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Profound change in paradigm: 
missing SM particle ➪ tool to explore SM and venture into physics landscape beyond

2

The Higgs: Now what? What’s Next?
“The experiment worked better than 

expected and the analysis uncovered a 
very difficult to find signal”

the words of a string theorist

Great success...
...but the experimentalists haven’t found what the BSM theorists 

told them they will find in addition to the Higgs boson: 
no susy, no BH, no extra dimensions, nothing ...

Have the theorists been lying for so many years?

Have the EXP’s been too naive to believe the TH’s?
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HEP future
exploration/discovery era or consolidation/measurement era?
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The equations of the [SM] have been tested with far greater accuracy, 
and under far more extreme conditions, than are required for 
applications in chemistry, biology, engineering, or astrophysics. While 
there certainly are many things we don’t understand, we do 
understand the Matter we’re made from, and that we encounter in 
normal life – even if we’re chemists, engineers, or astrophysicists (sic: 
DM!)

3

SM breakdown

1
2

Only a description of EW symmetry breaking, not an explanation

No place for the particle(s) that make up the cosmic DM

Does not explain the asymmetry matter-antimatter3

The SM is not free of inadequacies: 

we do not understand the Matter the Universe is made from

Where and how does the SM break down?
Which machine(s) will reveal (best)  this breakdown?

➠ What separates the EW scale from the Planck scale?

➠ What are the DM particles?

➠ Are the conditions realized to allow for EW baryogenesis?

Naturalness (i.e. quantum stability) is the best guide to guess the 
scale of New Physics

http://arxiv.org/abs/1503.07735
http://arxiv.org/abs/1503.07735
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Naturalness & TeV scale new physics
Following the arguments of Wilson, ‘t Hooft (and others):

only small numbers associated to the breaking of a symmetry survive quantum corrections
( others are not necessarily theoretically inconsistent 
but they require some conspiracy at different scales )

Natural vs. unnatural
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Hierarchy problem is not a “just-so story”

3

courtesy to N. Craig  @ Blois ’15

The Higgs mass in the SM doesn’t break any (quantum*) symmetry

* it does break classical scale invariance, as the running of the gauge couplings does too!

https://indico.cern.ch/event/359229/session/29/contribution/132/material/slides/0.pdf
https://indico.cern.ch/event/359229/session/29/contribution/132/material/slides/0.pdf
https://indico.cern.ch/event/359229/session/29/contribution/132/material/slides/0.pdf
https://indico.cern.ch/event/359229/session/29/contribution/132/material/slides/0.pdf
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Naturalness principle @ work
Following the arguments of Wilson, ‘t Hooft (and others): 

only small numbers associated to the breaking of a symmetry survive quantum corrections

Beautiful examples of naturalness  to understand the need of “new” physics
see for instance Giudice ’13 (and refs. therein) for an account

 the need of the positron to screen the electron self-energy: 

 the rho meson to cutoff the EM contribution to the charged pion mass: 

 the kaon mass difference regulated by the charm quark:

 the light Higgs boson to screen the EW corrections to gauge bosons self-energies

 ...

 new physics at the weak scale to cancel the UV sensitivity of the Higgs mass?
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Apparent fine-tunings have always pointed to new degrees of freedom

http://arxiv.org/abs/arXiv:1307.7879
http://arxiv.org/abs/arXiv:1307.7879
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The Darwinian solution to the Hierarchy 
Other origin of small/large numbers according to Weyl and Dirac:

hierarchies are induced/created by time evolution/the age of the Universe

 Higgs mass-squared promoted to a field
 The field evolves in time in the early universe and scans a vast 

range of Higgs mass
 The Higgs mass-squared relaxes to a small negative value
 The electroweak symmetry breaking stops the time-evolution of 

the dynamical system

Graham, Kaplan, Rajendran ’15

Self-organized criticality
dynamical evolution of a system is stopped at a critical point due to back-reaction

Can this idea be formulated in a QFT language? 
In which sense is it addressing the stability of small numbers at the quantum level? 

hierarchies result from dynamics not from symmetries anymore!
important consequences on the spectrum of new physics

http://arxiv.org/abs/1504.07551
http://arxiv.org/abs/1504.07551
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a small dimensionful coupling to the Higgs. This small coupling will help set the weak scale, and will be technically
natural, making the weak scale technically natural and solving the hierarchy problem.

