

Search For New Physics In Boosted Di-Bosons

Shin-Shan Eiko Yu Department of Physics, National Central University On behalf of the CMS Collaboration and the VHEPP Group

IAS Program on High Energy Physics, 18 January 2016 The Hong Kong University of Science and Technology, Hong Kong

Outline

- Searches for new physics in boosted di-boson events with I3 TeV CMS data (CMS PAS EXO-15-002)
 - Benchmark models: Bulk $G \rightarrow WW$, ZZ or $W' \rightarrow WZ$
- Status of calorimeter studies for future colliders from the VHEPP group

Motivation

- Hierarchy problem
 - If new physics happens at the Planck scale, radiative corrections to the Higgs mass need to be fine-tuned in new physics theory to cancel at electroweak scale
- SUSY introduces new supersymmetric particles that cancel the radiative corrections

- Extra Dimension reduces the effective Planck scale
 - "Bulk Graviton" and "Randall-Sundrum Graviton" scenarios of the Warped extra dimension model
- Higgs is composite object and its mass is generated by a new interaction
 - Heavy Vector Triplet (scenario B), with spin-I W' and Z' decaying mainly to W, Z, and higgs

The CMS Detector

CMS Data Used in This Analysis

CMS Integrated Luminosity, pp, 2015, $\sqrt{s}=$ 13 TeV

Shin-Sman Line in

Boosted Topology

Boosted Topology

For W/Z and p > 200 GeV, quarks from W/Z merged to radius=0.8 jets

Anti-K_T $\Delta R = 0.4 \rightarrow \Delta R = 0.8$

For W/Z and p > 200 GeV, quarks from W/Z merged to radius=0.8 jets

Anti-K_T $\Delta R = 0.4 \rightarrow \Delta R = 0.8$

For W/Z and p > 200 GeV, quarks from W/Z merged to radius=0.8 jets

Anti-K_T $\Delta R = 0.4 \rightarrow \Delta R = 0.8$

For W/Z and p > 200 GeV, quarks from W/Z merged to radius=0.8 jets

Anti-K_T $\Delta R = 0.4 \rightarrow \Delta R = 0.8$

For W/Z and p > 200 GeV, quarks from W/Z merged to radius=0.8 jets

Anti-K_T $\Delta R = 0.4 \rightarrow \Delta R = 0.8$

Shin-Shan Eiko Yu

Mass Distribution Of Pruned Jets

- Based on pruned mass, subdivide events into W and Z categories
 - W: 65-85 GeV
 - Z: 85-105 GeV
 - Higgs window 105-135 GeV stays blinded
- Signal peak position calibrated with W-jets in ttbar events

All hadronic channel

The Signals And Backgrounds

Study The Structure Inside Jets

Study The Structure Inside Jets

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \left\{ \Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k} \right\}$$

$$d_0 = \sum_k p_{T,k} R_0$$

Distribution Of $\tau_2/\tau_1(\tau_{21})$

Semileptonic channel High: $\tau_{21} < 0.6$, Low: 0.6-0.75

All hadronic channel High: $\tau_{21} < 0.45$, Low: 0.45-0.75

Trigger And Event Selections

- Semileptonic channel
 - Single electron (muon) trigger with pT>105 (45) GeV and efficiency >98% (82-95%)
 - Offline: isolated electron (muon) with pT>120 (53) GeV and |η| < 2.5 (2.1), MET > 80 (40) GeV,
 - pT(W)> 200 GeV
 - Reject events with good b-tags (misID rate 1%, 70% eff)
- All-hadronic channel
 - Simple HT trigger (HT>800 GeV) or combined trigger with HT (HT>650-700 GeV)+ trimmed mass (>30-50 GeV) selections
 - Δηjj < 1.3
- Anti-kT jets with R=0.8 and pT>200 GeV, pruned mass
 65-105 GeV, τ21<0.75

Calibration Of τ_{21} Efficiency

- Reverse the b-tagging requirement to select semileptonic ttbar sample
- Fit the pruned mass distribution to extract the scale factors

Category	Definition	W scale factor
Dijet channel HP	$(au_{21} < 0.45)$	0.69 ± 0.14
Dijet channel LP	$(0.45 < au_{21} < 0.75)$	1.46 ± 0.38
$\ell \nu$ +jet channel HP	$(au_{21} < 0.6)$	1.03 ± 0.13
$\ell \nu$ +jet channel LP	$(0.6 < au_{21} < 0.75)$	0.88 ± 0.49

