International Linear Collider (ILC) Technical Status and Prospect

Akira Yamamoto (KEK) for the Linear Collider Collaboration (LCC)

To be presented at IAS Conference, Hong Kong, 20 January, 2016

Outline

- Introduction
 - Features and Key Technologies
- Technical Status
 - Progress in Global Design Effort & beyond TDR
 - Further Effort to prepare for the ILC
- Prospect
 - Actions progressed in Japan
 - KEK-ILC Action Plan
- Summary

ILC GDE to LCC

[.••

ILC Acc. Design Overview (in TDR)

Important Energies in ILC

125 GeV Higgs discovery reinforcing the ILC importance

ILC ML Parameters, demonstrated in TDR

Characteristics	Parameter	Unit	Demonstrated
SRF:			
Average accelerating gradient	<u>31.5 (±20%)</u>	MV/m	DESY, <u>FNAL,</u> JLab,
Cavity Q ₀	10 ¹⁰		Cornell, KEK,
(Cavity qualification gradient	35 (±20%)	MV/m)	
Beam current	5.8	mA	DESY-FLASH), KEK-STF
Number of bunches per pulse	1312		DESY
Charge per bunch	3.2	nC	
Bunch spacing	554	ns	
Beam pulse length	730	ms	DESY, KEK
RF pulse length (incl. fill time)	1.65	ms	DESY, KEK, FNAL
Efficiency (RF→beam)	0.44		
Pulse repetition rate	5	Hz	DESY, KEK
Nano-bam:			
ILC-FF beam size (y) KEK-ATF-FF equiv. beam size (y)	5.9 37 (44 reached)	nm nm	KEK-ATF

Α.

Technical Highlights after TDR

- **SRF** (→Report from H. Hayano)
 - E-XFEL: exceeded <u>90 % of 800 cavity production</u>, and <u>65 % of 100 cryomodule</u> assembly and testa, Excellent !! (→ Report from O. Napoli)
 - Fermilab-ASTA: reached the ILC specification gradient of ≥31.5 MV/m
 - KEK-STF2: <u>CM1+2a (12 cavity string) under cold test</u>, First 4 reaching> 35 MV/m
- Nano-beam
 - ATF2 Collab.: reached <u>44 nm</u> at the FF, closing to the primary goal of 37 nm
- CFS
 - Geological Survey & boring at a candidate IP region in progress in Tohoku
 - Tunnel Optimization Tool (TOT) being developed by CERN/KEK-ARUP cooperation
- Accelerator Design and Integration (ADI)
 - Post-TDR design update (→ see The ILC Progress Report 2015)
 - Common L* for both detectors of ILD and SiD
 - Vertical access at Detector Hall at IR points
 - Extension of ML tunnel length for optimizing e+e- collision timing and redundancy of ML SRF

Outline

Introduction

Features and Key Technologies

Technical Status

- Progress in Global Design Effort & beyond TDR
- Further Effort to prepare for the ILC

Prospect

- Actions progressed in Japan
- KEK-ILC Action Plan

Summary

ILC Accelerator Concept

- Electron and Positron Sources (e-, e+) :
- Damping Ring (DR):
- Ring to ML beam transport (RTML):
- Main Linac (ML) : SCRF Technology
- Beam Delivery System (BDS)

-ANNORPARADIA

Advantage of Superconducting RF

- ✤ Ultra-high (Q₀ =10¹⁰):
 - small surface resistance → nearly zero power (heat) in cavity walls
- ★ Long beam pulses (~1 ms)
 → intra-pulse feedback

Larger aperture

- ♦ → better beam quality w/ larger aperture lower wake-fields
- Work necessary on engineering for:
 - Cryomodule (thermal insulation)
 - Cryogenics

Luminosity:

Vertical emittance (tiny beams)

- Luminosity proportional to RF efficiency ILC
 ~160MW @ 500GeV (only)
- Capable of efficiently accelerating high beam currents
- Low impedance aids preservation of high beam quality (low emittance)