We add to the standard model Lagrangian the following terms:

(�M2 + g�)|h|2 + V (g�) +
1

32⇡2

�

f
G̃µ⌫Gµ⌫ (1)

where M is the cuto↵ of the theory (where SM loops are cuto↵), h is the Higgs doublet, Gµ⌫ is the QCD field strength
(and G̃µ⌫ = ✏µ⌫↵�G↵�), g is our dimensionful coupling, and we have neglected order one numbers. We have set the
mass of the Higgs to be at the cuto↵ M so that it is natural. The field � is like the QCD axion, but can take on field
values much larger than f . However, despite its non-compact nature it has all the properties of the QCD axion with
couplings set by f . Setting g ! 0, the Lagrangian has a shift symmetry � ! �+2⇡f (broken from a continuous shift
symmetry by non-perturbative QCD e↵ects). Thus, g can be treated as a spurion that breaks this symmetry entirely.
This coupling can generate small potential terms for �, and we take the potential with technically natural values by
expanding in powers of g�. Non-perturbative e↵ects of QCD produce an additional potential for �, satisfying the
discrete shift symmetry. Below the QCD scale, our potential becomes

(�M2 + g�)|h|2 +
�
gM2� + g2�2 + · · · � + ⇤4 cos(�/f) (2)

where the ellipsis represents terms higher order in g�/M2, and thus we take the range of validity for � in this e↵ective
field theory to be � . M2/g. We have approximated the periodic potential generated by QCD as a cosine, but in fact
the precise form will not a↵ect our results. Of course ⇤ is very roughly set by QCD, but with important corrections
that we discuss below. Both g and ⇤ break symmetries and it is technically natural for them to be much smaller than
the cuto↵. The parameters g and ⇤ are responsible for the smallness of the weak scale. This model plus inflation
solves the hierarchy problem.

�

V (�)

FIG. 1: Here is a characterization of the �’s potential in the region where the barriers begin to become important. This is the
one-dimensional slice in the field space after the Higgs is integrated out, e↵ectively setting it to its minimum. To the left, the
Higgs vev is essentially zero, and is O(mW) when the barriers become visible. The density of barriers are greatly reduced for
clarity.

We will now examine the dynamics of this model in the early universe. We take an initial value for � such that
the e↵ective mass-squared of the Higgs, m2

h, is positive. During inflation � will slow-roll, scanning the physical Higgs

⇤/g

Cosmological evolution:

1 Introduction

Our understanding of Nature is based on the empirical evidence that natural phenomena

taking place at di↵erent energy/distance scales do not influence each other. At present,

these di↵erent phenomena are described by a succession of e↵ective theories with di↵erent

degrees of freedom manifesting themselves as shorter and shorter distances are probed. The

parameters of the low-energy e↵ective theory are natural if they do not require any special

tuning of the parameters of the theory at higher energies.

Wilson [1] and ’t Hooft [2] gave a quantitative meaning to this naturalness principle

by demanding that all dimensionless parameters controlling the di↵erent e↵ective theories

should be of order unity unless they are associated to the breaking of a symmetry. Numerous

examples of the naturalness principle to understand the necessity of new phenomena have

been extensively discussed in the literature (see for instance [3] and references therein).

The Higgs boson mass and the value of the cosmological constant have been long recog-

nized as two notorious challengers of this naturalness principle, a situation that stimulated

the creativity of physicists in finding extensions of the Standard Model at higher energies.

In most of these e↵orts to explain the smallness of the Higgs mass, such as supersymmetric

and composite Higgs models, new physics is predicted to be present at TeV energies. Re-

cently, however, a radically new approach to the Higgs mass hierarchy problem has been

proposed [4], in reminiscence of the relaxation mechanism of [5] proposed for explaining dy-

namically the smallness of the cosmological constant (see [6, 7] for similar previous ideas).

In principle, in this new approach no new degrees of freedom around the TeV scale are

needed anymore to screen the Higgs mass from large quantum corrections. This has of

course profound implications for the physics agenda of the LHC and beyond.

Technically, the relaxation mechanism of [4] is based on the cosmological interplay be-

tween the Higgs field h and an axion-like field �, arising from the following three terms of

the scalar e↵ective potential:

V (�, h) = ⇤3g�� 1

2
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where ⇤ is the UV cut-o↵ scale of the model, while ⇤c . ⇤ is the scale at which the periodic

cos(�/f)-term originates and n is a positive integer. The first term is needed to force � to

roll-down in time, while the second one corresponds to a Higgs mass-squared term with a

(positive) dependence on � such that di↵erent values of � scan the Higgs mass over a large

range, including the weak scale. Finally, the third term plays the role of a potential barrier

1
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7

Higgs-axion cosmological relaxation

slowly rolling field (inflation provides friction) that scans the Higgs mass!
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(during inflation)
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that will seed the potential barrier 
stopping the rolling when the Higgs 

develops its vev
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Graham, Kaplan, Rajendran ’15
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In most of these e↵orts to explain the smallness of the Higgs mass, such as supersymmetric

and composite Higgs models, new physics is predicted to be present at TeV energies. Re-
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proposed [4], in reminiscence of the relaxation mechanism of [5] proposed for explaining dy-

namically the smallness of the cosmological constant (see [6, 7] for similar previous ideas).

In principle, in this new approach no new degrees of freedom around the TeV scale are

needed anymore to screen the Higgs mass from large quantum corrections. This has of
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Hierarchy problem solved
by light weakly coupled new physics 

and not by TeV scale physics
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Higgs-axion cosmological relaxation

 Higgs vev stops cosmological rolling
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Classifying relaxing Lagrangians...

