Machine Detector Interface at Electron Colliders

Hongbo Zhu (IHEP, Beijing)

Outline

- Introduction
- Interaction Regions
- Radiation Backgrounds
- Final Focusing Magnets
- Luminosity Measurement
- Beam Energy Measurement
- Summary

Disclaimer: Not possible to cover all the MDI aspects or the machines

Interaction Region

- Extremely complicated! Requiring profound understanding of both machine and detector performance, and more ...
- Necessary to optimise both machine and detector designs → trade-offs
- Started CEPC physics feasibility studies with the modified ILD design

Radiation Backgrounds

- Critical for detector and machine design, originating from various sources:
 - Collision induced backgrounds:
 - Beamstrahlung, (+consequent pair production, hadronic events ...)
 - Radiative Bhabha scattering
 - Machine induced backgrounds:
 - Synchrotron radiation
 - Beam-gas interaction
 - Touschek
 - Beam halo
 - ...
- Always have to carefully evaluate each background, importance of which might differ from machine to machine

Beamstrahlung

- Charged particles deflected by the strong field of the opposite bunch will emit radiation ("beamstrahlung") → potential issue of beam energy spread
- Important to keep machine/detector components sufficiently far away from the "kinematic-edge" created by the consequent pair production

Beamstrahlung cont.

Parameters	Symbol	LEP2	CEPC	FCC-ee	ILC250
Center of mass energy	E_{cm} [GeV]	209	240	240	250
Bunch population	$N ~[imes 10^{10}]$	58	37.1	37	2
Horizontal beam size at IP	σ_x [nm]	270000 73700		61000	729
Vertical beam size at IP	$\sigma_y [{\rm nm}]$ 3500 160		120	7.7	
Bunch length	$\sigma_z ~[\mu m]$ 16000 2260		2110	300	
Horizontal beta function at IP	β_x [mm]	1500	800	500	13
Vertical beta function at IP	β_y [mm]	50	1.2	1	0.41
Normalized horizontal emittance at IP	$\gamma \epsilon_x \; [\mathrm{mm} \cdot \mathrm{mrad}]$	9.81	1594.5	1761.3	10
Normalized vertical emittance at IP	$\gamma \epsilon_y \; [\mathrm{mm} \cdot \mathrm{mrad}]$	0.051	4.79	3.52	0.035
Luminosity	$L[10^{34}{\rm cm}^{-2}{\rm s}^{-1}]$	0.013	1.8	5.08	0.75
Beamstrahlung parameter	$\Upsilon_{av} [imes 10^{-4}]$	0.25	4.7	6.1	200
Relative averaged energy loss per BX due to Beamstrahlung	δ_{av} [%]	0.0001	0.005	0.0075	1.0

Beamstrahlung effects not concerned for low energy machines, dominant backgrounds for ILC but less critical for CEPC

Radiative Bhabha Scattering

- Backgrounds from the original process ($e^+e^- \rightarrow e^+e^-\gamma$) not prominent
- Dedicated to circular machines: beam particles loosing energy (larger than the machine acceptance 2%) can be kicked off their orbits when returning to the IR and hit machine/detector elements (e.g. the final focusing magnets)
 → → particle shower

Radiative Bhabha Scattering cont.

Sensitive to the lattice design/final focusing magnets, requiring optimised design of collimation and shielding
 CEPC

Synchrotron Radiation

 Beam particles bended by magnets emit Synchrotron Radiation photons, which are non-negligible backgrounds at circular machines and requiring special consideration on protection of machine/detector

WITH ALL

ONLY B

15.275

275.325

Distance to the IP [m]

3.25.4

Power deposition along the orbit

325-275 275-25 25.0 0.15

CEPC

#SR photons along the orbit

Dominant contribution caused by the bending of the last dipole

A.325

5

Number of photons per bunch

2.05E+10

1.55E+10

1.05E+10

5.50E+09

5.00E+08

- Preliminary design of the CEPC collimation system inspired by the LEP design → suppress significantly the backgrounds
- Early thoughts of the collimator design (shape, thickness ...)
- Difficult to prevent forward SR photons → machine design optimisation

SR Collimation

Radiation Levels

CEPC/ILC at the same level, benign ulletcompared to the (HL-)LHC standard

ອງ ອາ ອາ ອາ

80

10

10²

10

Particle Flux [cm⁻² BX⁻¹]

Final Focusing Magnets

• Final focusing magnets inside the CEPC detector due to short L*

Magnet	Length (m)	Field gradient (T/m)	Coil inner radius (mm)
QD0	1.25	304	20
QF1	0.72	309	20

- The magnetic fields at the pole region exceed 7T, and the two quadruple magnets are embedded inside the detector solenoid magnet of 3.5T → preferably with the Nb₃Sn technology
 - Coils in Rutherford type Nb3Sn cables clamped by stainless steel collar
 - Conceptual design performed based on typical quadrupole block coil; magnetic field calculated with OPERA from Cobham Technical Services.

Quadruple and Anti-Solenoid

- To minimise the impact of detector solenoid on beam stability, necessary to introduce anti-solenoid outside the quadruple
- Total integral longitudinal fields generated by the detector solenoid and anti-solenoid cancels out completely.

ILC prototype

- Mechanical structure (superKEKB type)
- CEPC of similar structure but higher magnetic fields, crossing-angle to be dealt with in the double partial ring design

Luminosity Measurement

- Desired luminosity uncertainty of ~1‰ (achieved for LEP experiments!) as required by Higgs/Z precision measurements at CEPC/ILC
 - LumiCal: Calorimeter with silicon-tungsten sandwich structure to measure small angle radiative Bhabha scattering events
 - Limited space before QD0 (CEPC): $z \in [115, 128 \text{ cm}]$ and $\theta \in [60, 90 \text{ mrad}]$ requiring angular precision of $\Delta \theta / \theta \min < 5 \times 10^{-4}$
 - Other sources of uncertainties: theoretical calculation of cross-section, polar angle bias, physics background subtraction, etc.

→ Nontrivial to achieve the target luminosity uncertainty

- Online luminosity monitor allowing fast tuning of beam parameters
 - ► Even smaller angle Radiative Bhabha scattering events: → ILC (BeamCal)
 - ▶ Radiation-hard sensors (e.g. CVD diamond) to measure radiative Bhabha events at zero photon scattering angle → CEPC/SuperKEKB

LumiCal

 Reference design for the CEPC LumiCal but even more challenging due to limited space in front of the final focusing magnets (N.B.: no space at all for BeamCal)

Layout of half plane

Sensor and electronics

Beam Energy Measurement

• Important to determine precisely e.g. the Higgs mass

Summary and Outlook

- Necessary to re-design the interaction region ← partial double ring (large crossing-angle) and new detector layout
- Performed the first round of radiation background estimation and started to repeating the studies for partial double ring (workable lattice), together with conceptual design of the collimation system
- To achieve complete magnetic field (detector solenoid and antisolenoid) cancellation and conceptual design of QD0 (likely even more complicated for double partial ring)
- More practical thoughts on forward detectors (e.g. LumiCal) and initiate early R&D efforts on detector/electronics
- To find an appropriate way to measure the beam energy precisely
- Adding more to the long to-do list: Beampipe, mechanics ...