Progress/Prospect in SRF Cavity Gradient

for Frontier Particle Accelerators

R. Geng

H. Padamsee / ILCWS2015/ILC-School

Major Accelerators Under Construction

2010 ~

Project	Notes	# cavities
CEBAF-JLAB (US)	Upgrade 6.5 GeV => 12 GeV electrons	80
XFEL-Hamburg (EU)	18 GeV electrons – for Xray Free Electron Laser – Pulsed)	840
LCLS-II – SLAC (US)	4 GeV electrons – CW XFEL (Xray Free Electron Laser)	300
SPIRAL-II (France)	30 MeV, 5 mA protons -> Heavy Ion	28
FRIB – MSU 8US)	500 kW, heavy ion beams for nuclear astrophys	340
ESS (Sweden)	1 – 2 GeV, 5 MW Neutron Source ESS - pulsed	150
PIP-II–Fermilab (US)	High Intensity Proton Linac for Neutrino Beams	115
ADS- (China, India)	R&D for accelerator drive system	> 200
Globally Int. Effort		> 2000

SCRF Linac Technology

1.3 GHz Nb 9-cellCavities	16,024
Cryomodules	1,855
SC quadrupole pkg	673
10 MW MB Klystrons & modulators	436 *

* site dependent

Approximately 20 years of R&D worldwide \rightarrow Mature technology, overall design and cost

Cavity/Cryomodule Fabrication

IPAC14: Courtesy: H. Weise

XFEL An Accelerator Complex for 17.5 GeV

800 accelerating cavities

1.3 GHz / 23.6 MV/m

1500

EXFEL: 1/20 Scale Project to the ILC

2000

Some specifications

- Photon energy 0.3 24 keV
- Pulse duration ~ 10 100 fs
- Pulse energy few mJ
- Superconducting linac. 17.5 GeV
- 10 Hz (27 000 b/s)

25 RF stations 5.2 MW each

SC Linac (~ 1 km)

E-XFEL: under construction

2500

800 Cavities production complete (at RI, Zanon), and assembled/tested at CEA-Saclay, DESY

1000

IPAC Conference – 18 June 2014 Hans Weise, DESY

3000

XFEL: Mass Production Perfomance Tests of 840 Cavities

E-XFEL: Gradient Yield after First Treatment

	G-max (E-XFEL)			G-usable	G-usable (E-XFEL)			
	RI	EZ	С	RI	EZ	С		
<g> MV/m</g>	33	29.6	31.4	29.4	26.3	27.7	(35)	
Yield at 28MV/m	86%	73%	79%	66%	44%	54%	(90)	

A. Yamamot

Effect of Re-treatment

on "High Gradient Cavities" --- for Special R&D

Maximum Eacc (RI as received):32.1±10.2 MV/mMaximum Eacc (RI after retreatment):35.5±4.7 MV/m

- 12 cavities each from RI and EZ for High Gradient R&D
- Av. Max-gradient for RI cavities rises by about 3
 MV/m after re-treatment
- Ave Max 35.5 ± 4.7 MV/m
- Average yield at 28 MV/m rises by 10%
 - D. Reschke, N. Walker /SRF2015
 - H. Padamsee / ILCWS2015

Real SRF Cavity Performance and necessary mitigation

1. Cryomodule production at CEA-Saclay (from the assembly standpoint)

2. Cryomodule performances (measured at DESY/AMTF)

E-XFEL CM Performance compared w/ Cavity Tests

Degradation being overcome $!! \rightarrow$

 $\mathsf{E}_{\mathsf{acc}}\left[\mathsf{MV}\right]$

Cryomodule Operating gradient

XM59 is an excellent module, assembled after the change of CR procedure.

Fermilab: CM2 reached <31.5 MV/m >

CERN Courier December 2014

ACCELERATORS ILC-type cryomodule makes the grade

For the first time, the gradient specification of the International Linear Collider (ILC)

on average across an entire ILC-type cryomodule made of ILC-grade cavities. A team at Fermilab reached the milestone in early October. The cryomodule, called CM2, was developed to advance superconducting radio-frequency technology and infrastructure at laboratories in the Americas been nearly a decade in the making, from

design study of 31.5 MV/m has been achieved region, and was assembled and installed at Fermilab after initial vertical testing of the cavities at Jefferson Lab. The milestone an achievement for scientists at Fermilab. Jefferson Lab, and their domestic and international partners in superconducting radio-frequency (SRF) technologies - has

CM2 in its home at Fermilab's NML building, as part of the future Advances roonducting Test Accelerator. (Image dit: Fermilab.)