1 Introduction

Our understanding of Nature is based on the empirical evidence that natural phenomena

taking place at di↵erent energy/distance scales do not influence each other. At present,

these di↵erent phenomena are described by a succession of e↵ective theories with di↵erent

degrees of freedom manifesting themselves as shorter and shorter distances are probed. Each

layer of these e↵ective theories is largely independent of the details of the other layers: the

parameters of the low-energy e↵ective theory are natural if they do not require any special

tuning of the parameters of the theory at higher energies. Wilson [1] and ’t Hooft [2] gave a

quantitative meaning to this naturalness principle by demanding that all dimensionless pa-

rameters controlling the di↵erent e↵ective theories should be of order unity unless they are

associated to the breaking of a symmetry. Numerous examples of the naturalness principle to

understand the necessity of new phenomena have been extensively discussed in the literature

(see for instance [3] and references therein). The Higgs boson mass and the value of the cos-

mological constant have been long recognized as two notorious challengers of this naturalness

principle, a situation that stimulated the creativity of physicists in finding extensions of the

Standard Model at higher energies. In most of these e↵orts to explain the smallness of the

Higgs mass, such as supersymmetric and composite Higgs models, new-physics is predicted

to be present at TeV energies. Recently, however, a radically new approach to the Higgs

mass hierarchy problem has been proposed [4], in reminiscence of the relaxation mechanism

of [5] for explaining dynamically the smallness of the cosmological constant. In principle,

in this new approach no new degrees of freedom around the weak scale are needed any-

more to screen the Higgs mass from large quantum corrections. This has of course profound

implications for the physics agenda of the LHC and beyond.

Technically, the relaxation mechanism of [4] is based on the interplay between the Higgs

field h and an axion-like field � (the relaxion), arising from the following three terms of the

scalar e↵ective potential:

V (�, h) = ⇤3g�� 1
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where ⇤ is considered the UV cut-o↵ scale of the model, while ⇤c . ⇤ is the scale at which

the periodic cos(�/f)-term originates; n is a positive integer. The first term is needed to

force � to roll-down in time, while the second one corresponds to a Higgs mass-squared term

with a (positive) dependence on � such that di↵erent values of � scan the Higgs mass over

a large range, including the weak scale. Finally, the third term plays the role of a potential

1

 n=1: need another source of EWSB
 QCD condensate <qq>~ ΛQCD

 new strongly-coupled sector à la Technicolor
⫦ new physics @ TeV, coincidence problem? ⫣

 n=2: no extra source of EWSB needed
 quantum stability? h-loops generate extra interactions that will stop ! 

before the Higgs vev develops unless Λc<v (coincidence pb and new physics @ 
TeV again?)

needed beyond the SM Higgs. As a result, these models can, in principle, allow for a larger

new-physics scale beyond the SM (BSM). Nevertheless, at the quantum level, extra terms

can be now induced beyond those shown in Eq. (1). Indeed, just by closing H in a loop, we

expect, at O(✏), the terms

✏⇤4

c cos(�/f) , ✏⇤3

c g� cos(�/f) , (3)

to be generated. These terms give a potential to � that, unless ⇤c . v, make it stop

slow-rolling much before the Higgs VEV turns on. Therefore, if we want the relaxation

mechanism to work, we must have again new-physics not far away from the weak scale and

therefore potentially visible in forthcoming experiments. It is important to notice that this

new-physics is not responsible for keeping the Higgs light, but for generating the periodic

term of Eq. (1). In the particular model of this type discussed in [4], extra fermions were

predicted at around the weak scale. An important drawback of this type of models is that

they must address a “coincidence problem”: they must provide a new-physics scale around

the weak scale with no a priori reason, as the weak scale is determined by Eq. (2).

The aim of our work is to o↵er an existence proof that it is indeed possible to devise a

model that dynamically generates a large mass gap between the Higgs mass and the new

physics threshold. The proposed model will not have a “coincidence problem” as the only

new physics scale will be associated with ⇤ ⇠ ⇤c � v. Only very weakly coupled scalars

(axion-like) will be below the weak scale. For this to work, we need to make the terms of

Eq. (3) smaller than the term ✏⇤2|H|2 cos(�/f). For this purpose, we will introduce another
slow-rolling field, �, coupled to cos(�/f). During its cosmological evolution, � will take a

value such that � cos(�/f) will cancel the terms of Eq. (3). When this occurs, � will be free

to move, tracking � downhill. Only when the h-dependent term turns on, � will stop tracking

� and reach the minimum fixed by Eq. (2). We will be able to push the cut-o↵ scale up to

⇤ ⇠ 109 GeV, providing the first example of a natural theory with such a large BSM scale.

The new states, � and �, will have masses below the weak scale, but they will be very weakly

coupled to the SM, making them very di�cult to detect at present and future experiments.

Interestingly, they could provide the source of Dark Matter needed in the universe.

