

CEPC Partial Double Ring Lattice & SPPC Lattice Design

Feng Su Jie Gao Dou Wang Yiwei Wang Jingyu Tang Tianjian Bian Sha Bai Huiping Geng Yuan Zhang Yuanyuan Guo Yuemei Peng Ye Zou Yukai Chen Ming Xiao

IAS Program on High Energy Physics, January, 2016

CEPC Partial Double Ring Lattice SPPC Lattice

1.CEPC Partial Double Ring Lattice

CEPC Partial Double Ring Layout

CEPC Partial Double Ring Layout

For CEPC 120GeV beam:Version 1.0≻Max. deflection per separator is 66µrad.sufengUsing Septum Dipole after separator to acquire 13 mrad2015.12.20

Separator with Thin Septum Magnet

Sigmax=697.8um 20sigma=14mm

Separator: 62.5 urad 12 个 0.75 mrad Septum Magnet: L=3m

(4.25mrad) thicknes=3-5mm

rho=705.822m B=0.56T

Orbit difference between dipole separator kicker

Seperator

Kicker

Dipole

β (m)

So we use **Dipole** instead **Seperator** in lattice now 9

Beta<150m

Orbit (RING3_DR_IP1) Version 1.0 without FFS

Dipole Strength Version 1.0 without FFS

	Angle(mrad)	L(m)	Rho(m)	Brho(E0/ c)(T/m)	В(Т)	Ek(KeV)	KeV/m
B0	3.232	19.6	6064.36	400	0.06596	631.625	32.226
BSepL	-0.0625	4.5	-72000	400	-0.00556	53.2	11.822
BSeptumL	-4.25	3	-705.822	400	-0.56667	5426.4	1808.8
BMatch1L	-0.469	4.9	-10447.8	400	-0.03829	366.624	74.821
BMatch2L	-3.171	19.6	-6181.02	400	-0.06471	619.704	31.618
BMatch3L	-4.36	19.6	-4495.41	400	-0.08898	852.069	43.473
B2	2.167	19.6	9044.76	400	0.04422	423.494	21.607
B3	2.167	19.6	9044.76	400	0.04422	423.494	21.607
B4	-2.167	19.6	-9044.76	400	-0.04422	423.494	21.607
B5	-2.167	19.6	-9044.76	400	-0.04422	423.494	21.607
BMatch3R	4.36	19.6	4495.41	400	0.08898	852.069	43.473
BMatch2R	3.171	19.6	6181.02	400	0.06471	619.704	31.618
BMatch1R	0.469	4.9	10447.8	400	0.03829	366.624	74.821
BSeptumR	4.25	3	705.822	400	0.56667	5426.4	1808.8
BSepR	0.0625	4.5	72000	400	0.00556	53.2	11.822

Survey & Dynamic Aperture (Version 1.0 – without FFS)

Dynamic Aperture Comparation

CEPC-Single

CEPC-Single-Bypass

FFS Part

S 中國科學院為維約程列完約 Orbit (RING3_DR_IP1) Version 1.0 + FFS(20151126)

Tune/DA with FFS

Optimize

DA Comparation

Summary for part 1

- The first version of CEPC Partial Double Ring Lattice was designed (Version 1.0). The whole length of CEPC PDR is 3281.27m, full crossing angle is 26mrad, maximum distance between two ring is 14.913m.
- The Dynamic Aperture need to be optimized. Now the DA of CEPC with PDR and Bypass(at IP2/4) and without FFS is better than before, but the DA with FFS is not good enough.
- We may add more sextupoles in PDR to correct the high order chromaticity, or use more group of sextupoles in ARC to optimize the DA.
- The linear lattice of PDR may also be optimized.

2. SPPC Lattice

Layout of two CEPC lattices

CEPC Lattice Layout (Feb 11, 2015)

Huiping Geng

Consideration of CEPC New Layout with PDR

Parameter Estimate for ARC CELL

C = 58 Km LSS = 12 Km L_{ARC} = 58 - 12 = 46 Km arc filling factor = 0.8 L_{Dipole} = 46 * 0.8 = 36.8 Km $\rho = \frac{L_{Dipole}}{2\pi} = 5856.9 \text{ Km}$ L_B = 14 - 15 m n_B = $\frac{L_{Dipole}}{L_{B}} = 2453.3 - 2628.57$ E0 = 35 TeV

$$\gamma = \frac{35 \text{ TeV}}{938 \text{ MeV}} = 37313.4$$

 $\beta = 1$

$$B\rho = 3.1267 \ \beta\gamma = 116\ 635.29\ \text{Tm}$$
$$B = \frac{116\ 635.29}{5856.9} = 19.92\ \text{T}$$