Cavity	Gradient (MV/m)
1	31.9
2	30.8
3	31.8
4	31.7
5	31.5
6	31.3
7	31.6
8	31.4

Cryomodule test at Fermilab reached $< 31_{\circ} 5 > MV/m$, exceeding ILC specification

KEK STF2, SRF-CM BEAM ACCELERATION

<u>Objective</u>

- High Gradient (31.5 MV/m)
 - → Demonstration of full cryomodule
- SCRF electron gun
- Training for next generation

KEK-STF2: Cavity RF performance in CM1/CM2a and Beam Acceleration Preparation

E.	Θ	•	•	••	- S	•	• 🕀	•	e	5	Θ	0
Module		CN	11a			CN	11b			CN	12a	
Cavity #	1	2	3	4	5	6	7	8	9	10	11	12
Cavity name	MHI-14	MHI-15	MHI-17	MHI-18	MHI-19	MHI-20	MHI-21	MHI-22	MHI-24	MHI-23	MHI-25	MHI-26
E _{acc} @V.T. [MV/m]	36.6 (power limit)	35.7 (Cell#1 Quench)	38.4 (power limit)	36.2 (power limit)	37.2 (Cell#1 Quench)	35.1 (power limit)	38.9 (power limit)	35.8 (power limit)	12.0 (heavy F.E.)	35.9 (Cell#3 Quench)	32.3 (Cell#1 Quench)	31.6 (Cell#1 Quench)
E _{acc} @C.T. (full pulse) [MV/m]	39	37	35	36	26	16	26	32	18	34	33	32
		Gradie	nt kept		G. de	graded s	systemat	cically		Gradie	nt kept	

* Gradient red colored : used for beam acc.

Preparation for the SRF beam acc., by using CM1 and CM2a JFY-2014: Assembly and installation of cavity string JFY-2015: Individual cavity process and RF test in CM RF power system preparation, JFY-2016: Eight cavity string to be full-RF tested e- acceleration up to ~ 250 MeV

SRF Technology Development at IHEP

IHEP03 TESLA-lie 9-cell cavity Fabricated at IHEP and processed/tested at KEK

The development in progress with fabrication of 1.3 GHz cavity and cryomodule in cooperation with ADS society in China, and with HE Phys. Lab. in JP and US.

Nano-beam Technology

Will it work ? System Tests: ATF 2 @ KEK

- demonstrate optics, tunability Goal 2:

- beam stabilization through feedback

Local chromatic corrections

KEK-ATF2: BDS, FF Test Facility for ILC

Modeling of ILC BDS

- Same Optics:
- Int'l Collab.
- ~25 Lab., > 100 Collaborators

Goal: FF Beam Size: 37 nm

• (corresponding to 5.9 nm

~+ 11 ~

KEK-ATF2: BDS, FF Test Facility for ILC

Modeling of ILC - BDS

- Same Optics:
- Int'l Collab.
- ~25 Lab., > 100 Collaborators
- Goal: FF Beam Size: 37 nm
 - (corresponding to 5.9 nm

Di

Progress in Beam Size at ATF2

ILC Time Line: Progress and Prospect

Further Technical Issues to prepare for the ILC

The. Field	Subject	Global Cooperation
ADI	Optimize Acc. Design and Integration	LCC-ILC-ADI Global Team
SRF	 Improve Gradient and Stability Establish three regional contribution Industrialization Hub-lab functioning 	 TTC: TESLA Tech. Collaboration: Three regional effort and experience EU: European XFEL AMs: LCLS-II AS: KEK-STF as Asian Hub.
Nano-beam	Realize ultra-low emittance (in DR), and nano-beam size and stability at FF	ATF: Acc. Test Facility Collab: - Global collaboration with KEK-centered
E+ Source	Demonstrate thermal balance with rotational target in vacuum	PosiPol Collaboration:Global collaboration
CFS	Establish a site-specific engineering Geological survey and assessment,	LCC-CFS Collaboration - Japan-centered
Management	Establish ILC Pre-Lab Prepare for the ILC Lab.	>> ICFA leading >> Inter-Government Agreement ineviable