$ au_{21} < 0.45$	m [GeV]	σ [GeV]
Data	$84.7\pm0.4~\text{GeV}$	$8.2\pm0.5~{ m GeV}$
Simulation	$85.3\pm0.4~\text{GeV}$	$7.3\pm0.4~\text{GeV}$

 $N_{\rm bkg}^{\rm main}\left(M_{WV}\right) = N_{\rm norm}P\left(M_{WV}\right)$

Shin-Shan Eiko Yu

Shin-Shan Eiko Yu

 $N_{\rm bkg}^{\rm main}\left(M_{WV}\right) = N_{\rm norm}P\left(M_{WV}\right)$

All-Hadronic Background

• Fisher's test with the sideband data to decide the number of parameters for the background function

Systematic Uncertainties

- Semileptonic
 - Signal: dominated by τ_{21} efficiency, PDF, and jet energy scale
 - Background: dominated by size of sideband data, τ_{21} efficiency, and shape of α ratio
- All hadronic
 - Signal: dominated by τ_{21} efficiency, PDF, and jet energy scale
 - Background: dominated by uncertainties on the background fitting function

Combined Limits

- Limits computed with asymptotic CL_s method
- M(W')<2 TeV excluded

A Framework For Boosted Object Simulation

- Using HepSim public repository with EVGEN and full simulations
 - <u>http://atlaswww.hep.anl.gov/hepsim/</u>
- EVGEN files were created with MG5/Pythia6
- Files are being processed with a full GEANT detector simulation which includes high-granularity calorimeter (1x1 cm cell size)

HepSim repository at ANL

SiD Detector

- A multi-purpose detector for ILC
- The key characteristics
 - 5 Tesla solenoid & silicon tracker
 - 3.5 mm cell size for ECAL with tungsten absorber and silicon sensors for active layer, 30 layers
 - 10 x 10 mm cell size for HCAL with stainless steel absorber and RPC for active layer, 40 layers for barrel
- Optimized for particle-flow algorithms

More details in <u>SiD Letter of Intent</u>

Designing A Detector For TeV-Scale Boosted Objects

SiD detector was designed for ~500 GeV jets A FCC-like detector for studies of CAL transverse and longitudinal granularity, depth, material, magnetic fields, pixel sizes etc, responses to particles etc.

S. Chekanov (ANL) A. Kotwal (Fermilab/Duke) M. Ruan (IHEP) J. Strube (PNNL) N. Tran (Fermilab) S-S. Yu (NCU Taiwan)

Conclusion And Outlook

- We present a preliminary search for new physics in boosted diboson events using 2.2-2.6 fb⁻¹ of 13 TeV data collected with the CMS detector
- Future improvements
 - Signal interpretation with other models or wide width
 - Adding the VZ channel and combination with the 8 TeV results
 - Event categorization based on the number of b-jets
 - Combination with the VH channels
- A detector for TeV-scale boosted-object physics is being designed and studied by the VHEPP group

Backup Slides

Jet Energy Resolution With SiD

500-GeV jet from I TeV Z'→qq

5 TeV jet from 10 TeV Z'→WW

Signal Modeling And Efficiency

 Modeled with double-sided Crystal-Ball function, resolution 10%-3% for the resonance mass of 1-4 TeV