3

 our solution: make the envelop of the oscillatory potential a field
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Cosmological Higgs-Axion Interplay (CHAIN)
2 Double scanner mechanism

The key new ingredient of our proposal, with respect to [4], is a second scanning field, that

we call �. The full potential, up to terms of order ✏, g� and g, is given by1

V (�, �, H) = ⇤4

✓
g�

⇤
+

g��

⇤

◆
� ⇤2

✓
↵� g�

⇤

◆
|H|2 + 1

2
�|H|4 + A(�, �, H) cos (�/f) , (4)

where

A(�, �, H) ⌘ ✏⇤4

✓
� + c�

g�

⇤
� c�

g� �

⇤
+

|H|2

⇤2

◆
, (5)

with 0 < g, g�, ✏ ⌧ 1, while ↵, � and c�, c� are O(1) positive coe�cients. We assume that all

terms of Eq. (4) are generated at the cut-o↵ scale ⇤. For simplicity and clarity, we are only

considering linear terms in g�/⇤ (resp. g��/⇤), but we could have taken a generic function

of g�/⇤ (resp. g��/⇤) with the only requirement that it is monotonically decreasing or

increasing in a wide region of order ⇤/g (resp. ⇤/g�).

From Eq. (4) and Eq. (5), we see that � scans the Higgs mass-squared, while � scans

A(�, �, H) which is the overall amplitude –the envelope– of the oscillating term. This de-

pendence of A(�, �, H) on � is crucial for our mechanism to work, while the other terms in

Eq. (5) are added since, as we said, they are anyway generated at the quantum level (by loops

of H). The potential in Eq. (4) is stable under quantum corrections in the small-coupling

limit (g, g�, ✏ ⌧ 1) we consider. A possible UV origin of the periodic term in Eq. (4) is given

in Appendinx A.

We will sudy the time evolution of �, � and H during the inflationary epoch. Inflation is

needed, as in [4], to provide the friction that makes the fields slow-roll and reach the desired

minimum. The time evolution of � is quite trivial, as for ✏ ⌧ 1, it simply slides down:

�(t) = �
0

� g�⇤
3t/(3HI) . (6)

In the cosmological evolution of � we can distinguish four stages, depicted in Fig. 1, that we

qualitatively describe next:

I) At the beginning of inflation we assume � & ⇤/g and � & ⇤/g� such that the Higgs

mass-squared and the amplitude A are positive. The field � is stuck in some deep

minimum coming from the A cos(�/f) term of Eq. (4), while the Higgs field value is

zero.
1NOT NEEDED: Notice the unusal normalization of the Higgs quartic coupling, � ⇠ 0.26. Do we really

want to keep this normalization? Or, who’s afraid of factors of 2??
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Figure 1: Left: Scalar potential in the {�, �} plane. The band without barriers is colored

green while the barriers getting high(er) are indicated by dark(er) brown. The blue line shows

a possible slow-roll cosmological trajectory of the fields during the inflationary period. The

dashed purple line is the critical line for EWSB. Right: Classical time evolution of � (blue

curve) in the potential on the left. The black lines show the extremal points of the potential,

with closely spaced minima (bold) and maxima (thin) alternating. (Arbitrary units and scales

in both plots.)

II) As � evolves down, the amplitude A decreases until the point at which the steepness

of A cos(�/f) is smaller than the slope coming from the linear term of Eq. (4), and �

can start to move down. The region in field-space at which this occurs is shown by

a “green-band” in Fig. 1. In this region, the bumps from A cos(�/f) are very small

and, for g� . g, � goes down tracking �: �(t) ' const. + c�g��(t)/(c�g), which is the

solution of A ⇡ 0 (this solution neglects e↵ects of size �� ⇠ f which correspond to

the stepwise behavior visible in Fig. 1).

III) When � crosses the critical value

�c ⌘
↵⇤

g
, (7)

the Higgs mass-squared term becomes negative, turning on H. This gives, according

to Eq. (5), a positive contribution to the amplitude A, that, for certain values of the

5

Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant ’15

original relaxion-type
 term

quantum generated
 new terms from 

the |H|2cos(!/f) term
the new interaction
 that saves our day
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Same problem, same solution?
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Unnatural large rocks differing in composition from the typical surrounding ones
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Same problem, same solution?
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Unnatural large rocks differing in composition from the typical surrounding ones
Standard geological history: 

they were transported by ancient glaciers over hundreds of kilometers
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courtesy to JR Espinosa
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Consistency conditions

 Quantum stability of the potential ✏ . v2/⇤2

ensures that terms ✏2⇤4
cos

2
(�/f) don’t affect the tracking solution
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Consistency conditions

 Quantum stability of the potential ✏ . v2/⇤2

ensures that terms ✏2⇤4
cos

2
(�/f) don’t affect the tracking solution

 Higgs vev stops cosmological rolling ✏⇤2v2

f
⇠ @

@�

�
⇤4V (g�/⇤)

�
' g⇤3

 Slow rolling: HI >
⇤2

MP

ensures that the energy density stored in ! and ! 
does not affect inflation

 Classical rolling: H3
I < g⇤3

 ! tracks ! in the barrier-free valley before EWSB: c�g
2 > c�g

2
�

 large field excursions: ��,�� > ⇤/g to ensure that the Higgs mass scans
values  Λ from to the weak scale