High Field Dipole in Pre-CDR : 20T, 15m

$$\frac{2453.3}{256} = 9.58 < n < \frac{2628.57}{256} = 10.265$$

n = 10
n_B = 2560
 $\theta = \frac{2\pi}{2560} = 0.002454369$
L_B = $\rho\theta = 14.375$ m
L_{cell} = $\frac{8 * L_B}{0.8} = 143.75$ m
 $\beta^{\pm} = \frac{\text{Lcell} * (1 \pm \text{Sin}[\frac{\mu}{2}])}{\text{Sin}[\mu]}$ $\alpha^{\pm} = \frac{\mp 1. - \text{Sin}[\frac{\mu}{2}]}{\text{Cos}[\frac{\mu}{2}]}$

$$D^{\pm} = \frac{\operatorname{Lcell} * \psi * \left(1 \pm 0.5 * \operatorname{Sin}\left[\frac{\mu}{2}\right]\right)}{4 * \operatorname{Sin}\left[\frac{\mu}{2}\right]^2}$$
 29

β (m)

FODO CELL in ARC

Betay: 42.569/244.869

ARC CELL

	LQ	DQS	LS	DSB	LB	DBB
SPPC	4m	1m	0.5m	1m	14.8m	1m
FCC-hh	6.3137m	1m	0.5m	2.184m	14.3m	1.36m

B max [T]	G max [T/m]	k1	k2
19.61	582.156	4.9899E-3	0

Pre-CDR:

Dipole: L=15m B=20T

Quadrupole:

D = 45 mm B_{pole}=16 T G=711.1T/m K1=6.097*10^-3 Betax: 244.878/42.57 Betay: 42.569/244.869

- E (Collision: 35TeV) (Injection: 2.1TeV)
- ϵ (Collision: 1.099*10^-10m=0.1099nm)
 (Injection: 1.83*10^-9m=1.83nm)
- σ (Collision: 1.66*10^-4m=166um) (Injection: 6.76*10^-4m=676um)

 $R=20^{*}\sigma_{Inj=}13.52mm$

(ϵ_n =4.1um)

 $\epsilon = \frac{\epsilon_n}{\epsilon_n}$

ARC67

ARC81

ARC (ARCDSPL,36 CELL, ARCDSPR)

32

ARC56

ARC78

Dispersion Suppressor (DS) types

(1) Half Bend

(2) LHC Like

βx

100.

3*Ò*0.

4*0*0.

s (m)

βv

10/01/16 22.50.50

 D_r

(3) Full Bend

L=433.2m

L=382.4m

200.

L=577.6m

	BDSP1L	BDSP2L	BDSP1R	BDSP2R	B0	
(1)	9.93	9.93	9.93	9.93	19.86	(T)
(2)	18.93	18.93	18.93	18.93	19.86	(T)
(3)	19.86	19.86	19.86	19.86	19.86	(T)

β (m)

Dispersion Suppressor (DS)

382.4m

	BDSP1L	BDSP2L	BDSP1R	BDSP2R	B0	
В	18.93	18.93	18.93	18.93	19.86	Т
L	11.5	11.5	11.5	11.5	14.8	m

35

Long Straight Section

LSS1/5_coll

L=3243.106m

ARCDSPL, ARC_to_STR, 21.5*STRCELL, STR_to_ARC, ARCDSPR

382.4m, 71.719m, 3104.6m, 66.789m, 382.4m

LSS2_inj/LSS8_extr

L=788.306m

-ARCDSPR, ARC_to_STR, 4.5*STRCELL, STR_to_ARC, -ARCDSPL

382.4m, 71.719m, 649.8m, 66.787m, 382.4m

LSS4/6_rf

L=788.306m

-ARCDSPR, ARC_to_STR, 4.5*STRCELL, STR_to_ARC, -ARCDSPL

382.4m, 71.719m, 649.8m, 66.787m, 382.4m

3)]

)_{**}0[*]

β (m)

