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Future e+e- Physics
• ILC, FCC-ee, or CEPC will be a precision measurement 

machine! As a Higgs factory, measuring Higgs 
couplings precisely is a major goal. 

• Aside from the “Higgs factory” run, these machines 
potentially also do Z-pole physics and top threshold 
physics. Part of this talk: what’s the relative importance 
of these? 

• I also want to give context: what could the measurements 
tell us about what lies beyond the Standard Model?
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An Observation
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Consider the diagrams in Fig. 1. We’ve already observed that the one at left is problematic: it’s a
renormalization of an external line, so we don’t want to include it when we compute a loop amplitude. In
shamplitude calculations, it shows up as unpleasant 1

s12...(n�1)
⇥ ⇤ factors in the amplitudes we’re trying

to build the shamplitude out of, which we are currently removing by hand.
The other kind of bubble diagram with one gluon connected at one end is shown on the right in Fig. 1.

It has a two-particle vertex at the other end. As a result, it has the structure:

�
d4⇤

(2⇥)4
�1µ (2⇤µ + kµ1 ) J(k2, . . . kj) · J(kj+1, . . . kn)

(⇤2 �m2)((⇤+ k1)2 �m2)
. (1)

Notice that this always contributes 0 to the loop integral: �1 · k1 = 0, and the bubble integral, linear in ⇤µ,
can only be proportional to kµ1 , because all dependence on the other momenta factors out of the integrand.

So, we can in fact drop every diagram with only one gluon connected on one side of a bubble. It’s tempting
to try to inductively turn this into a procedure for generating shamplitudes only from other shamplitudes,
not from amplitudes, but the argument doesn’t work. It would be nice to do something more systematic
than dropping terms by hand. Is there a nice procedure that makes use of this fact?

At least for the 4-point shamplitude, it means computing it directly from Feynman diagrams only involves
summing up nine diagrams (Fig. 2). We can eliminate four of these with a convenient gauge choice.

Four-point loops from Feynman diagrams

If we want to compute the + + ++ amplitude, we can make �i · �j = 0 simply by taking �i =
µ�̃i

hµ ii for all i.

In the + + +� case, we can make �i · �j = 0 by taking �i =
�4�̃i
h4 ii for i = 1, 2, 3 and �4 = �4�̃1

[4 1] . Thus, we can

discard all Feynman diagrams with 4-point (2-scalar 2-gluon) vertices. The remaining diagrams are boxes,
triangles, and the bubble with two particles on each side attached at 3-gluon vertices.
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The box diagram is:

16

�
d4⇤

(2⇥)4
�1 · ⇤ �2 · (⇤+ k1) �3 · (⇤� k4) �4 · ⇤

(⇤2 �m2)((⇤+ k1)2 �m2)((⇤+ k1 + k2)2 �m2)((⇤� k4)2 �m2)
. (2)
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Different-spin pieces combine 
to cancel large corrections. 

“Stop” or “scalar top”: 
cancels the biggest correction. 
~10% tuned if mass ~ 700 GeV.

To contextualize the results, I’ll begin by focusing on one 
illustrative case for what the new physics could be: stops.



LHC: Towards Fine-Tuning?

Direct searches for the superpartners are so far coming up 
empty. But lots of still-uncharted stop territory.

stops gluinos



LHC Stop Prospects
Exhausting all possibilities at the LHC requires a systematic 
search of many different channels and kinds of physics, e.g.: 

Compressed stops (see e.g. Kilic/Tweedie; An/Wang; 
Macaluso/Park/Shih/Tweedie)

t̃
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s̄

b̃R
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Figure 7: The leading diagrams for stop (left) and left-handed sbottom (right) LSP decay.
A right-handed sbottom decays similarly, without the mass insertion.

will involve only the O(1) top Yukawa coupling, and, in particular, it is very easy to make one
of the stops very light. Since other non-universal terms are suppressed by Yukawa couplings
and/or CKM factors, the remaining squarks are expected to be nearly degenerate. A similar
argument applies to down-type squarks, where the bottom squark can be made light. In
the charged slepton sector, the leading non-universal term comes from the y⌧ suppressed
left/right mixing, implying a nearly degenerate spectrum, except at very large tan�. The
sneutrinos will be even more degenerate, since this left/right term is absent, and the leading
non-universality comes from y2⌧ suppressed soft-mass corrections.

Thus, it is very natural for the stop or the sbottom to be the LSP. A stau (or tau
sneutrino) LSP, however, typically implies a nearly degenerate spectrum, and is somewhat
less natural in this context. Other squarks or sleptons are not likely to be the LSP.

Since the largest R-parity violating operator is in the quark sector, the most interesting
scenario is when the LSP is the stop or the sbottom. We consider the stop LSP case in
detail. The direct decay of the stop is given by the diagram in Fig. 7. The partial widths
�(t̃ ! d̄id̄j) are given by

�ij ⇠ m
˜t

8⇡
sin2 ✓

˜t|�00
3ij|2 , (7.2)

where ✓
˜t is the stop mixing angle. To estimate the lifetime numerically, we use the renor-

malized quark masses at a scale mt ⇠ v ⇠ 174 GeV, which are approximately [36,37]:

mu ⇠ 1.2 MeV , mc ⇠ 600 MeV , mt ⇠ v ⇠ 174 GeV ,

md ⇠ 3 MeV , ms ⇠ 50 MeV , mb ⇠ 2.8 GeV , (7.3)

Using these masses to compute the relevant Yukawa couplings, we find a lifetime

⌧
˜t ⇠ (2 µm)

✓
10

tan �

◆
4

✓
300 GeV

m
˜t

◆✓
1

2 sin2 ✓
˜t

◆
. (7.4)

Thus no displaced vertices are expected except for very small values of tan� and a very light
LSP. The decay length of the stop LSP is shown in Fig. 8.

Note that in this case one does not expect a large number of top quarks in the final state,
nor, of course, any missing energy. Roughly 90% of decays will go to bottom and strange
quarks, about 8% to bottom plus down, and a few percent to down plus strange. These
branching ratios are fixed by the flavor structure. Thus, most of the events will contain
b-quarks, and a generic signal for supersymmetry will be an overall increase in the number

21

R-parity violating stops:

Decay to hidden sector (e.g. stealth SUSY): 
(Fan/Krall/Pinner/Reece/Ruderman)

Despite our best efforts, gaps can and likely will remain 
in LHC direct search coverage.