⇤3

M3
Pl

. g� . g . v4

f⇤3 ⇤ .
�
v4M3

Pl

�1/7 ' 2⇥ 109 GeV

(c� � 1
2� )g

2 < c�g
2
� ! exits the barrier-free valley after EWSB:



Christophe Grojean Cosmological Relaxation of the weak scale HKUST, Jan. 20, 2o1612
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Consistency conditions

 Quantum stability of the potential ✏ . v2/⇤2

ensures that terms ✏2⇤4
cos

2
(�/f) don’t affect the tracking solution

 Higgs vev stops cosmological rolling ✏⇤2v2

f
⇠ @

@�

�
⇤4V (g�/⇤)

�
' g⇤3

 Slow rolling: HI >
⇤2

MP

ensures that the energy density stored in ! and ! 
does not affect inflation

 Classical rolling: H3
I < g⇤3

 ! tracks ! in the barrier-free valley before EWSB: c�g
2 > c�g

2
�

 large field excursions: ��,�� > ⇤/g to ensure that the Higgs mass scans
values  Λ from to the weak scale

⇤3

M3
Pl

. g� . g . v4

f⇤3 ⇤ .
�
v4M3

Pl

�1/7 ' 2⇥ 109 GeV

(c� � 1
2� )g

2 < c�g
2
� ! exits the barrier-free valley after EWSB:

1000 105 107 109
10-50

10-41

10-32

10-23

10-14

10-5

L HGeVL

g

✏ = 10�45

✏ = 10�30

✏ = 10�15

✏ = 1

quantum unstable potential

no classical rolling

1000 105 107 109
10-50

10-41

10-32

10-23

10-14

10-5

L HGeVL

g

1000 105 107 109
10-50

10-41

10-32

10-23

10-14

10-5

L HGeVL

g
Ne ⇠ O(1),��/MPl ⇠ 10�

10

Ne ⇠ O(1),��/MPl ⇠ 1

Ne ⇠ 102
0 ,��/MPl ⇠ 101

0

Ne ⇠ 104
0 ,��/MPl ⇠ 102

0

Ne ⇠ 106
0 ,��/MPl ⇠ 103

0

g = 10g�

f = ⇤

not necessarily 
a crazy cosmology



Christophe Grojean Cosmological Relaxation of the weak scale HKUST, Jan. 20, 2o1613

Phenomenological signatures
Nothing to be discovered at the LHC/ILC/CLIC/CepC/SppC/FCC!

only BSM physics below Λ 
two (very) light and very weakly coupled axion-like scalar fields

m� ⇠ (10�20 � 102)GeV

m� ⇠ (10�45 � 10�2)GeV



Christophe Grojean Cosmological Relaxation of the weak scale HKUST, Jan. 20, 2o1613

Phenomenological signatures
Nothing to be discovered at the LHC/ILC/CLIC/CepC/SppC/FCC!

only BSM physics below Λ 
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Phenomenological signatures
interesting signatures in cosmology and possibly at SHiP

! and " couple to SM matter via their mixing with the Higgs

the SM states in most of the parameter space, and thus can only have some phenomenological

impact through astrophysical and cosmological e↵ects.

5.1 Properties of � and �

We start by deriving the properties of the � and � scalars. After the slow-rolling process

ends and � settles in a minimum, no cancellation is expected in the A(�, �, H) amplitude, so

that A(�, �, H) ⇠ ✏⇤4. The mass of � is thus controlled by A cos(�/f) and can be estimated

as

m2
� ⇠ ✏⇤4

f 2
⇠ g

⇤5

fv2
. v2 , (26)

where we used Eq. (14) and Eq. (15) to obtain the second equality and the upper bound on

m�. For � we expect that higher-order terms in g��/⇤, not shown for simplicity in Eq. (4),

give it a mass of order

m2
� ⇠ g2�⇤

2 ⌧ m2
� . (27)

In the allowed part of the parameter space of our model the masses of the two scalars

can change by many orders of magnitude, spanning the range [10�20, 100]GeV for � and

[10�45, 10�2] GeV for �. Contours of constant m� and m� are shown in Fig. 3.

These two scalars interact with the SM particles mainly through a mass mixing with the

Higgs. The corresponding mixing angles can be estimated as

✓�h ⇠ g⇤v

m2
h

, ✓�� ⇠ g�fv2

⇤3
, ✓�h ⇠ Max

⇢
✓��✓�h ,

g2

16⇡2

g�⇤7

f 2v3m2
h

�
. (28)

Notice that the �� h mass mixing coming from @2
�hV ⇠ ✏⇤2(v/f) sin(�/f) is suppressed at

the minimum where we have sin(h�i/f) ⇠ gf/(✏⇤) ⇠ v2/⇤2 ⌧ 1.7 The first contribution

in ✓�h arises at tree-level, whereas the second one originates from a �-loop. For most of the

parameter space we consider, this loop term dominates over the tree level one. The scalar

potential Eq. (4) also gives rise to interactions between � and the Higgs, not suppressed by

the small mixing angle ✓�h, that are of order

��hh : ✏⇤2/f 2 , ��h : ✏v⇤2/f 2 , (29)