L=973.829m

ARCDSPL, ARC_to_STR, 21.5*STRCELL, STR_to_ARC, ARCDSPR

382.4m, 71.719m, 973.829m, 66.789m, 382.4m

40

今回科学院高能物理研究所

	K1(m^-2)	G (T/M)	L(M)	βmax
K1.QT.1R	4.9751e-03	580.428	6	3543.69
K1.QT.A2R	-5.2595e-03	-613.668	9	9601.686
K1.QT.B2R	-5.2595e-03	-613.668	9	9601.686
K1.QT.3R	5.3434e-03	623.369	8	9731.53
K1.QM.4R	-2.2804E-04	-266.04	4	3798.29
K1.QM.5R	8.8592E-04	103.36	4	1506.53
K1.QM.6R	-1.2144E-03	-141.68	4	587.87
K1.QM.7R	1.0640E-04	124.133	4	531.25
K1.QM.8R	-4.2431E-03	-495.028	4	162.20
K1.QT.1L	-4.9751e-03	-580.428	6	3543.69
K1.QT.A2L	5.2595e-03	613.668	9	9601.686
K1.QT.B2L	5.2595e-03	613.668	9	9601.686
K1.QT.3L	-5.3434e-03	-623.369	8	9731.53
K1.QM.4L	2.2804E-04	266.04	4	3798.29
K1.QM.5L	-8.8592E-04	-103.36	4	1506.53
K1.QM.6L	1.2144E-03	141.68	4	587.87
K1.QM.7L	-1.0640E-04	-124.133	4	531.25
K1.QM.8L	4.2431E-03	495.028	4	162.20

Q Strength Pre-CDR: IR: D = 60 mm $B_{pole} = 20 \text{ T}$ G=666.7T/m $K1=5.716*10^{-3}$ R=30mm 20mm=20 σ

σ=1mm

 $\beta = \sigma^2/\epsilon = 10.03$ km

Matching section:

D = 60 mm $B_{pole} = 16 T$ G=533.3T/m K1=4.572*10^-3

Separation Dipole Crossing angle schemes

Crossing angle is achieved:

for the horizontal plane by powering differently D1 and D2

 for the vertical plane by tilting D1 and D2 resulting in a vertical deflection

Full crossing angle=146µrad ⁴²

[*10**(3)]

Summary for part 2

- The first version of SPPC Lattice was designed. The whole length and layout is according to CEPC lattice layout. full crossing angle is 146urad.
- Crossing angle and Separation Dipole need to be studied and installation.
- LSS3_pp low- β pp optics need to be studied and optimization.
- The Dynamic Aperture need to be studied: MADX or Sixtrack.

Acknowledge

- Gang Xu, Qing Qin, Yuan Zhang, Yuemei Peng,
 Qingjin Xu, Yukai Chen, Xiaohao Cui, Zhe Duan,
 Yudong Liu,
- Thanks for your kind help and beneficial discussion!

Reference

[1] CEPC-SPPC Preliminary Conceptual Design Report, The CEPC-SPPC Study Group, IHEP-CEPC-DR-2015-01.

[2] LHC Design Report, Vol.1, CERN-2004-003.

[3] J. Gao, IHEP-AC-Note-2013-012.

[4]Xiao Ming et al, CEPC_bunch_train _ 2015-8-28

[5]Oridy, FCC-ee_150917

[6] P. Raimondi, Status on SuperB effort, La Thuile, March 11, 2006

[7]W. Kalbreier, et al, "Layout, design and construction of the electrostatic

separation system of the LEP e+e- collider", CERN, Geneva, Switzerland.

[8] R. Martin, et al, "Status of the FCC-ee interaction region design", HF2014

Workshop, Beijing, China, 9-12 October, 2014

Thank You !

Electrostatic Separator in LEP

_		
I	Separator length	4.5 m
I	Inner diameter of separator tank	540 mm
I	Electrode length	4.0 m
I	Electrode width	260 mm
ł	Nominal gap	110 mm
	Maximum operating field strength	20 kV/cm
I	Maximum operating voltage	+ 110 KV
I	Max. deflection per separator at 55 GeV	145 µrad
I	Conditioning voltage on the test bench	+ 200 kV
	Conditioning voltage after installation	+ 160 kV
I	Maximum voltage for vernier adjustment	+ 35 kV
	Range of vernier adjustment at 55 GeV	
	Horizontal good field region (1% limit)	+ 80 mm
I	Maximum tilt per electrode	+ 5 mrad
I	Pumping speed of sputter ion pumps	800 1/s
۱	Pumping speed of sublimation pumps	1300 l/s
I	Nominal vacuum pressure in the low-beta	
Ì	insertions	2.7.10 ⁻⁸ Pa
I	Number of separators per collision point	4
ł	Total number of separators	32
I	Total number of high voltage circuits	32
1		

L=4.5m Lelectrode=4.0m Efield=2MV/m E=55GeV Angle=154urad **E=120GeV** Angle=66urad

(m)

đ

Orbit of FFS Part

