Energy Resolution and Particle Identification of the Dual-Readout Calorimeter

Sehwook Lee (Kyungpook National University) On behalf of the RD52 Collaboration

Cagliari (Italy), Cosenza (Italy), Heidelberg (Germany), Iowa State (USA), Kyungpook (Korea), Lisbon (Portugal), Pavia (Italy), Pisa (Italy), Roma (Italy), TTU (USA), UCL (UK)

> Jan. 19, 2016 IAS Program on High Energy Physics

1. The electromagnetic performance

2. The hadronic performance

3. Particle identification in the longitudinally unsegmented calorimeter

Main factors that degrade hadron energy resolution and how to improve the fluctuations

• fem fluctuations

- **Dominant fluctuation** in the hadron calorimeters
- Eliminate by:
 - measuring fem event by event using Cerenkov light (RD52 (DREAM))
- Fluctuations in nuclear binding energy loss
 - break-up of nuclei ("invisible") \rightarrow doesn't contribute to the calorimeter signal
 - correlation between the binding energy loss and the kinetic energy of neutrons
 - hydrogenous active material (The recoil protons from np \rightarrow np)

Stochastic fluctuations

- sampling fluctuation, light yield
- more fibers, high Numerical Aperature fiber, a good Q.E. of a light detector...

The RD52 Project

- Generic Calorimeter R&D
- H8 area of SPS at CERN
- High-quality energy measurements

The structures of Pb and Cu modules

Pb

Cu

Test Beam with the RD52 calorimeters

9 Pb modules (36 towers, 72 channels), 2 Cu modules (8 towers), 20 leakage counters (Plastic scintillator)

Cu 3

Cu 2

T5

T11

T17

T23

T29

T35

Ring 3

T6

T12

T18

T24

T30

T36

The electromagnetic performance for 40 GeV e⁻ (Cu/fiber)

The energy resolution for electrons (Cu/fiber)

Comparison of the electromagnetic energy resolution

The hadronic performance (Pb/fiber)

Dual-REAdout Method

Single Pion (Pb/fiber)

Caller Response

Resolution

Radial shower profile (Pb/fiber)

Particle ID (60 GeV)

(Lateral shower profile > 0.7, t_s > 28.0 ns): 99.1 % electron ID, 0.5 % pion mis-ID

99.8 % electron ID, **0.2 % pion mis-ID** for MLP > 0.17

Attractive Features

of the longitudinally unsegmented RD52 fiber calorimeter

- Compact construction (no need em section)
- No intercalibration problem between em and hadronic calorimeters
- Easy calibration: calibration with electrons and that is all !!!

Summary

- The Cu/fiber calorimeter has better em energy resolution than the prototype DREAM and SPACAL (E > 20 GeV) [NIM A 735 (2014) 130]
- Pions have the same calorimeter response as electrons
- The RD52 calorimeter has linear response to electron and pion
- The longitudinally unsegmented fiber calorimeter offers excellent electron/pion identification [NIM A 735 (2014) 120]

Backup

Linearity (Cu/fiber)

Lateral shower profile of electrons

Comparison of Data and MC for the em resolution

100 GeV electron

The prediction for the em performance by GEANT4

The Prototype DREAM Detector

DREAM: Structure

- Some characteristics of the DREAM detector
 - Depth 200 cm (10.0 λ_{int})
 - Effective radius 16.2 cm (0.81 λ_{int} , 8.0 ρ_M)
 - Mass instrumented volume 1030 kg $\,$
 - Number of fibers 35910, diameter 0.8 mm, total length \approx 90 km
 - Hexagonal towers (19), each read out by 2 PMTs

Leakage Counters

Radial shower profile derived with 60 GeV pions and GEANT4

Particle ID

in the longitudinally un-segmented fiber calorimeter

Distinguishable Features

	Electron	Pion	
Lateral shower profile (S15/∑S)	85%	40 - 50 %	Tower size: 1.6x1.6 R _M , 0.2x0.2 λ _{int}
C/S	1 (EM particles are relativistic)	Large fluctuations of the em component	
Start time of the PMT signals	The light is produced at: ~ 12 cm (10X₀) (on average)	The light is produced at: 60 cm (~2 λ _{int}) (on average)	Time between Trigger and the PMT signal
PMT Pulse (Int. charge/amp.)	relatively small and constant	Large fluctuations	The depth at which light is produced and the em comp. fluctuation

Starting Time of PMT Signals

Depth of the light production and the starting point of the PMT signals

60 GeV electrons and pions

Time Structures of electrons and pions

Hadronic resolutions for the different sizes of calorimeters predicted by GEANT4

Improvement in resolution when calorimeter enlarged (GEANT4)

50 GeV, 80 GeV, and 90 GeV pions (GEANT 4 simulation)

100 GeV and 200 GeV (GEANT 4 simulation)

Longitudinally Segmented Calorimeter

$$Q = \sum_{j=1}^{N} \left[E - A \sum_{i=1}^{n} S_{ij}^{\text{em}} - B \sum_{i=1}^{n} S_{ij}^{\text{had}} \right]^{2}$$

E: Beam Energy

 $\sum S^{em}$: the sum of all the signal in ECAL $\sum S^{had}$: the sum of all the signal in HCAL