Indirect Observables
The same physics that is relevant for naturalness—couplings 
to the Higgs boson—can enter in loops to produce 
modifications of Standard Model electroweak observables.

S parameter:

T parameter:

Higgs decays:

S

✓
↵

4sW cW v2

◆
h†�ihW i

µ⌫B
µ⌫

�T

✓
2↵

v2

◆ ��h†Dµh
��2

chggh
†hGa

µ⌫G
aµ⌫ + ch��h

†hFµ⌫F
µ⌫



Stops: T Parameter
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Figure 1. Loop diagrams contributing to the T parameter operator
�
h†Dµh

�2
when the left-handed

stop/sbottom doublet Q̃3 and the right-handed stop t̃R = (ũc
3)

† are integrated out.

The Xt dependent part of the correction depends on the subtlety in the use of our e↵ective oblique
Lagrangian eq. 2.3 that we mentioned above: the strict relation between S and the coe�cient of
h†W iµ⌫�ihBµ⌫ applies only if we first rewrite all operators in a minimal basis [39, 46]. The third

loop diagram of Fig. 2 generates di↵erent operators like i@⌫Bµ⌫h
†

$
Dµh which may be rewritten using

integration by parts and equations of motion and also contribute to S. Note that a similar diagram
with a bubble topology connecting a gauge boson on one side and two Higgs bosons on the other
(which can be obtained by removing one of the vector bosons from the left most diagram in Fig. 2)
cannot be sensitive to the di↵erence in momenta of the Higgs bosons, and so never generates the
operators in question. The fact that integrating out heavy particles often generates operators that are
not present in the minimal basis was also recently emphasized in ref. [47, 48].
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Figure 2. Loop diagrams contributing to the S parameter. The two diagrams at left generate the usual

operator h†W iµ⌫�ihBµ⌫ when the left-handed stop/sbottom doublet Q̃3 and the right-handed stop t̃R = (ũc
3)

†

are integrated out. The diagram at right generates the operators i@⌫Bµ⌫h
†

$
Dµh and iD⌫W i

µ⌫h
†�i

$
Dµh, which

also contribute to S after being rewritten in terms of the minimal basis of dimension-six operators.

Notice that the S parameter contribution from loops of stops and sbottoms is small and, for small
Xt, negative. The T parameter contribution is numerically somewhat larger and positive. In both
cases, the dominant contribution is due to the left-handed stops and sbottoms, with their right-handed
counterparts entering through mixing e↵ects. As a result, we expect that precision measurements of
the T parameter can set interesting constraints on left-handed stops. (For a recent study of existing
constraints, see ref. [49].)
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A Higgs quartic coupling! These are the same 
diagrams that lift the Higgs mass in the MSSM, except 
that we are reading off subleading momentum 
dependence: Dμ2/mstop2 ~ mZ2/mstop2. 

allowed. In particular, for non-zero Xt, the region around |m2

˜t1
�m2

˜t2
| ⇠ 0 may not be obtainable from

the diagonalization of a Hermitian stop mass matrix [32].
The sbottom sector has a similar mass matrix with mt replaced by mb, m ˜d3

replacing mũ3 , and
the appropriately modified D-terms. Generally we can neglect mixing in the sbottom sector because
mb ⌧ mt. The mass of the left-handed sbottom m2

˜b1
could be written in terms of the stop physical

masses and mixing angle as

m2

˜b1
= cos2 ✓

˜tm
2

˜t1
+ sin2 ✓

˜tm
2

˜t2
�m2

t �m2

W cos(2�). (2.2)

In the higgsino sector, there are two neutral Majorana fermions and one charged Dirac fermion,
with masses approximately equal to µ. The splittings originate from dimension five operators when
the bino and wino are integrated out, and are of order m2

Z/M1,2. We will ignore these splittings and
treat all higgsino masses as equal to µ for the purpose of calculating loop e↵ects.

2.2 Electroweak Precision: Oblique Corrections

The familiar S and T oblique parameters [33, 34] (see also [35–37]) correspond, in an e↵ective operator
language (reviewed in ref. [38, 39]), to adding to the Lagrangian

L
oblique

= S

✓
↵

4 sin ✓W cos ✓W v2

◆
h†W iµ⌫�ihBµ⌫ � T

✓
2↵

v2

◆ ��h†Dµh
��2 . (2.3)

Here h is the Standard Model Higgs doublet and v ⇡ 246 GeV; in the MSSM context it may be thought
of as the doublet that remains after integrating out the linear combination of Hu and Hd that does not
obtain a VEV. The often-discussed U parameter corresponds to a dimension-8 operator,

�
h†W iµ⌫h

�
2

,
and we can safely neglect it. In equating S and T with coe�cients in L

oblique

, we must first rewrite
the Lagrangian (using equations of motion and integration by parts) in terms of a minimal basis of

operators [40]. Other operators like i@⌫Bµ⌫h
†

$
Dµh will contribute to the S parameter if we leave the

result in terms of an overcomplete basis. We will see some examples below in which a straightforward
diagrammatic calculation leads to operators not present in the minimal basis.

Integrating out any SU(2)L multiplet containing states that are split by electroweak symmetry
breaking—for instance, the left-handed doublet of stops and sbottoms—will produce a contribution
to S. The masses must additionally be split by custodial symmetry-violating e↵ects to contribute to
T . In the case of the stop and sbottom sector we have both, and T is numerically dominant [41]. The
diagrams leading to a T -parameter are shown in Fig. 1. There are terms proportional to y4t , to y2tX

2

t ,
and to X4

t . These diagrams are very familiar from the loop corrections to the Higgs quartic coupling
that can lift the MSSM Higgs mass above the Z-mass [42–45]. The only di↵erence for T is that we
extract momentum-dependent terms to obtain the dimension-six operator. The result is:

T ⇡ m4

t

16⇡ sin2 ✓Wm2

Wm2

˜Q3

+O
 

m2

tX
2

t

4⇡m2

˜Q3
m2

ũ3

!
. (2.4)

The diagrams generating the S-parameter are shown in Fig. 2. Notice that in order for the first

diagram to contribute, it is important that the SU(2)L structure of the coupling is
⇣
h · Q̃

