International Linear Collider

VTX-ing at the ILC experiments

HKUST IAS program on HEP Hong Kong, 19th January 2016 The essence of vertex detection & reconstruction at the ILC experiments:

fit 1 GigaPixel in a Diet Coke can & keep it cool!

An artist's view of the VTX
detector at the ILD

Barrel	system	L				
System	R(in)	R(out /mm) z	comments		
VTX	16	60	125	3 double layers layer 1: $\sigma < 3\mu m$	Silicon pixel sensors, layer 2: $\sigma < 6\mu m$	layer 3-6 $\sigma < 4\mu m$
Silicon - SIT	153	300	644	2 silicon strip layers	$\sigma = 7 \mu m$	
- SET	1811		2300	2 silicon strip layers	$\sigma = 7 \mu m$	
- TPC	330	1808	2350	MPGD readout	$1 \times 6 \mathrm{mm}^2$ pads	$\sigma = 60 \mu m$ at zero drift
ECAL	1843	2028	2350	W absorber	SIECAL	30 Silicon sensor lay- ers, $5 \times 5 \text{ mm}^2$ cells
					EcECAL	$\begin{array}{l} 30 \ \text{Scintillator layers,} \\ 5\times45 \ \text{mm}^2 \ \text{strips} \end{array}$
HCAL	2058	3410	2350	Fe absorber	AHCAL	48 Scintillator layers, 3×3 cm ² cells
					SDHCAL	48 Gas RPC layers, $1 \times 1 \text{ cm}^2$ cells
Coil	3440	4400	3950	3.5 T field	2λ	
Muon	4450	7755	280	14 scintillator layers		

M. Battaglia, ILC Reference Design Report, 2007

K. Desch, Bellagio workshop 2012, LC Krakow report

Relative error of the Higgs couplings

Br and expected sensitivity (500 fb⁻¹ @350 GeV)

blue points relate to the sub-class of events with b quarks around (b vs c mis-identification)

ILD Detailed Baseline Design 2012

To get to these Flavour Tagging Performance you have to start by single tracks:

***** impact parameter resolution

$$\sigma_{ip} = a \oplus \frac{b}{p \cdot \sin^{3/2}\theta}$$

Accelerator	a [μ m]	b [$\mu m \cdot GeV/c$]
LEP	25	70
SLC	8	33
LHC	12	70
RHIC-II	13	19
ILC	< 5	< 10

ILD LOI 2009

a depends on the single point resolution and the ratio between the innermost radius and the lever arm:

=> σ_{sp} = 3 µm when R_{in} =16 mm and R_{out} = 60 mm

b depends on the multiple scattering at the innermost radius: => thickness/layer = 0.15% X₀ [X₀ = 9.37 cm for Silicon]

* preserve the Pattern Recognition capability

mind the Beamstrahlung pair production!

BE SHARP!

hit rate in the six layers of the ILD-VD

hit rate in the first layer of the VD occupancy ~10⁻² /50 µs

Layer	1	2	3	4	5	6
0.5 TeV	6.3±1.8	4.0±1.2	0.25±0.11	0.21±0.09	0.05±0.03	0.04±0.03
1 TeV	11.8±1.0	7.5±0.7	0.43±0.13	0.36±0.11	0.09±0.04	0.08±0.04

M. Winter, ALCW 2015

BUT KEEP COOL!

And being precise, slim, sharp, fast & cool at the same time may not be easy

[even if you can relax at least on being (radiation) tolerant (1 kGy & 1011 n_{eq}/cm^2 per annum)]

there are problems with more than ONE solution
there are many ways to draw a nice tree
and there is certainly more than one way to design a fair VD compliant with the specified boundary conditions:

Monolithic Active Pixel Sensors(MAPS)

- MIMOSA
- CHRONOPIX
- ALPIDE
- else..

DEPFET

CCD

Fully Depleted SOI

MONOLITHIC ACTIVE PIXEL SENSORS

CMOS sensors for particle detection

Main drive from digital cameras
Pioneered @ LEPSI Strasbourg in the late 90's:

- G. Deptuch at al, IEEE-TNS 49 (2002) 601
- R. Turchetta et al, NIM A458 (2001) 677

NON STANDARD SENSORS:

• based on the charge carrier generated in the epitaxial layer [2-14 μ m thick, depending on the technology => SMALL signal (~80 e-h pairs/ μ m)]

• diffusion detector vs [standard] drift sensors (the sensitive volume is NOT depleted => charge cluster spread over ~ 100 μ m [10 μ m] AND collection over ~ 150 ns [10 ns])

NEVERTHELESS OFFERING SEVERAL ADVANTAGES:

• very simple baseline architecture (3Transistors: reset, source follower, address key)