[·•

Design Update Realized

	Title	Contents	Decision
CR-001	Add return dogleg to target by-pass	Add additional lattice to bring BDS beamline on axis with main linac, to accommodate future >1 TeV beam energies.	No
CR-002	Adopt equal L* for both detectors	Find solution for single L* value for BDS and both detectors	Yes
CR-003	Detector hall with vertical shaft access	Consolidated solution for IR hall / layout which supports surface construction of the detectors.	Yes
CR-004	Extension of the electron and positron Main Linac tunnels by ~ 1.5km	Lengthen Main Linac tunnels by about 1.5km, to (i) fulfill the Global Timing constraint and (ii) add margin for total beam energy of 500GeV CME, w/ very reliable reach	Yes
CR-005	Update top-level parameters	Correct errors in reported luminosity for 500 GeV baseline and 1 TeV (b) parameters.	Yes
CR-006	Add BPM downstream of QD0	Add a BPMs immediately downstream of the QD0s to facilitate beam capture and construction of a "virtual IP BPM".	Yes
CR-007	Adoption of the Asian design as sole baseline	Only the Asian version of the TDR designs will be the basis for further development; the baseline HLRF distribution scheme will be DKS, the CFS planning will be based on the mountainous topography design.	Yes
CR-008	Formal release TDR-2015a lattice	Complete set of matched lattices reflecting TDR design	Yes

CR 3: Vertical shaft access to the detector hall at IP

CR 4: Adding ML tunnel lengths

for both e+e- timing and more reliable reaching 500 GeV

Physics Issue

- TDR Design : E_{CM}=500GeV (max)
 - ✓ before the discovery of Higgs at ~125GeV
 - ✓ close to the threshold of e+ e- → t t H at E_{CM} =475GeV
- E_{CM}~550GeV: preferable for measuring top-Yukawa coupling
 - The cross-section at 550GeV is factor ~4 larger than at 500GeV

ILC Site Candidate Location in Japan: Kitakami

ILC Site Candidate Location in Japan: Kitakami

Linear Collider Workshop (LCWS) 2016 is to be held In Tohoku (Morioka), and we invite your participation

(県) 「 「 「 「 「 」 「 」 「 」 「 」 「 」 」 「 」 」 」 「 」 」 」 」 」 「 」 」 」 」 「 」 」 」 「 」 」 」 」 「 」 」 」 」 」 「 」

Outline

Introduction

Features and Key Technologies

Technical Status

- Progress in Global Design Effort & beyond TDR
- Further Effort to prepare for the ILC

Prospect

- Actions progressed in Japan
- KEK-ILC Action Plan

Summary

Official Actions progressed in Japan

KEK-ILC Action Plan Issued 6 Jan., 2016

Go to KEK URL: "TOPICS"

https://www.kek.jp/en/

KEK-ILC Action Plan announced, Jan. 6, 2016

https://www.kek.jp/en/NewsRoom/Release/20160106140000/

- KEK issued an KEK-ILC action plan for how KEK should start its preparation toward the International Linear Collider when the Ministry of Education, Culture, Sports, Science and Technology (MEXT), decides to initiate negotiations with foreign countries. ,,,
- The study provides the basic information required to plan the technical actions, organization, human resources, and training to realize formal approval of the ILC project, and to ensure a smooth start of the construction phase through the preparation phase from the current status.

• KEK-ILC Action Plan

- It assumes that work sharing with foreign institutions will be available based on an international agreement and that this phase will be four-year long to be started in 2016, 2017, or 2018.
- If we may start:
 - the main preparation phase in 2016 (2018),
 - ILC construction phase can begin in 2020 (2022), and
 - Physics experiments would start in 2029 (2031).