7This is to be contrasted with the beginning of Phase IV when sin(�/f) ⇠ 1, as used to derive Eq. (15),

since barriers are smaller at this earlier stage. At the end of Phase IV the barriers have grown large, and �

is close to the minimum of its cosine potential.
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from oscillatory potential tree-level quantum mixing 
from !-loop

! and " decay to SM particles 
(mostly photons in a large region of parameter space)

and will play an important role in the thermal production of �. The decays of � and � are

mediated by the mixing with the Higgs, and thus the widths are given by

�� ⇠ ✓2�h�h(m�) , �� ⇠ ✓2�h�h(m�) , (30)

where �h(mi) is the SM Higgs width evaluated at mh = mi. Contours for ��,� are shown

in Fig. 3 (the values of the width �h(mi) are subject to large theoretical uncertainties in

the mass region around 1GeV where several hadronic decay channels open up [9]; we used

the expressions given in Ref. [10] –see also Refs. [11, 12]). For masses below 2me ⇠ 1 MeV,

we have �h(mi) ⇠ (mi/mh)
3 �h!��(mh), and therefore, in a major part of the parameter

space, � and � have suppressed decay widths controlled by the decay into photon pairs. As

shown in Fig. 3, there is a sizable part of the parameter space in which � is cosmologically

unstable (�� > H0, where H0 is the present Hubble value), but su�ciently long-lived to

decay after Big Bang Nucleosynthesis (BBN) (�� < HBBN ⌘ H(T = 1 MeV)). As we will

see in the following, this region of the parameter space can be constrained by cosmology. On

the other hand, � is cosmologically stable in most of the relevant parameter space, and can

decay within the age of the universe only in a small corner of the parameter space, namely

for g� & 10�8 and ⇤ . 104GeV.

We can now easily estimate the cosmological abundances of � and �, either stored in

late classical oscillations (vacuum misalignment) or from thermal production. This will

allow us to set bounds on the model from overclosure of the universe, post-BBN decays or

astrophysical constraints.

5.2 Impact of � and � on standard cosmological predictions

In this work we assume for simplicity that, once both � and � have settled in their minima,

inflation ends with an unspecified reheating period. We will assume a reheating temperature

higher than the EW scale in what follows.

Abundances of � and � from vacuum misalignment

If after inflation and reheating, the fields � and � end up displaced from their minima,

they will fall towards them, oscillating around them if their lifetimes are large. The energy

density stored in the field oscillations behaves like cold dark matter and can potentially

overclose the universe today or dissociate light elements if the decay takes place during or

after BBN. At the start, the field energy density is dominated by the potential energy, but
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 unsuppressed quartic interaction with the Higgs: 

the SM states in most of the parameter space, and thus can only have some phenomenological

impact through astrophysical and cosmological e↵ects.

5.1 Properties of � and �

We start by deriving the properties of the � and � scalars. After the slow-rolling process

ends and � settles in a minimum, no cancellation is expected in the A(�, �, H) amplitude, so

that A(�, �, H) ⇠ ✏⇤4. The mass of � is thus controlled by A cos(�/f) and can be estimated

as

m2
� ⇠ ✏⇤4

f 2
⇠ g

⇤5

fv2
. v2 , (26)
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m�. For � we expect that higher-order terms in g��/⇤, not shown for simplicity in Eq. (4),

give it a mass of order

m2
� ⇠ g2�⇤

2 ⌧ m2
� . (27)

In the allowed part of the parameter space of our model the masses of the two scalars

can change by many orders of magnitude, spanning the range [10�20, 100]GeV for � and

[10�45, 10�2] GeV for �. Contours of constant m� and m� are shown in Fig. 3.
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Higgs. The corresponding mixing angles can be estimated as

✓�h ⇠ g⇤v

m2
h

, ✓�� ⇠ g�fv2

⇤3
, ✓�h ⇠ Max

⇢
✓��✓�h ,

g2

16⇡2

g�⇤7

f 2v3m2
h

�
. (28)

Notice that the �� h mass mixing coming from @2
�hV ⇠ ✏⇤2(v/f) sin(�/f) is suppressed at

the minimum where we have sin(h�i/f) ⇠ gf/(✏⇤) ⇠ v2/⇤2 ⌧ 1.7 The first contribution

in ✓�h arises at tree-level, whereas the second one originates from a �-loop. For most of the

parameter space we consider, this loop term dominates over the tree level one. The scalar

potential Eq. (4) also gives rise to interactions between � and the Higgs, not suppressed by

the small mixing angle ✓�h, that are of order

��hh : ✏⇤2/f 2 , ��h : ✏v⇤2/f 2 , (29)

7This is to be contrasted with the beginning of Phase IV when sin(�/f) ⇠ 1, as used to derive Eq. (15),

since barriers are smaller at this earlier stage. At the end of Phase IV the barriers have grown large, and �

is close to the minimum of its cosine potential.
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Phenomenological signatures
interesting signatures in cosmology and possibly at SHiP

! and " couple to SM matter via their mixing with the Higgs

the SM states in most of the parameter space, and thus can only have some phenomenological

impact through astrophysical and cosmological e↵ects.