• standard, well established industrial fabrication process, granting a cost-effective access to state-of-the-art technologies

A tribute to the Strasbourg team; early results from the MIMOSA (Minimum Ionising particle MOS Active pixel sensors) 1 & 2 (back to 2002):

S/N for the seed pixel

S/N vs cluster size

Collected charge vs no. pixels

Resolution

AMS 0.6 µm technology - 14 µm epitaxial layer - 20 µm pixel pitch

The MIMOSA26, the baseline architecture for the high spatial resolution innermost layer [J. Baudot et al., IEEE-NSS 2009 conf. record]:

2	Selectable analogue outputs ~ 200 µm	
E		1
350		
- L		
nce		
due		
Ise	Pixel Array	
ixe	1150 × 576	ε
+	1152 X 570	E 8
녌		13
elec		Ľ
N S		
Ro		
E	Column-level Discriminator	í.
히	Zero Suppression	i .
ŝ	JTAG Seq. Ctrl. PLL Memory 1 Memory 2 Bias DAC Test Block	ī
Ϋ́	Pad Ring	j.
	~21.5 mm	

To turn **RED** into **GREEN**:

1.

reticle size detector, 0.35 µm OPTO
 on pixel correlated double sampling & ampli

rolling shutter & parallel column readout

binary output - 18.4 µm pitch
 sensor readout in 112 µs (80 MHz clock)

- **σ** = 3.5 μm
- ▶ fake hit rate 10⁻⁴ / pixel
- efficiency 99.5 +/- 0.1 %
- power consumption: 520 µW/column => 700 W for the full VD
- ▶ thinned down to 50 µm (et la PLUME!)

2. explore smaller size feature, e.g. 180 nm (Tower-Jazz) + power pulsing (2% on)

=> estimated to get to 15W consumption for the full VD

Another good point: the MAPS community commissioned already a large system for **STAR**:

400 sensors
 0.9 Pixel each
 power dissipation 170 mW/cm²

nothing but a toy compared to what is envisaged for the ITS of the ALICE experiment:

30 000 sensors

 σ_{sp} $t_{r.o.}$ Dose Fluency T_{op} Power Active area $3.10^{12} n_{eq}/cm^2$ $0.15 \,\mathrm{m}^2$ 160 mW/cm^2 STAR-PXL < 4 μm < 200 μs 150 kRad 30-35°C $1.7 \cdot 10^{13} n_{ea}/cm^2$ \leq 5 μm \leq 30 μs $30^{\circ}C$ < 300 mW/cm² $0.17 \, {\rm m}^2$ **2.7 MRad** ITS-in $1\cdot 10^{12} \text{ n}_{eg}/\text{cm}^2$ \lesssim 30 μs \leq 10 μm 100 kRad 30°C < 100 mW/cm² \sim 10 m² ITS-out

a development based on:

new technologies (Tower-Jazz 180 nm)
 and new design (on pixel sparsification)

[P. Yang et al., Vertex 2014, JINST, doi:10.1088/1748-0221/10/03/C03030] ALPIDE [G. Traversi, M. Caccia et al., IEEE-NSS conf record 2008] 130 nm STm Tech

Markov DEPFET (DEPleted Field Effect Transistor)

[Kemmer & Lutz, NIM A253 (1987) 356]

Sideward depletion when

- diodes are located on both sides of a wafer
- substrate contact, located on the side, is polarized in the reverse bias direction with respect to the large-area diode junction
- A potential minimum for majority carriers (electrons in n-type silicon) forms between the two diode junctions.

MOS transistor

- A standard MOS enhancement-type transistor built on top of the bulk
- Conductivity of the channel steered not only by the gate voltage but also by the bulk potential.

DEPFET detector

- Bias applied on back side minimum valley moves toward FET channel
- Holes moves toward back side
- Electrons toward the potential valley
- Mirrored charge in the FET gate open the channel and current flows.
- Positive signal applied to Clear electrode moves away electrons from valley and close the FET channel

a. L.Rossi, T.Rohe, P.Fischer and N.Wermes, Pixel Detectors - From Fundamentals to Applications. Springer, 2006.

DEPFET: an all-Silicon module (no CTE mismatch - but not exactly monolithic)

L. Andricek, report at ALCW 2015 - JINST 10 C11002 (2015)

an All-Si module is a piece of art:

Figure 1: Thinning of double sided processed detectors. a) The detector wafer, already after backside implantation, is bonded to a handle wafer. b) The detector wafer of the SOI stack is thinned. c) This stack can now be processed in a normal single sided production line. d) Finally the backside passivation of the handle wafer is removed at selected areas and the wafer etched away. The SiO₂ layer at the SOI interface acts as etch stop.