3

⌘⇣
h† · Q̃†

3

⌘

rather than (h†h)(Q̃†
3

Q̃
3

), as the latter would lead to a zero SU(2)L trace around the loop. As a result,
the F -term potential contributes / y2t and the SU(2)L D-term potential contributes / g2, but there
is no U(1)Y D-term contribution / g02. The leading correction is

S ⇡ � 1

6⇡

m2

t

m2

˜Q3

+O
 

m2

tX
2

t

4⇡m2

˜Q3
m2

ũ3

!
. (2.5)
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Notice that the S parameter contribution from loops of stops and sbottoms is small and, for small
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cases, the dominant contribution is due to the left-handed stops and sbottoms, with their right-handed
counterparts entering through mixing e↵ects. As a result, we expect that precision measurements of
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The diagram on the right, at first glance, doesn’t seem to 
generate the right operator. In fact, it generates

i@⌫Bµ⌫h
†

$
Dµh

But if we work with a minimal basis of operators, equations of 
motion turn this into a linear combination including the S 
parameter.



Why Focus on S, T ?

parameter space, it depends on a combination Atµ tan�/m4

˜t
, and so results in a weaker constraint on

At when tan� is small. This has interesting implications for the heavy Higgs bosons of the 2HDM,
H0, A0, and H±, which should not be too heavy [17, 70] and may have interesting e↵ects of their own
on precision observables [58, 71]. As we will discuss in Sec. 7.1, it could be the main sensitive probe
to the “blind spot” region.

Charginos and neutralinos have relatively small e↵ects on the observables we have mentioned so
far. This is largely because they have dominantly vectorlike masses and sensitivity to SU(2)L breaking
through the Higgs is a small e↵ect. On the other hand, integrating out higgsinos or winos will always
generate the triple gauge coupling operator cWWW g✏ijkW

i
µ⌫W

j⌫
⇢ W k⇢µ. Unfortunately, the coe�cient

generated by integrating out an SU(2)L multiplet is small [72]:

cWWW =
g2

2880⇡2

X

rep R, mass M

(�1)F
T (R)

M2

, (2.20)

where T (R) is the Dynkin index of the representation and the sum is over Weyl fermions for which
F = 1 and complex scalars for which F = 0. (That the e↵ect of a complex scalar and that of a Weyl
fermion cancel for equal masses is a result of a supersymmetric Ward identity [73].) Expected bounds
from the ILC are expressed in terms of dimensionless coe�cients �� and �Z , which are both equal
to 6m2

W cWWW . The ILC can bound the coe�cient at 1� to be |��,Z | ⇠< 6 ⇥ 10�4 with 500 fb�1 atp
s = 500 TeV or half that with 1 ab�1 at

p
s = 800 GeV [23, 74]. Even for the bound assuming

higher energy and luminosity, this does not probe wino or higgsino (or left-handed stop) masses above
100 GeV.

Similarly, any particles with SU(2)L quantum numbers contribute above threshold to the run-
ning of gauge couplings. At future very high energy proton–proton colliders this might be detected
with precision Drell-Yan measurements [75]. At an e+e� collider it would be di�cult, but if the
collider attains high luminosities at energies near 1 TeV it may be possible to probe running. There
is also a “below-threshold running e↵ect” arising from the operator cJJD

µW i
µ⌫D�W

i�⌫ , which has
coe�cient [72]

cJJ = � g2

960⇡2

X

rep R, mass M

aF
T (R)

M2

, (2.21)

where aF = 4 for Weyl fermions and 1 for complex scalars. By the equation of motion, DµW
iµ⌫ =

�gJ i⌫ , where J i⌫ is the SU(2)L current, so this operator is a current–current interaction that may be
thought of as a power-law (p2/M2) running of the gauge coupling below the scaleM . In the usual QED
calculation of vacuum polarization, one obtains an expression like

R
1

0

dx x(1�x) log(M2� p2x(1�x))
and expands for �p2 � M2 to obtain logarithmic running. This operator is simply the corresponding
result if we expand for M2 � p2. Again, it will be di�cult to obtain interesting constraints from this
operator simply because the number in the denominator is so large.

2.7 Comments on the Use of E↵ective Field Theory

In the remainder of the paper we will use formulas for S, T , and Rb originating in refs. [41, 52] and
presented in Appendix A. These include complete loop functions based on the original Peskin-Takeuchi
definitions of S and T in terms of gauge boson vacuum polarizations, allowing for arbitrary stop-sector
mixing. In particular, nontrivial functions of ratios like mtXt/m

2

ũ3
, if expanded in powers of the Higgs

VEV, may e↵ectively come from operators of dimension higher than 6 in an EFT treatment. In
this sense, the full loop functions include e↵ects of higher order than the operator analysis we have
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Any SU(2)L-charged particles, coupling to the Higgs or not, 
contribute at one loop to two other dimension-6 operators:
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2

ũ3
, if expanded in powers of the Higgs

VEV, may e↵ectively come from operators of dimension higher than 6 in an EFT treatment. In
this sense, the full loop functions include e↵ects of higher order than the operator analysis we have
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parameter space, it depends on a combination Atµ tan�/m4

˜t
, and so results in a weaker constraint on

At when tan� is small. This has interesting implications for the heavy Higgs bosons of the 2HDM,
H0, A0, and H±, which should not be too heavy [17, 70] and may have interesting e↵ects of their own
on precision observables [58, 71]. As we will discuss in Sec. 7.1, it could be the main sensitive probe
to the “blind spot” region.
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generate the triple gauge coupling operator cWWW g✏ijkW

i
µ⌫W

j⌫
⇢ W k⇢µ. Unfortunately, the coe�cient

generated by integrating out an SU(2)L multiplet is small [72]:

cWWW =
g2

2880⇡2

X

rep R, mass M

(�1)F
T (R)

M2

, (2.20)

where T (R) is the Dynkin index of the representation and the sum is over Weyl fermions for which
F = 1 and complex scalars for which F = 0. (That the e↵ect of a complex scalar and that of a Weyl
fermion cancel for equal masses is a result of a supersymmetric Ward identity [73].) Expected bounds
from the ILC are expressed in terms of dimensionless coe�cients �� and �Z , which are both equal
to 6m2

W cWWW . The ILC can bound the coe�cient at 1� to be |��,Z | ⇠< 6 ⇥ 10�4 with 500 fb�1 atp
s = 500 TeV or half that with 1 ab�1 at

p
s = 800 GeV [23, 74]. Even for the bound assuming

higher energy and luminosity, this does not probe wino or higgsino (or left-handed stop) masses above
100 GeV.

