CEPC vertex detector/si tracker

Xiangming Sun

Central China Normal University

IAS Program on High Energy Physics 2016

outline

 physics motivation CEPC vertex detector requirement & preCDR baseline solution self-support & inside-beam layer chanllenge •outlook

physics motivation

vertex

•distinguish short-lifetime particle from background; better measurement

•Higgs->b bbar; Higgs->tau taubar

silicon tracker

•connect TPC tracks to TOF hits, increase association efficiency

CEPC vertex detector

requirement & preCDR

baseline solution

self-support pixel detector

inside-beam layer

CEPC vertex requirement

High impact parameter resolution driven by flavor tagging

$$\sigma_{r\phi} = 5 \oplus 10/p \cdot \sin^{3/2} \theta \ \mu \mathrm{m}$$

Imposing stringent requirements on the Vertex detector, including oSpatial resolution near the interaction point σ_{SP} ≤3 μ m → high granularity (small pixel size)

oMaterial budget ≤0.15%X₀/layer → monolithic pixel sensor (sensor + embedded electronics, thinned down to e.g. 50 µm) + air cooling (power dissipation ≤50mW/cm²)

oLow detector occupancy below 0.5% → high granularity, short integration time

Radiation tolerance (pre.): ~1 MRad (TID),10¹² n_{eq}/cm² (NIEL)

Vertex detector specifications:

Parameter	Inner layers	Outer layers	
Single point resolution	2.8µm	4μm	
Integration time	20µs		
Power consumption	50 mW/cm ² (air cooling)		
Material budget	0.15%X ₀ /layer		
TID radiation tolerance*	1M krad/ year	?	
NIEL radiation tolerance*	10 ¹² n _{eq} / (cm ² year)	?	

* safety factor of 5

Silicon tracker specifications:

Parameter	Inner layers	Outer layers	
Single point resolution	7μm		
Power consumption	50 mW/cm ² (air cooling?)		
Material budget	0.65%X ₀ /layer		

baseline solution

MAPS (CMOS pixel) carbon fiber structure lvds + optical link

example applications:

STAR HFT ALICE ITS upgrade

task: design chip matching CEPC requirement

CMOS MAPS

Integrated sensor and readout electronics on the same silicon bulk with "standard" CMOS process → low material budget, low power consumption, low cost ...

Ultimate (Mimosa 28) installed for STAR PXL, technology for ALICE ITS Upgrade

- Selected TowerJazz 0.18 μ m CIS technology for R&D, featuring:
 - Quadruple well process: deep PWELL shields NWELL of PMOS transistors, allowing for full CMOS circuitry within active area
 - Feature size of 0.18 µ m and 6 metal layers: high-density and low power
 - $\circ~$ Thick (20 40 μ m) and high resistivity (1 k $\Omega~$ cm) epitaxial layer
 - Thin gate oxide (3 nm): radiation tolerance

R&D for CEPC

	3-year Project	Ultimate
Resolution (µ m)	10	3
Detection Efficiency	99%	≥99%
Integration Time (μ s)	100	20
Power Consumption (mW/cm ²)	150	50
Radiation Tolerance	/	1 Mrad/y (TID) &10 ¹² n _{eq} /cm²/y (NIEL)

 TCAD simulation to guide the diode optimization and to be verified with future measurements (radiation damage being implemented ...)

 TowerJazz CIS 0.18 µm Engineering Run expected mid of October

Other Options/Ideas

Monolithic pixel sensors based on the SOI technology: fully depleted sensor (large signal) and existing design experience with SOI detectors for X-ray detection

better position resolution solution

postion resolution-weighting method

position resolution

- pixel size 10um
- ADC bits 9
- threshold 3σ
- ENC 10 e⁻
- diffusion 10um
- signal charge 2000

position resolution simulated 0.2um

position resolution from delta electron from IPHC small pixel measurement

1um

vertex resolution

vertex resolution:

sigma= ((sita*L1)^2 + (s1*(L1 + L2)/L2)^2 + (s2*L1/L2)^2)^0.5

- L1: distance between vertex and layer1;
- L2: distance between layer1 and layer2;

sita : multiple coulomb scattering angle for layer1=1.12*10^-4 for 50um Si 1GeV proton