HG. Moser et al PoS (Vertex2007) 013

requiring extensive & sophisticated flying probe testing JINST 10 C01049 (2015)

The DEPFET technology is also experiencing a very intense "stress test":

	ILD LOI 5-layer layout	Belle II										
Radii	15, 26, 38, 49, 60	14, 22		mm								
Sensitive length	123 (L1), 250 (L2-L5)	90 (L1), 122 (L2)	mm								
Sensitive width	13 (L1), 22 (L2-L5)	12.5 (L1-L2)		mm								
Number of ladders	8, 8, 12, 16, 20	8, 12										
Pixel size	20x20 (L1-L5)	55x50 & 60X50 (L1), 70x50	& 85x50 (L2)	μm²								
r/o time per row	50 (L1), 250 (L2-L5)	100		ns								
Number of pixels	800	8		Mpix								
			0.3 0.25 0.2 0.2 0.2		npact Par Bell Bell Bell	npact Parameter Res Belle II - PXD+S Belle II - SVD or Belle - SVD2 co	npact Parameter Resolution Belle II - PXD+SVD traci Belle II - SVD only track Belle - SVD2 cosmic (D	npact Parameter Resolution Belle II - PXD+SVD tracf Belle II - SVD only track Belle - SVD2 cosmic (D	npact Parameter Resolution Belle II - PXD+SVD tracki Belle II - SVD only trackir Belle - SVD2 cosmic (Dat	npact Parameter Resolution Belle II - PXD+SVD trackin Belle II - SVD only tracking Belle - SVD2 cosmic (Data	npact Parameter Resolution Belle II - PXD+SVD tracking Belle II - SVD only tracking Belle - SVD2 cosmic (Data)	npact Parameter Resolution Belle II - PXD+SVD tracking Belle II - SVD only tracking Belle - SVD2 cosmic (Data)
Belle II PXD	Belle II PXD (almost) prototypes for L1 a	ladder: nd L2 of ILD LOI layout!!	0.1		 							

and the construction of the Belle II VD, irrespective from the non trivial differences, is certainly a valuable benchmark:

	Belle II pixel detector	ILD vertex detector	
Occupancy [hits/ μ m ² /s]	0.40	0.13	
TID per year [Mrad]	2.0	< 0.1	
NIEL per cm ² and year [1 MeV n_{eq}]	$2.0 imes 10^{12}$	1.0×10^{11}	
Frame readout time $[\mu s]$	20	25–100	
Material budget per layer [X ₀]	0.21 %	0.12%	
Pixel pitch $[\mu m^2]$	50×75	20×20	
Resolution [µm]	15	5	

 $2^{2.5}$ p $\beta \sin(\vartheta)^{32}$ [GeV]

1.5

State of the art:

JINST 10 C11002 (2015)

- 192 x 480 pixels, 50 x 75 µm² pitch
- 50 µm thin active area
- equipped with the final version of the Read-Out ASIC

* charge collection uniformity & linearity assessed (lab test with a laser spot):

A note about power dissipation:

the full BELLE VD is going to dissipate 9W

* for the ILD VD, integration is being pushed to the limit: process a pattern of cooling channels in the handle wafer of the SOI assembly (before bonding):

M. Vos, report at LCWS2015

SOI pixels on high resistivity substrate

- H. Lan et al. IEEE sensors journals 15 (2015) 2732 a Review!
- J. Marczewski, M. Caccia et al., IEEE Trans. Nucl. Sci., 51 (2004)1025
- M. Jastrzab, M. Caccia et al, NIM A560 (2006) 31

simplified process flow

main advantages:

- a genuine monolithic approach
- more flexible wrt CMOS maps (nmos & pmos naturally integrated in the SOI layer)
- electronics "isolated" from the bulk (fast switching, reduced single event upset) [the motivation for the industrial development of SOI - partially true here]
- the active layer is a very standard and comfortable high resistivity, fully depleted detector

main disadvantages:

- not easy to get SOI wafers on a high resistivity substrate
- mind the effect of the depletion voltage (back-gate effect)
- custom process

A note on the back-gate effect:

 the area under the transistor acts as a back gate: its potential affects the threshold voltage and the leakage current of the transistor

- The back gate effect is small compared to the front gate since the front gate oxide (4 nm) is much thinner compared with that of the buried oxide (200 nm).
- However, since the depletion voltage is O(100V), unfortunately the effect is quite visible

In order to overcome this problem, p-type dopants are implanted through the top Si layer and create a buried p-well (BPW) region under the BOX:

Y. Arai et al., NIMA 636 (2011) s31

State of the art:

there's a very active international collaboration, lead by KEK, exploring the 200 nm LAPIS technology (formerly OKI):

several prototypes have been produced and characterised; the first ILC oriented prototype has been designed (SOFIST):