Similarly, any particles with SU(2)L quantum numbers contribute above threshold to the run-
ning of gauge couplings. At future very high energy proton–proton colliders this might be detected
with precision Drell-Yan measurements [75]. At an e+e� collider it would be di�cult, but if the
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is also a “below-threshold running e↵ect” arising from the operator cJJD

µW i
µ⌫D�W

i�⌫ , which has
coe�cient [72]

cJJ = � g2

960⇡2

X

rep R, mass M

aF
T (R)

M2

, (2.21)

where aF = 4 for Weyl fermions and 1 for complex scalars. By the equation of motion, DµW
iµ⌫ =

�gJ i⌫ , where J i⌫ is the SU(2)L current, so this operator is a current–current interaction that may be
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R
1

0

dx x(1�x) log(M2� p2x(1�x))
and expands for �p2 � M2 to obtain logarithmic running. This operator is simply the corresponding
result if we expand for M2 � p2. Again, it will be di�cult to obtain interesting constraints from this
operator simply because the number in the denominator is so large.

2.7 Comments on the Use of E↵ective Field Theory

In the remainder of the paper we will use formulas for S, T , and Rb originating in refs. [41, 52] and
presented in Appendix A. These include complete loop functions based on the original Peskin-Takeuchi
definitions of S and T in terms of gauge boson vacuum polarizations, allowing for arbitrary stop-sector
mixing. In particular, nontrivial functions of ratios like mtXt/m

2

ũ3
, if expanded in powers of the Higgs

VEV, may e↵ectively come from operators of dimension higher than 6 in an EFT treatment. In
this sense, the full loop functions include e↵ects of higher order than the operator analysis we have
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cWWW g✏ijkW
i
µ⌫W

j⌫
⇢ W k⇢µ

cJJD
µW i

µ⌫D�W
i�⌫

Unfortunately, their perturbative coefficients are very small. 
(Could be lucky to have many new degrees of freedom?)

cU
�
h†�ihW iµ⌫

�2The U parameter is dimension 8:

“W parameter”

“TGC”
�� = �Z
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4.2 CEPC Electroweak Oblique Parameter Fit

Based on the latest estimates of the experimental capabilities of CEPC, we estimate the
precision that can be obtained in a fit of the electroweak parameters S and T [19, 20].
These parameters describe the gauge boson self-energies and are very sensitive to physics
beyond the SM, especially when the new physics addresses the Higgs sector. Thus, one
expects them to be affected in almost any TeV scale scenario. Table 4.5 presents the as-
sumed experimental uncertainties that enter into the fit. The numbers in boldface represent
measurements performed by CEPC. Other improvements between the current uncertain-
ties and those that will be available when CEPC runs will result from LHC measurements
of the top quark, lattice QCD calculations, and perturbative Standard Model calculations.
A thorough discussion of the prospects for these improvements and the rationale behind
the choices made in the table may be found in Ref. [21]. Readers seeking a more general
review of the status of electroweak precision should consult Ref. [22].

Present data CEPC fit
↵s(M2

Z) 0.1185 ± 0.0006 [23] ±1.0 ⇥ 10

�4 [24]
�↵(5)

had

(M2

Z) (276.5 ± 0.8) ⇥ 10

�4 [25] ±4.7 ⇥ 10

�5 [26]
mZ [GeV] 91.1875 ± 0.0021 [27] ±0.0005

mt [GeV] (pole) 173.34 ± 0.76

exp

[28] ±0.5
th

[26] ±0.2
exp

±0.5
th

[29, 30]
mh [GeV] 125.14 ± 0.24 [26] < ±0.1 [26]
mW [GeV] 80.385 ± 0.015

exp

[23]±0.004

th

[31] (±3

exp

± 1

th

) ⇥ 10

�3 [31]
sin

2 ✓`
e↵

(23153 ± 16) ⇥ 10

�5 [27] (±2.3
exp

± 1.5
th

) ⇥ 10

�5 [32]
�Z [GeV] 2.4952 ± 0.0023 [27] (±5

exp

± 0.8
th

) ⇥ 10

�4 [33]
Rb ⌘ �b/�had

0.21629 ± 0.00066 [27] ±1.7 ⇥ 10

�4

R` ⌘ �

had

/�` 20.767 ± 0.025 [27] ±0.007

Table 4.5 Inputs to the electroweak fit of the oblique parameters S and T . The oblique parameters and
the first five observables in the table float freely in the fit, and determine the values of the remaining five.
We find that Rb and R` have minimal effect on the fit of oblique parameters. We quote the precisions of
current and CEPC measurements as well as the current central values. Theory uncertainties are provided
only when they are nonnegligible and are not already incorporated in the quoted experimental uncertainty.
Boldface numbers represent measurements that will be performed at CEPC.

We have included sin

2 ✓`
e↵

as an observable in the fit, although it will itself result from
a fit of several other parameters, including A0,b

FB

, A`, and A0,`
FB

. A detailed assessment of
each of these individual inputs has not yet been performed for CEPC, so we include only
the estimated precision that can be achieved on the combination sin

2 ✓`
e↵

. Similarly, other
observables like �

had

will ultimately play a role in CEPC precision tests, but we omit them
until future experimental studies provide precise uncertainty estimates.

We have performed a fit to the oblique parameters S and T under the assumption that
U = 0. Given that a weakly-coupled Higgs boson has been discovered, S and T result
from dimension six operators,

OS ⌘ h†W µ⌫hBµ⌫ , (4.4)

OT ⌘
��h†Dµh

��2 , (4.5)

Numbers in boldface: major CEPC inputs to the electroweak 
precision fit.
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whereas U would arise from a dimension eight operator [34]. This provides a strong
theoretical prior that U ⌧ S, T and justifies our focus on only two oblique parameters.
The fit presented here is a profile likelihood: the free parameters are varied to maximize
the likelihood for given S and T . This differs from marginalizing, when various values of
the free parameters are integrated with respect to some prior probability distribution. The
profile likelihood gives slightly more conservative bounds.