- s1 : position resolution of layer1;
- s2 : position resolution of layer2;

multiple Coulomb scattering

vertex resolution

s1 = s2 (um)

sigma= ((sita*L1)^2 + (s1*(L1 + L2)/L2)^2 + (s2*L1/L2)^2)^0.5

self-support

self-support

sensor design for selp-support

detector design requirement

only θ 1 matters the first layer should be as thin as possible vacuum between collision point to the first layer

inside-beam layer

, the first layer is put inside beam pipe

data rate

dataRate := $[2 \cdot (\text{positionBit}) + \text{timeBit} + \text{analogBit}] \cdot \text{hitRate} \cdot \text{hitPerParticle} = 1.172 \times 10^9 \text{ s}^{-1}$

readout structure and power consumption added

- priority address encoding
- SCA on each column
- ADC is for each section

+SourceFollower+SwitchedCa pacitorArray+ADC on each hits

other challenges for insidebeam layer

- $\ensuremath{\gg}$ cooling and vibration
- ?
- » data transmission
- ?
- » radiation hardness
- ?
- » outgasing
 - ?

outlook

baseline R&D is ongoing

"new" ideas will be explored

Thank you for attention

自支撑结构仿真

探测器结构为五层,最内两层 为50 μ m硅,100 μ m铍束流管, 外面三层为自支撑结构的硅探 测器。

Geant4仿真中,除了上面这些 部分设定材料外,其他空间填 充的为空气。

仿真中,由几何中心位置沿一 定方向发射能量范围为1GeV到 10GeV的质子。

进一步提高空间分辨能力

- 硅的厚度不可能无限减小下去,50um已接 近目前工业极限。
- 像素的尺寸也有限制,分辨率无法突破1um

 要进一步提高空间分辨能力,需要让出射 粒子直接打到第一层探测器上,第一层探 测器需放在束流管内。称为束流管层

束流管层+重心法

deposit energy vs position

重心法可以达到小于单 通道探测器大小1/10以 上的精度

用在像素探测器上?

束流管层空间分辨的影响因素

- 像素大小 10um
- ADC位数 9位
- 像素阈值 3 σ
- 像素噪声 10 e-
- 信号扩散 10um
- 信号电荷 2000

能量沉积设为: 2000个电子~7.2KeV~8um耗尽层 信号的形状设为: 高斯分布

像素大小

resolution VS pixel pitch resolution VS pixel pitch 22 resolution (µm) resolution (µm) 0.3 0.25 0.2 0.15 E 0.1 pixel pitch (μm) 25 30 pixel pitch (μm)

resolution VS ADC bins of dE

resolution VS threshold

resolution VS diffusion Pixelsize ratio resolution VS diffusion Pixelsize ratio resolution (pixel pitch) 7.0 resolution (pixel pitch) 0.3 0.1 0.05 0.2 0^L 0.2 0.4 0.6 0.8 1.4 1.6 diffusion Pixelsize ratio 1.2 0.1 resolution VS signal diffusion 2.4 0^L 12 14 16 diffusion Pixelsize ratio 2 4 6 8 10 16 2.2 1.6 1.4 1.2 0.8 30 35 signal diffusion 5 10 15 20 25

resolution (µm) 7.7 8.1 8.1

1.6

0.2

ob

35

resolution VS total signal charge

束流管层的空间分辨

- 像素大小 10um
- ADC位数 9位
- 像素阈值 3 σ
- 像素噪声 10 e
- 信号扩散 10um
- 耗尽层厚度 60 um

在以上参数时, 仿真得到空间分辨可到200nm

能量损失

散射角度

angle mean of proton in 50 μ m Si θ 0

依靠自支撑技术, 可将散射角度减小约 30%

第一层的散射角在1cm距 离上产生2-3um的偏移

39

谢谢