Resolution

Measurement of ee — vVH is an important part of the Higgs physics
program at CEPC, but it suffers from large ZH — vvH background.

At /s =250 GeV: 6(VVH)=6.7 fb, 6(ZH — VVH)=42.4 fb

vvbb final state
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..,"-: 1 rqg ZH Backgrounds J-
[} i 1 ~ 4000 — Other BﬂckgmuudsJ'
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Nyt =2000 |-
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Jet Energy Resolution

ATLAS and CMS have a similar jet energy resolution
AE

E

L ~10% at £, =100 GeV

T
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2 B ATLAS Preliminary 7 s > E\ — T T T i T
2 : : = 0.4 : ) orrected Calo-Jets | &
§ 0_3—+ 15=8 TeV,ILdI=20.3 - 5 = \ —H Corrected Calo-Jets
- — o =
- _+_—+— Z(— eelup)-jet - Powheg | g 0.35 = X —+— Particle-Flow Jets
S anti-k, R = 0.4, EM+JES, f|<0.8 | 03—\~
0'2:_ :*:+ B > 0_255 ) o<mkls |
o ] oV O N S T T e
- i (1T} E
- . & 015w o o A
= F - 0--I = E B i i:_:é:::j:;‘_‘""""""“"i """
2 TTE i i P
g 0 E I | I I I | |
° ’ 2
20 30 40 50 60 10° 2x10° 3x10° 10 [GeV/c]
P! [GeV] Pr

Jianming Qian (University of Michigan) 27



Jet Energy Resolution

CEPC simulation
ee —>7H —qq bb

)
T

Real data From:
Jean-Claude Brient,
IDBTO7

2
T

T

=]
T

Marcel Stanitzki @ Vertex’15
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ALEPH *

Goal for PFA-ILC

the performance of the past and
current collider detectors. 14
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|
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Jet Flavor Tagging

Tagging heavy flavor jets using information

 secondary vertex, line
« semi-leptonic decays;

e jet kinematic variables (mass, ...)

Essential for the BR measurements of H — bb, cc and gg decays.
Moreover, they are backgrounds to each other. Precise knowledge
of tagging rates are important to correct for cross contaminations.

1»3; - CEPC preliminary Bre:l.nr_-hillg; Ratio @ 125 GeV
: ' H — bb 5T.7%
1o - H — gg 8.57%
E ’* H — cc 2.91%
s 10¢ i
2 1_ ¢ backgrouii b and c-quark separation is particularly
b+ uds background important due to the large BR(H — bb )

and small BR(H — cc).

0 -2 1 L 1 | L 1 L 1 1 1
ol 0.4 0.6 0.8 |

Signal rate
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Jet Flavor Tagging

Current b-jet tagging is optimized for light-jet rejection.
In ATLAS, for a b-jet tagging efficiency of 80%, the rejection factors
are about 100 for light-jets and only a factor of 4 for c-jets.

Such low c-jet rejection will lead to a 125% contamination of
H — bb in H— cc candidate sample!

4 TTTT TTTT TTTT ‘ TT ‘ TTT || TTT ‘ TT ‘ rTTT E TTT ‘ TTTT TTTT TTTT TTTT ‘ TTTT ‘ ITTT TTTT TTT I| rTTT EI TTT ITTT
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BA0 j . 5 N0 | 1
8 | f . X — MV2( |
T.oel - ) Rt | 800
_5)10 ; é 10 i -
1O o NG . -~ ] .
- \E=13 TeV, it 5 E s=13! TeV t | | |
F . A ] o
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L 00 A Y SR S S E
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b-jet efficiency b-jet efficiency
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IP Resolution and Tracking Material

o
o

| — ALICE, [/ < 0.9 LHC detectors: 6,, ~20 um @ 20 GeV

e ATLAS/CMS, | < 1

W B
(8)
o
T

The future e"e” detectors call for
G,, ~ 5 um, afactor of 4 improvement

250 ;_ A . - """ LHCb; 2< Tl <5

resolution [u m]
w
o
7

arXiv:hep-ph/0601013

F2000 =
150 5\ -5 The main challenge is to build a low
1007 ~ 7 material budget tracker, <0.1X, in
500 ~Z=.. 1 thecentral region!
ot | B —

10-1 1 1 = T T T T T T T T T T T T T ]
quGeV] b4 [ ! ! ! ' ]
& 0.6 .
%" T F TFC .
E B Supports/other C ~ererm .
P I s 0.4F : -
E ggle.ﬁ:{trognics E VAT E
E 5g;t$—pipe 03 n ~
B C ]
o - [ i
0.2 - ILD B
o
D: I I — — T A T S N N T T T R N ]
80 60 40 20 0
B/ degrees

Jianming Qian (University of Michigan) 31



Summary

A lepton collider Higgs factory complements to the LHC and
its physics case is compelling. It allows for model-independent
measurements of the Higgs boson properties and can
significantly improve their precisions.

Precision measurements require precision detectors. Significant
improvements in performance over past and current detectors

are needed, but there are no insurmountable issues.

A lot has been done in understanding the detector requirements
for a precision Higgs physics program, but more need to be done.
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