The result of the fit for S and T is depicted in Fig. 4.1. For ease of comparison of the
bounds, we have artificially displaced the input central values to agree with the predicted
values so that S = T = 0 will be the best-fit point. Both 68% C.L. and 95% C.L.
uncertainty contours are presented (i.e., ��2

= 2.30 and 6.18). Relative to the current
electroweak precision results (dominated by LEP and the SLC together with the improved
measurement of mW from hadron colliders), the results of CEPC will shrink the error bars
on S and T by a factor of about 3.

-0.2 -0.1 0.0 0.1 0.2
-0.2

-0.1

0.0

0.1

0.2

S

T

Electroweak Fit: S and T Oblique Parameters

Current (95%)
Current (68%)
CEPC (95%)
CEPC (68%)

Figure 4.1 CEPC constraints on the oblique parameters S and T , compared to the current constraints.

CEPC �Z(mZ) [GeV] mt [GeV]
Improved Error (±1

exp

± 0.8
th

) ⇥ 10�4 (±0.0001) ±0.03
exp

± 0.1
th

Table 4.6 Potential improvements for CEPC measurements. The Z width measurement (and the Z mass)
may be improved by better energy calibration. A precise top mass measurement requires a scan of the tt̄
threshold, and thus a larger collision energy than current CEPC plans.

It is possible that the current baseline plan for CEPC can be improved upon by high-
er luminosity runs, better calibration, or higher beam energy. Table 4.6 lists possible
improvements. The Z width measurement will require a high-precision calibration of the
beam energy, which is made possible at circular colliders by the technique of resonant spin
depolarization [27]. The same technique could also improve mZ’s precision. We consid-

Even with conservative estimates, CEPC will provide a 
substantial improvement over existing data.
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LHC Prospect
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TLEP-W
TLEP-t

U = 0

68 % C.L.

-0.2 -0.15 -0.1 -0.05 0. 0.05 0.1 0.15 0.2
-0.2

-0.15

-0.1

-0.05

0.

0.05

0.1

0.15

0.2

S

T

ILC
TLEP-Z
TLEP-W
TLEP-t

U = 0

68 % C.L.

-0.04 -0.02 0. 0.02 0.04

-0.04

-0.02

0.

0.02

0.04

S

T

Figure 1. Left: 68% C.L. contours of S and T for di↵erent experiments using the simplified fit as described

in Tables 1 and 2. Right: a magnified view of 68% C.L. contours of S and T for ILC and TLEP. We set the

best fit point to be S = T = 0, which corresponds to the current SM values. Our results are in approximate

agreement with the current fit from ref. [33, 40], current/LHC14/ILC results by the Gfitter group [23], the

TLEP result from a talk by Satoshi Mishima [21]. The contours of TLEP-Z and TLEP-W almost overlap on

top of each other.

are estimated for an energy scan on and around the Z pole with (100� 1000) fb�1 luminosity on the
Z pole and 10 fb�1 for 6 energy points close to the Z pole. The weak mixing angle is derived from
the forward-backward asymmetry AFB of the b quark, which is determined from fits to the di↵erential
cross-section distribution d�/d cos ✓ / 1 + cos 2✓ + 8/3AFB cos ✓. We will also present estimates of
Higgs couplings precisions in Table 6 of Section 6.

CEPC

↵s(M2

Z) ±1.0⇥ 10�4 [35]

�↵
(5)

had

(M2

Z) ±4.7⇥ 10�5

mZ [GeV] ±(0.0005� 0.001) [41]

mt [GeV] (pole) ±0.6
exp

± 0.25
th

[23]

mh [GeV] < ±0.1

mW [GeV] (±(3� 5)
exp

± 1
th

)⇥ 10�3 [24, 38, 41]

sin2 ✓`
e↵

(±(4.6� 5.1)
exp

± 1.5
th

)⇥ 10�5 [25, 38, 41]

�Z [GeV] (±(5� 10)
exp

± 0.8
th

)⇥ 10�4 [26, 41]

Table 3. The precisions of electroweak observables in the simplified electroweak fit at CEPC. The experimental

uncertainties are mostly taken from [41]. Entries that do not display a theory uncertainty either incorporate it

into the experimental error bar or have a small enough theoretical uncertainty that it can be neglected. Similar

to ILC and TLEP, the non-negligible theory uncertainties of the derived observables mW , sin2 ✓`
eft

and �Z come

from unknown four-loop contributions assuming that in the future, the electroweak three-loop correction will

be computed. For �Z , we assumed that it has the same experimental uncertainty as mZ .
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ILC Hred, dashedL
CEPC pessimistic Hpurple, dottedL
CEPC optimistic Hpurple, solidL

U = 0

68 % C.L.
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Figure 2. 68% C.L. contours of S and T for CEPC using the simplified fit with inputs in Table 3. For

comparison, we also show the ILC allowed region (red dashed line) derived in Sec 2.We set the best fit point

to be S = T = 0, which corresponds to the current SM values. The dotted purple contour is derived with the

numbers at the higher ends of the estimated ranges in Table 3 while the solid purple contour is derived with

those at the lower ends.

We also performed a profile likelihood fit and present the allowed (S, T ) region for CEPC at 68%
C.L. in Fig. 2. For comparison, we put the ILC result in the same plot. For the more optimistic
evaluation in which all precisions take the lower end values of the estimated ranges in Table 3, the
ILC and CEPC have similar sensitivities to new physics. For the more pessimistic evaluation based
on precisions at the higher ends of the estimated ranges, the CEPC allows larger S mostly because of
the worse precision of sin2 ✓`

e↵

compared to ILC.

3.1 Hypothetical Improvements of CEPC EWPT

In this section, we will consider possible improvements of electroweak observable precisions at CEPC
and study how they a↵ect the CEPC’s sensitivity to new physics. There are four potential improve-
ments of electroweak observables: mt, mW , sin2 ✓`

e↵

and �Z (together with mZ), which are listed in
Table 4.