Area	Tasks	International collaborations	Sharing JP : Abr.**
ADI	Design parameter optimization	LCC-ILC centered	~1:2
SRF	Mass-production and quality control Hub-lab functioning System performance stabilization (CM assembly and transportation)	 Tesla Technology Collaboration (TTC) KEK-STF (JP) E-XFEL construction (EU) LCLS-II construction (US) 	~ 2 : 1
Nanobeam	Minimizing the beam size and demonstrating stability Beam handling (DR, RTML, BDS, BD)*	ATF Collaboration	~1:1
Positron source	Undulator-driven polarized positron source Electron beam-driven positron source (backup) Thermal balance, cooling and safety	Complementary cooperation between US and Japan	~1:1
CFS	Basic Plan by assuming a model site, engineering design, drawings, survey, assessment	JP-CFS centered Collaboration w/ local organizations	JP centered
Common technical support	Safety (radiation, high-pressure gas, etc.) Communication and network	International standard and harmonization Global networking	JP centered
Administration	General affairs, finace, int. relations, public relations Administrative support for ILC pre-lab	Share and cooperation between ILC pre-lab and participating institutions	JP centered

Table 1. ILC accelerator preparation tasks, international collaborations, and human resource sharing

SCRF Procurement/Manufacturing Model

SRF Facilities anticipated for Hub/Consortium

KEK-ILC Action Plan in Preparation Period

	Pre-preparation Phase	Main Preparation Phase					
	Present	P1	P2	P3	Р4		
ADI	Establish main parameters	Verify parameters w/ simulations					
SRF	Accelerate beam with SRF cavity string and cryomodule	Demonstrate mass-production technology and stability Demonstrate Hub-lab functioning and global sharing					
Nanobeam	Achieve the ILC beam-size goal	Demonstrate the nanobeam size and stabilize the beam position					
Positron source	Demonstrate technological feasibility	Demonstrate both the undulator and e-driven e+ sources					
CFS	Pre-survey and basic design	Geology survey, engineering design, specification, and drawings					
Common technical support	Support engineering and safety	Common engineering supports (network, radiation safety, etc.)					
Administration	Project planning and promotion	General affairs, finance, international relations, public relations					
1 Ionninotration	Preparation for the ILC pre-lab	Establishing the ILC pre-lab and managing the ILC preparation					

	Pre-P. ²⁾	Main Preparation ³⁾			Construction ⁴⁾		Notes	
	(present)	P1	P2	P3	P 4	C 1	C2	
Acc: JP : abroad	$\begin{array}{c} 42 \\ \geq 20 \end{array}$	54 28	74 41	98 65	122 89	172	530	JP: needs to mature SRF mass-prod. technology ⁵) EU/US: already has experience ⁶)
CFS: JP : abroad	3 1	11 3	11 5	13 5	17 5	52	53	JP: is primarily responsible, w/ outsourcing abroad: professional contribution
Comm: JP : abroad	2 1	7 3	10 4	13 6	14 7	109	109	JP: is primarily responsible abroad: professional contribution ⁷⁾
Admin: JP : abroad	5 3	8 4	10 6	14 8	18 10	77	230	JP: is primarily responsible abroad: professional and regional contribution ⁸⁾
Sum	≥77	118	161	222	282	410	922	

Summary

- International Linear Collider (ILC) is a unique energy frontier e+e- colliding accelerator with an (COM) energy of 500 GeV efficiently and extendable to 1 TeV (and further if the SRF technology much advanced), having critically important features complementary to the LHC.
- Two key technologies of SRF and Nano-Beam have been demonstrated by European XFEL and ATF programs, functioning prototype works, with global cooperation.
- The KEK-ILC action plan awaits the project "Green Light". The global teams are enthusiastically preparing for this development

CR 2: Equalization of L* for ILC and SID detectors

	Stage		500		500 LumiUP			
Scenario	\sqrt{s} [GeV]	500	350	250	500	350	250	
G-20	$\int \mathscr{L} dt [\mathrm{fb}^{-1}]$	1000	200	500	4000	-	-	
	time [years]	5.5	1.3	3.1	8.3	-	-	
H-20	$\int \mathscr{L} dt$ [fb ⁻¹]	500	200	500	3500	-	1500	
	time [years]	3.7	1.3	3.1	7.5	-	3.1	

'H20': Standard Running Scenario

Reference: Snowmass study scenario Fits within 15 years

Measurement precisions are somewhat improved wrt the Snowmass numbers