5.1 Properties of � and �

We start by deriving the properties of the � and � scalars. After the slow-rolling process

ends and � settles in a minimum, no cancellation is expected in the A(�, �, H) amplitude, so

that A(�, �, H) ⇠ ✏⇤4. The mass of � is thus controlled by A cos(�/f) and can be estimated

as

m2
� ⇠ ✏⇤4

f 2
⇠ g

⇤5

fv2
. v2 , (26)

where we used Eq. (14) and Eq. (15) to obtain the second equality and the upper bound on

m�. For � we expect that higher-order terms in g��/⇤, not shown for simplicity in Eq. (4),

give it a mass of order

m2
� ⇠ g2�⇤

2 ⌧ m2
� . (27)

In the allowed part of the parameter space of our model the masses of the two scalars

can change by many orders of magnitude, spanning the range [10�20, 100]GeV for � and

[10�45, 10�2] GeV for �. Contours of constant m� and m� are shown in Fig. 3.

These two scalars interact with the SM particles mainly through a mass mixing with the

Higgs. The corresponding mixing angles can be estimated as

✓�h ⇠ g⇤v

m2
h

, ✓�� ⇠ g�fv2

⇤3
, ✓�h ⇠ Max

⇢
✓��✓�h ,

g2

16⇡2

g�⇤7

f 2v3m2
h

�
. (28)

Notice that the �� h mass mixing coming from @2
�hV ⇠ ✏⇤2(v/f) sin(�/f) is suppressed at

the minimum where we have sin(h�i/f) ⇠ gf/(✏⇤) ⇠ v2/⇤2 ⌧ 1.7 The first contribution

in ✓�h arises at tree-level, whereas the second one originates from a �-loop. For most of the

parameter space we consider, this loop term dominates over the tree level one. The scalar

potential Eq. (4) also gives rise to interactions between � and the Higgs, not suppressed by

the small mixing angle ✓�h, that are of order

��hh : ✏⇤2/f 2 , ��h : ✏v⇤2/f 2 , (29)

7This is to be contrasted with the beginning of Phase IV when sin(�/f) ⇠ 1, as used to derive Eq. (15),

since barriers are smaller at this earlier stage. At the end of Phase IV the barriers have grown large, and �

is close to the minimum of its cosine potential.
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from oscillatory potential tree-level quantum mixing 
from !-loop

! and " decay to SM particles 
(mostly photons in a large region of parameter space)

and will play an important role in the thermal production of �. The decays of � and � are

mediated by the mixing with the Higgs, and thus the widths are given by

�� ⇠ ✓2�h�h(m�) , �� ⇠ ✓2�h�h(m�) , (30)

where �h(mi) is the SM Higgs width evaluated at mh = mi. Contours for ��,� are shown

in Fig. 3 (the values of the width �h(mi) are subject to large theoretical uncertainties in

the mass region around 1GeV where several hadronic decay channels open up [9]; we used

the expressions given in Ref. [10] –see also Refs. [11, 12]). For masses below 2me ⇠ 1 MeV,

we have �h(mi) ⇠ (mi/mh)
3 �h!��(mh), and therefore, in a major part of the parameter

space, � and � have suppressed decay widths controlled by the decay into photon pairs. As

shown in Fig. 3, there is a sizable part of the parameter space in which � is cosmologically

unstable (�� > H0, where H0 is the present Hubble value), but su�ciently long-lived to

decay after Big Bang Nucleosynthesis (BBN) (�� < HBBN ⌘ H(T = 1 MeV)). As we will

see in the following, this region of the parameter space can be constrained by cosmology. On

the other hand, � is cosmologically stable in most of the relevant parameter space, and can

decay within the age of the universe only in a small corner of the parameter space, namely

for g� & 10�8 and ⇤ . 104GeV.

We can now easily estimate the cosmological abundances of � and �, either stored in

late classical oscillations (vacuum misalignment) or from thermal production. This will

allow us to set bounds on the model from overclosure of the universe, post-BBN decays or

astrophysical constraints.

5.2 Impact of � and � on standard cosmological predictions

In this work we assume for simplicity that, once both � and � have settled in their minima,

inflation ends with an unspecified reheating period. We will assume a reheating temperature

higher than the EW scale in what follows.