Semileptonic: 50-60% efficiency in HP, 5% in LP

													ا <mark>ک</mark> ہ	MS Simulation Preliminary (13 TeV)
Signal	Mass		Γ	Dijet cl	hanne	el		lν	'+jet c	hanne	el	ale	0.0	
C		W	W	Ŵ	Z	Ζ	Ζ	W	Ŵ	W	Z	SC	0.7	—— $G_{Bulk} \rightarrow WW$ (MADGRAPH) —
		HP	LP	HP	LP	HP	LP	HP	LP	HP	LP	ary	F	$G_{-} \dots \rightarrow ZZ(MADGRAPH)$
$G_{bulk} ightarrow WW$	1.2 TeV	3.1	5.7	2.3	4.0	0.4	0.5	13.2	0.5	3.8	0.1	oitra	0.6	
$G_{bulk} \to WW$	2.0 TeV	4.1	9.3	1.3	2.9	0.1	0.3	15.4	0.9	2.9	0.1	Art		\longrightarrow W' \rightarrow WZ (MADGRAPH)
$G_{\text{bulk}} \to WW$	3.0 TeV	3.1	8.0	1.5	3.4	0.1	0.3	14.7	1.2	3.2	0.2		0.5	
$G_{\text{bulk}} \to WW$	4.0 TeV	2.7	8.2	1.8	4.0	0.2	0.5	14.1	1.2	3.9	0.2		04	
$G_{bulk} \rightarrow ZZ$	1.2 TeV	0.3	0.6	1.7	2.5	1.9	2.3	-	-	-	-		0.4	
$G_{bulk} \to ZZ$	2.0 TeV	0.4	1.1	1.6	3.4	1.5	2.2	-	-	-	-		0.3	
$G_{bulk} \to ZZ$	3.0 TeV	0.3	1.2	1.4	3.6	1.2	2.3	-	-	-	-		Ē	
$G_{bulk} \to ZZ$	4.0 TeV	0.3	1.3	1.2	3.7	1.1	2.2	-	-	-	-		0.2	
$HVT W' \rightarrow WZ$	1.2 TeV	1.7	3.0	4.6	6.9	0.9	1.3	2.8	0.1	6.3	0.1		Ē	
$HVT \: W' \to WZ$	2.0 TeV	1.9	4.8	3.8	6.8	0.5	0.8	3.9	0.3	6.4	0.2		0.1	
$HVT \: W' \to WZ$	3.0 TeV	1.4	4.6	3.2	6.9	0.6	0.8	3.9	0.4	6.4	0.2			
$HVT \: W' \to WZ$	4.0 TeV	1.9	2.8	4.5	4.7	1.1	0.8	3.9	0.4	6.1	0.3		1000	1500 2000 2500 3000 3500 4000 4500 500
														Dijet invariant mass [GeV]

All hadronic: 16-23% efficiency

Heavy Vector Triplet (Model B)

RSVs Bulk Graviton Scenarios

- SM fields are allowed to propagate in the extra dimension (bulk)
- BRs of RS graviton decays to diboson modes are lower (1% for RS→ZZ and 2% for RS→WW, 10% for Bulk→ZZ, 20% for Bulk→WW for M=2 TeV)

Comparison Of Models

 In the benchmark model we choose, the vector bosons are produced with a longitudinal polarization more than 99% of the time

Comparison Of $Cos\theta^*$

How To Get N-Subjet Axis

Step 2: Decluster the jet (how far?)

Calibration Of τ_{21} Efficiency

Signal Systematic Uncertainties

Source	Relevant quantity	$\mu\nu$ +jet uncertainty	ev+jet uncertainty
Lepton trigger	Signal yield	1%	1%
Lepton identification	Signal yield	1%	3%
Jet energy scale	Signal yield	See T	ab. 6
Jet energy scale	Resonance shape (mean)	1.3	8%
Jet energy scale	Resonance shape (width)	[2%–3%]	
Jet energy resolution	Signal yield	See Tab. 6	
Jet energy resolution	Resonance shape (mean)	0.1%	
Jet energy resolution	Resonance shape (width)	49	%
Integrated luminosity	Signal yield	4.6	5%
PDF uncertainties (W')	Signal yield	[0.5%-	-8.5%]
PDF uncertainties (G _{bulk})	Signal yield	[10%-	-45%]
W-tagging τ_{21} (HP/LP)	Migration	13%/	/49%

Source	G _{bulk} signal n	ormalisation	W' signal normalisation		
bource	WW-enriched	WZ-enriched	WW-enriched	WZ-enriched	
Lat Enormy Scale	-[4%-7%]	+[16%-33%]	-[11%-15%]	+[3%-9%]	
Jet Energy Scale	+[3%-5%]	-[15%-27%]	+[14%-17%]	-[4%-12%]	
Jet Energy Resolution	<0.	1%	<0.1%		
Lat Mass Scale	-[4%-10%]	+[16%-30%]	-[11%-16%]	+[1%-8%]	
Jet Mass Scale	+[3%-9%]	-[16%-25%]	+[12%-20%]	-[3%-10%]	
Let Mass Desslution	-[2%-4%]	+[1%-12%]	-[1%-10%]	+[1%-5%]	
Jet wass resolution	+[2%-4%]	-[4%-11%]	+[2%-9%]	-[2%-4%]	