The top quark mass gives the largest parametric uncertainties on the derived SM observables in
the global fit (more details could be found in Sec. 4.2.2) and thus improving its precision might improve
the fit. In the fit for CEPC above, we assumed the precision of the top mass after the HL-LHC running.
A top threshold scan is not included in the current CEPC plan, so CEPC itself cannot improve the
precision of mt. However, a top threshold scan is part of the ILC plan. The possibility exists if the
ILC program with the top threshold scan is implemented before or at the same time of CEPC, the
input value of mt precision for the CEPC electroweak fit could be improved by a factor of ⇠ 10. The
precision of the W mass could be slightly improved by a WW threshold scan to 2 MeV [41]. Finally,
the uncertainty of sin2 ✓`

e↵

in the current CEPC plan is still dominated by the statistical uncertainty,
which is 0.02% while the systematic uncertainty is 0.01%. If the luminosity of the o↵-peak Z running
could be increased by a factor 4 to 40 fb�1 (at each energy), the overall uncertainty of sin2 ✓`

e↵

could be
reduced down to 0.01%, which is 2.3⇥10�5. Another possible way to reduce the uncertainty of sin2 ✓`

e↵

down to 0.01% is to use polarized electron/positron beams, which would require more infrastructure.
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W mass: 5 MeV at ILC, 1.2 MeV at FCC-ee 
sin2𝜃W: 1.3⨉10-5 at ILC, 0.3⨉10-5 at FCC-ee 
top mass: 30 MeV at ILC, 20 MeV at FCC-ee 
(theory-dominated: 100 MeV)



Refining the t Mass

Top mass measurements at the LHC are subject to 
significant theoretical uncertainties due to hadron physics.

The threshold scan can 
determine the top mass and 
width in the 1S scheme, 
which is less subject to large 
corrections than the pole 
mass measured kinematically. 

Prospect for better than  
100 MeV accuracy.

Hoang and Stahlhofen, 1309.6323

Much easier to do at the ILC than CEPC, due to 
synchrotron losses.



Refining the Z Mass
Energy calibration at FCC-ee is better than ILC.
Error bar on mZ can be reduced: 2 MeV to < 0.5 MeV.

Alain Blondel Higgs and Beyond June 2013 Sendai 

Beam polarization and E-calibration @ TLEP 
 
Precise meast of Ebeam by resonant depolarization  
~100 keV each time the meast is made  
 
At LEP transverse polarization was achieved routinely at Z peak. 
instrumental in 10-3 measurement of the Z width which led to  
prediction of top quark mass (179+- 20 GeV) in March 1994 
 
Polarization in collisions was observed (40% at BBTS = 0.04) 
 
At LEP beam energy spread destroyed polarization above 60 GeV 
  VE v E2/�U Î At TLEP transverse polarization up to at least 80 GeV  
   to go to higher energies requires spin rotators and siberian snake 
 
TLEP:  use  ‘single’  bunches to measure the beam energy continuously 
 
<< 100 keV beam energy calibration around Z peak and W pair threshold.   
     'mZ ~0.1 MeV, '*Z ~0.1 MeV,  'mW ~ 0.5 MeV 

At a circular collider, the electron 
beams can be polarized (have their 
spins aligned rather than randomized.) 

The spins precess in the bending field. 

Applying an orthogonal field at the right 
frequency can depolarize the 
electrons.
Like NMR: carefully measuring the resonant depolarization 
transition rate can calibrate the energy of the beam!
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Figure 4.4 First row: allowed T (left) and S (right) at 95% C.L. as a function of error bar of one observable
(normalized with respect to its current value) with the precisions of all the other observables in the fit fixed
at current values. Second row: contours of allowed T at 95% C.L. in the (�mt, �mZ) plane for �mW = 5
MeV (left) and 1 MeV (right). Again the precisions of all other observables in the fit fixed at current values.
Last row: left plot: contours of allowed S at 95% C.L. in the (�mt, �mZ) plane for � sin2 ✓`

e↵

= 10�5 (left)
; right plot: allowed T at 95% C.L. as a function of the error bar of �↵(5)

had

normalized to its current value
fixing �mW = 1 MeV, �mt = 20 MeV and �mZ = 0.1 MeV. (From ref. [21].)

changing the error bar of only one or two observables at each step. For this section, we
will consider two limits with S = 0 or T = 0 and consider only the bound on T or S.

Among all electroweak observables, mW is the one that is most sensitive to the T
parameter and sin

2 ✓`
e↵

is the one most sensitive to the S parameter. This is demonstrated
by the plots in the first row of Fig. 4.4, where we presented the dependence of T setting
S = 0 (left panel) and S setting T = 0 (right panel) on four observables: mW , sin2 ✓`

e↵

, �Z

and mt. Keeping the other observables with the current precisions, the allowed T at 95%
C.L. will decrease by a factor of 3 if the mW error bar is reduced from the current value
15 MeV to 3 MeV, the CEPC projection, while the allowed S at 95% C.L. will decrease

If we only improved one input to fit at a time, hit limits:

W mass is priority for measuring T. 
sin2𝜃W is priority for measuring S



Comment
The most high-priority measurement that requires Z 
pole running is sin2𝜃W. The W mass will be measured 
well at 240 GeV. 

sin2𝜃W benefits from the large cross section on the Z 
peak. It seems unlikely that it could be inferred as 
precisely from any observables at 240 GeV. 

(However, I don’t know of detailed studies of how 
much can be done at 240.)
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Figure 5. First row: allowed T (left) and S (right) at 2� C.L. as a function of error bar of one observable

(normalized with respect to its current value) with the precisions of all the other observables in the fit fixed

at current values. Second row: contours of allowed T at 2 � C.L. in the (�mt, �mZ) plane for �mW = 5 MeV

(left) and 1 MeV (right). Again the precisions of all other observables in the fit fixed at current values. Last

row: left plot: contours of allowed S at 2� C.L. in the (�mt, �mZ) plane for � sin
2 ✓`

e↵

= 10�5 (left) ; right plot:

allowed T at 2� C.L. as a function of the error bar of �↵
(5)

had

normalized to its current value fixing �mW = 1

MeV, �mt = 20 MeV and �mZ = 0.1 MeV.
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At left: 5 MeV error on W mass. At right: 1 MeV error. 
Top/Z masses play much larger role once W error is very 
small. If error stuck at 5 MeV, limited improvement.