Abundances of � and � from vacuum misalignment

If after inflation and reheating, the fields � and � end up displaced from their minima,

they will fall towards them, oscillating around them if their lifetimes are large. The energy

density stored in the field oscillations behaves like cold dark matter and can potentially

overclose the universe today or dissociate light elements if the decay takes place during or

after BBN. At the start, the field energy density is dominated by the potential energy, but
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! decays after BBN

" decays within the age 
of the Universe
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Phenomenological signatures
vacuum misalignment: (after reheating)

quantum spreading makes the scalars oscillate around their minima

�� ⇠ �� ⇠
p
NeHI

the energy stored in these field oscillations behave like cold DM

⇢�ini ⇠ m2
�(��)2ini ⇠ H4

I ⇢�ini ⇠ H4
I

the oscillations start when H~mi i.e. T i
osc

⇠
p

miMPl

the energy density is then redshifted till today

⌦� ⇠
✓
4⇥ 10�27

g�

◆3/2 ✓
⇤

108
GeV

◆13/2

always very small since ⌦� m� � m� i.e. T�
osc

� T �
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Phenomenological signatures
vacuum misalignment: (after reheating)

quantum spreading makes the scalars oscillate around their minima
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Phenomenological signatures
! thermal production via interaction with the Higgs

h+ h ! �+ � SM + SM ! h(⇤) ! �+ �or

single production is subdominant since linear interactions are suppressed by small mixing angle 

! almost never in thermal equilibrium (except above ΓBBN line)

possible quantum spreading. The initial energy density arising from this displacement was

at most ⇢�ini ⇠ H4
I , that, since m� � m� and then T �

osc � T �
osc, gives today a completely

negligible e↵ect.

Thermal production of �

Thermal production of � arises mainly from the couplings of Eq. (29). In particular, from the

��hh-coupling we can have double-production from the thermal bath via h+h ! �+�. 8 At

T & mh, this double-production cross-section is estimated to be h�Avi ⇠ ✏2(⇤4/f 4)/T 2. This

implies that � can reach thermal equilibrium only for T in the interval [mh, ✏2MP (⇤/f)4], in

which the � production rate is faster than the rate of expansion. This region corresponds

roughly to the area above the �� = HBBN line of Fig. 3, so we conclude that in most of the

parameter space, � never thermalizes.9

The number density of � produced thermally is obtained by solving the Boltzmann equa-

tion
dn�

dt
+ 3Hn� = �h�Avi(n2

� � n2
�,eq) , (32)

where n�,eq is the equilibrium number-density of �. This equation can be conveniently re-

written in terms of the dimensionless quantities x = m�/T and Y� = n�/s, where s is the

entropy per comoving volume, s = 2⇡2g⇤sT 3/45. Assuming a radiation-dominated era, with

energy density ⇢R = ⇡2g⇤T 4/30 (here, g⇤ ⇠ g⇤s ⇠ 100 counts the number of relativistic

degrees of freedom) and using that Y� ⌧ Y�,eq in the large portion of parameter space in

which � does not thermalize, one gets:

dY�

dx
' h�AviCm�MP

x2
Y 2
�,eq , (33)

where C = 2⇡
p
90g⇤s/(45

p
g⇤) ' 13.7. For relativistic �, x ⌧ 1, the equilibrium density is

approximately given by Yeq ⇠ 0.278/g⇤s. This leads to the approximate formula

Y�(T ) ⇠ ✏2
⇤4

f 4
CY 2

�,eq

MP

T
. (34)

8Double production can also be mediated by the process SM + SM ! h(⇤) ! � + � induced by the

��h-coupling, which can lead to a similar thermal production as the one discussed here. Single production,

on the other hand, is due to interactions that are linear in the � field and are thus suppressed by the small

mixing angle ✓�h, and can be neglected.
9This also implies that we can neglect thermal corrections to the potential for � in the analysis of its

cosmological evolution.
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number density is obtained from Boltzmann equation

Y� ⇠ 10�4✏2
⇤4

f4

MPl

mh

◎ BBN constraints

◎ distortions in galactic and extra galactic diffuse X-ray and #-ray backgrounds
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Phenomenological signatures
! thermal production via interaction with the Higgs
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on the other hand, is due to interactions that are linear in the � field and are thus suppressed by the small
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9This also implies that we can neglect thermal corrections to the potential for � in the analysis of its
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Some open questions
 large field excursions  ↪ monodromy?

 non-periodic potential for an axion-like particle?

 hierarchy of decay constants: F>>f is ~ to non-periodid potential  

 eternal inflation vs classical evolution?

 long period of inflation?

 other source of friction to prevent over-shooting the EW scale?

 UV completion?

 weak gravity conjecture? 

 can other scales be relaxed too? SUSY breaking scale?

 signatures in atomic physics?

McAllister, Schwaller, Servant, Westphal ‘in progress

Gupta, Komargodski, Perez, Ubaldi ’15

Choi, Im ’15 Kaplan, Rattazzi ’15

Arvanitaki, Dimopoulos, Villadoro ‘private communication

Riotto et al ‘in progress

Hardy ’15

Batell, Giudice, McCullough ’15

A new playground for model builders
at the cross-road between exp/cosmo/pheno/strings

Joined forces needed

Ibanez, Montero, Uranga, Valenzuela ’15

Heidenreich, Reece, Rudelius ’15 Hebercker, Rompineve, Westphal ’15
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Conclusions

 Now, existence proof that technical naturalness  
doesn’t require new physics at the weak scale.

let us think further and be prepared to be surprised

 Is technical naturalness the right criterion?

 The energy frontier might be different 
than what we thought for many years!

 Neutral naturalness: new physics stabilizing 
the weak scale may escape detection