Signal Systematic Uncertainties

Source	Relevant quantity	HP+HP uncertainty	HP+LP uncertainty
Jet energy scale	Resonance shape	2%	2%
Jet energy resolution	Resonance shape	10%	10%
Jet energy and <i>m</i> _{jet} scale	Signal yield	[0.4%–1.5%]	[0.1%–1.7%]
Jet energy and m_{jet} resolution	Signal yield	[0.1%–1.3%]	[0.1% - 1.4%]
Pileup	Signal yield	2%	2%
Integrated luminosity	Signal yield	4.6%	4.6%
Jet energy and <i>m</i> _{jet} scale	Migration	[1%-46%]	[1%-55%]
W-tagging τ_{21}	Migration	44%	14%
W-tagging <i>p</i> _T -dependence	Migration	3.6%	6%

Limits (Semileptonic Channel)

Comparison Of Diboson

Evolution Of LHC Data

Year ending

RS Graviton Model

Combined With All-Hadronic Mode

Signal Width From Models

Becomence mass [CoV]	Littl	e Higgs	HVT_B		
Resonance mass [Gev]	Γ [GeV]	σ [pb]	Γ[GeV]	σ [pb]	
800	7.22	5.09×10^{-1}	24.08	3.37×10^{-1}	
900	8.12	3.03×10^{-1}	27.10	2.48×10^{-1}	
1000	9.02	1.87×10^{-1}	30.11	1.71×10^{-1}	
1100	9.92	1.18×10^{-1}	33.12	1.16×10^{-1}	
1200	10.83	7.65×10^{-2}	36.13	8.05×10^{-2}	
1300	11.73	5.06×10^{-2}	39.14	5.59×10^{-2}	
1400	12.63	3.39×10^{-2}	42.15	3.88×10^{-2}	
1500	13.53	2.29×10^{-2}	45.16	2.51×10^{-2}	
1600	14.44	1.56×10^{-2}	48.17	1.87×10^{-2}	
1700	15.34	1.08×10^{-2}	51.18	1.30×10^{-2}	
1800	16.24	7.43×10^{-3}	54.19	9.03×10^{-3}	
1900	17.14	5.17×10^{-3}	57.20	6.27×10^{-3}	
2000	18.05	3.61×10^{-3}	60.21	4.25×10^{-3}	
2100	18.95	2.53×10^{-3}	63.22	3.02×10^{-3}	
2200	19.85	1.76×10^{-3}	66.23	2.10×10^{-3}	
2300	20.75	1.24×10^{-3}	69.24	1.46×10^{-3}	
2400	21.65	8.67×10^{-4}	72.25	1.01×10^{-3}	
2500	22.56	6.07×10^{-4}	75.27	7.31×10^{-4}	

Exclusion Of HVT Parameters

- g_V : typical strength
- C_H : interaction with Higgs
- C_q : interaction with fermions

Jet Definition

These are hierarchical clustering algorithms

Typically they work by calculating a **'distance'** between particles, and then recombine them pairwise according to a given order, until some condition is met (e.g. no particles are left, or the distance crosses a given threshold)

$$d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta y^2 + \Delta \phi^2}{R^2} \qquad d_{iB} = k_{ti}^{2p}$$

If d_{ij} < d_{iB} then merge them together

p = 1 kt algorithm

S. Catani, Y. Dokshitzer, M. Seymour and B. Webber, Nucl. Phys. B406 (1993) 187 S.D. Ellis and D.E. Soper, Phys. Rev. D48 (1993) 3160

P = 0 Cambridge/Aachen algorithm ^{Y. Dokshitzer, G. Leder, S. Moretti and B. Webber, JHEP 08 (1997) 001 M.Wobisch and T.Wengler, hep-ph/9907280}

p = - I anti-k_t algorithm

In this tutorial, we explore AK5 and CA8

NB: in anti-kt pairs with a **hard** particle will cluster first: if no other hard particles are close by, the algorithm will give **perfect cones**

MC, G. Salam and G. Soyez, arXiv:0802.1189

-on Advanced Tutorial Session on Jet Substructure

12/34

Quantum Correction To Higgs

Quantum Correction To Higgs Mass