Role of Top/Z mass for S 
Parameter,𝛥𝛼had for T Parameter
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Figure 5. First row: allowed T (left) and S (right) at 2� C.L. as a function of error bar of one observable
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MeV, �mt = 20 MeV and �mZ = 0.1 MeV.
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Again, all the ingredients help, but first must achieve 
sufficient precision on crucial numbers like mW and sin2𝜃W.



A Wish List

• Measure mW to better than 5 MeV (now 15 MeV) 
and sin2𝜃W to better than 2×10-5 (now 16×10-5)

• Measure mZ to 500 keV precision (now 2 MeV)

• Measure mt to 100 MeV precision (now ~0.8 GeV*) 

• Have precise enough theory to make use of these 
results: at least 3-loop calculations.

Of course, we want the best measurements possible of 
many quantities. But here are reasonable goals to probe 
loops of ~TeV particles. CEPC will deliver what’s in bold.
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er the possibility that this width and mass can be measured to an experimental precision
comparable to the theoretical uncertainty of about 0.1 MeV. The top mass improvement
requires a significant experimental effort. It will either rely on input from another collider
like the ILC with higher beam energy, or a significant boost in the CEPC energy to scan
the top pair production threshold. Such an energy upgrade would significantly improve
the ultimate bound attained on the T parameter. We show the result of such improvements
in Fig. 4.2. The figure illustrates first the effect of improving �Z together with mZ (which
improves the bounds on S and T comparably), and then the effect of additionally improv-
ing the top mass (which constrains T somewhat more strongly than S). From this plot
it is apparent that upgrades to the initial CEPC plan potentially offer significant physics
benefits and deserve further consideration.
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Figure 4.2 CEPC constraints on the oblique parameters S and T , for the baseline scenario and two
possible improvements. At left we show the current bound, the CEPC baseline, and one improved scenario.
At right we zoom in and show the CEPC baseline and two different improved scenarios. Notice that the
axes of this plot have zoomed in by a factor of 5 compared to those of Fig. 4.1. For clarity we show only
68% C.L. (��2 = 2.30) constraints.

Table 4.7 summarize the physics reach by quoting the 68% C.L. bound on S assuming
that T is zero, and vice versa. These are one-parameter fits (corresponding to ��2

= 1).

Parameter Current CEPC baseline Improved �Z (and mZ) Also improved mt

S 3.6 ⇥ 10�2 9.3 ⇥ 10�3 9.3 ⇥ 10�3 7.1 ⇥ 10�3

T 3.1 ⇥ 10�2 9.0 ⇥ 10�3 6.7 ⇥ 10�3 4.6 ⇥ 10�3

Table 4.7 Current and CEPC projected one-parameter bounds on S and T (in each case, assuming that
the other is zero).

4.2.1 The Precision Challenge for Theorists

The estimates of CEPC prospects above assumed an improvement in theoretical uncer-
tainties relative to the current status. Theory uncertainties quoted for mW , sin

2 ✓`
e↵

, and
�Z in the “CEPC fit” column of Table 4.5 are based on the size of estimated four-loop
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whereas U would arise from a dimension eight operator [34]. This provides a strong
theoretical prior that U ⌧ S, T and justifies our focus on only two oblique parameters.
The fit presented here is a profile likelihood: the free parameters are varied to maximize
the likelihood for given S and T . This differs from marginalizing, when various values of
the free parameters are integrated with respect to some prior probability distribution. The
profile likelihood gives slightly more conservative bounds.

The result of the fit for S and T is depicted in Fig. 4.1. For ease of comparison of the
bounds, we have artificially displaced the input central values to agree with the predicted
values so that S = T = 0 will be the best-fit point. Both 68% C.L. and 95% C.L.
uncertainty contours are presented (i.e., ��2

= 2.30 and 6.18). Relative to the current
electroweak precision results (dominated by LEP and the SLC together with the improved
measurement of mW from hadron colliders), the results of CEPC will shrink the error bars
on S and T by a factor of about 3.

Figure 4.1 CEPC constraints on the oblique parameters S and T , compared to the current constraints.

CEPC �Z(mZ) [GeV] mt [GeV]
Improved Error (±1

exp

± 0.8
th

) ⇥ 10�4 (±0.0001) ±0.03
exp

± 0.1
th

Table 4.6 Potential improvements for CEPC measurements. The Z width measurement (and the Z mass)
may be improved by better energy calibration. A precise top mass measurement requires a scan of the tt̄
threshold, and thus a larger collision energy than current CEPC plans.

It is possible that the current baseline plan for CEPC can be improved upon by high-
er luminosity runs, better calibration, or higher beam energy. Table 4.6 lists possible
improvements. The Z width measurement will require a high-precision calibration of the
beam energy, which is made possible at circular colliders by the technique of resonant spin
depolarization [27]. The same technique could also improve mZ’s precision. We consid-

Improving the Z width 
measurement requires a 
better energy calibration. 
Improving the top mass 
measurement requires an 
e+e- collider threshold 
scan. (Beyond CEPC 
energy plans, but planned 
at ILC and FCC-ee.)
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The CEPC would provide 
order-of-magnitude 
improvement over the 
current results from LEP, 
Tevatron, and LHC.
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Figure 4.6 Loop diagrams contributing to the T parameter operator
�
h†Dµh

�
2 when the left-handed

stop/sbottom doublet Q̃
3

and the right-handed stop t̃R = (ũc
3

)
† are integrated out.

Again, the right-handed stops contribute only via mixing effects.
Loops of stops and higgsinos modify other observables that will be measured as part of

the CEPC electroweak precision programme, such as the Z partial decay width to b quarks
(Rb), but these turn out to give weak constraints. The coupling of Higgs bosons to pho-
tons and gluons are also modified by loops of stops, and these give important constraints
summarized in the Higgs section of the CDR. In Fig. 4.7 we show the expected reach of
CEPC electroweak precision constraints on the S and T parameter and of CEPC Higgs
coupling measurements on stop masses. The two measurements are comparably strong
and will probe stop masses near the TeV scale.

Δ
�
~=��

Δ
�
~=��

Δ
�
~=��

�-� �σ ��������
Γ� ��������

Γ�� �� ��������
����� ��������

500 1000 1500 2000

500

1000

1500

2000

�
�
~
�
[���]

�
�~ �[
�
��

]

����� �������� ��=�

Figure 4.7 CEPC electroweak precision constraints on stops. Here we present the unmixed case, Xt = 0.
The horizontal and vertical axes gives the mass of the left- and right-handed stops. The region to the left of
the orange lines will be excluded by CEPC constraints on the S and T parameters. The solid, dashed, and
dotted orange lines correspond to the three scenarios from Fig. 4.2. The region below and to the left of the
purple curve is expected to be excluded by CEPC measurements of Higgs boson branching ratios. We see
that electroweak precision tests and Higgs precision measurements are complementary and have comparable
strength. Dashed blue lines display contours of fine-tuning, which will be probed at the few percent level.

No mixing: 

Similar mass reach via 
T-parameter and Higgs 
couplings. Pushes 
tuning to the few % 
level. 

Definitively close LHC 
loopholes (hidden, 
stealthy, compressed 
stops).



Higgs Couplings
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Figure 4. Loop diagrams contributing to the correction to the Higgs coupling to gluons, via the operator

h†hGa
µ⌫G

aµ⌫ .

to gluons, via diagrams like those of Fig. 4. The leading order contribution could be computed easily
via the low energy Higgs theorem [60, 61]
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where we neglect D-terms. The low-energy theorem essentially upgrades the log(M
threshold

) terms
that appear when integrating out a heavy mass threshold to field-dependent terms, viewing M

threshold

as a function of a variable higgs VEV. The resulting expression is valid for m
˜t1,2 ⇠> mh/2, which we

will assume is always true. A loop of light stops will also generate a smaller contribution to the Higgs
diphoton coupling, which is anti-correlated to r˜tG

r
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(A�
W +A�

t )
SM

⇡ �0.28r
˜t
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using A�
W ⇡ 8.33 and A�

t ⇡ �1.84, the amplitudes of h ! �� in the SM, valid for mh = 125 GeV.
One could see that the more natural the stop parameter space is, the larger the modification is [58].
Except for the special case of colorless stop, the strongest limit on the stop always comes from the
measurement of hgg coupling.

Corrections to �(h ! Z�) play a similar role as those for �(h ! ��), but we find that they are nu-
merically less important. Similarly, corrections to the Higgs coupling to Z bosons play a subdominant
role because they compete with the large tree-level coupling.

2.5 Wavefunction Renormalization

Recently ref. [62] has emphasized that any new physics which couples to the Higgs will induce a wave-
function renormalization of the Higgs boson, arising from the dimension-six kinetic term @µ |h|2 @µ |h|2
(also see [63, 64]). This is an interesting observation, because it opens up the possibility of probing
naturalness even in scenarios where the quadratic divergence in the Higgs mass is canceled by particles
without Standard Model quantum numbers, which are otherwise hard to probe. We have generalized
the calculation of this correction from ref. [63] to allow for mixing between the two stops. We write
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Familiar low-energy theorem: beta function coefficients 
times X @ logM

@ log v Similar result for photons (except SM 
contribution dominated by W loop)
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Figure 7. Projected constraints in the stop mass plane from a one-parameter fit to the Higgs data from future

experiments. The purple shaded region along the diagonal is excluded because the smallest |Xt| consistent
with the data at 2� is larger than the maximum |Xt| compatible with the mass eigenvalues, as explained in

detail in ref. [32]. The blue shaded region requires tuning Xt to a part in 10 to fit the data. The dot-dashed

red contours quantify fine-tuning in the Higgs mass from the quadratic sensitivity to stop soft terms.

a one-parameter fit to all projected � and � ⇥ Br measurements, which slightly improves the reach.
Specifically, the approach taken in Ref. [32] was based on bounds that allowed other parameters to
float, whereas here we extract stronger bounds by assuming that stops are the only contribution to
the new physics. We also provide, for the first time, an estimate of the reach of CEPC. The combined
ILC 250, 500, and 1000 GeV runs would have a very similar reach to CEPC.

From this plot we see that any future Higgs factory would mostly or entirely rule out regions of
10% fine tuning, but will leave gaps with 5% fine tuning. These gaps occur due to the blind spot
discussed above. As we have noted above, measurements of b ! s� can help to constrain the blind
spot region. However, bounds from b ! s� depend not only on the stop mass matrix but also on µ

and tan�. To provide a perspective on the implications of these bounds for fine-tuning, we should
assess the tree-level tuning arising from µ and from mA.

The precise measurement of Higgs couplings to fermions is sensitive to the mass scale of the heavy
Higgs bosons A0, H0, H± that are present in the MSSM and its extensions. Mixing among the Higgs
bosons will always modify the coupling of the light Higgs to fermions at order m2

h/m
2

A. (We will
collectively denote the masses of all of these particles as mA, although there may be some splitting
between H0 and A0.) The coe�cient is somewhat model dependent. We can estimate the bound on
these couplings by focusing on b, which is well-measured and approximately equal to

b ⌘ ySUSY

hbb

ySMhbb
⇡ 1 + 2

m2

h

m2

A

(7.3)

at large tan� in models where the dominant new quartic coupling beyond the MSSM arises from
nondecoupling D-terms [58, 71, 83]. Models with new quartics arising from F -terms have a somewhat
di↵erent structure, but would yield a similar bound on mA up to order-one factors (especially since
tan� in theories like the NMSSM cannot be very large). Doing a one-parameter fit with only b
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The purple region can be 
excluded for any mixing angle. 
(Because large mixing forces 
the mass eigenvalues away 
from the diagonal.)  

Blue region is excluded unless 
mixing angle is tuned by a 
factor of 10.

(also see J. Fan, MR arXiv:1401.7671)
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: 0 (first row), 0.6 (2nd row), 1.0 (3rd row) and 1.4 (last row). We chose the mass eigenstate

with mt̃1
to be mostly left-handed while the mass eigenstate with mt̃2

to be mostly right-handed. For non-zero

choices of Xt, there are regions along the diagonal line which cannot be attained by diagonalizing a Hermitian

mass matrix [32]. Also notice that the vacuum instability bound constrains Xt/
q

m2
t̃1

+m2
t̃2

.
p
3 [76].
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“Blind Spot” for Stops

Notice that one should not use the results of g from the seven-parameter fits which allow all Higgs
couplings to vary freely [26], as this will underestimate the exclusion. In the particular scenario we
are considering, the variations of the Higgs couplings are much more constrained. For the ILC, we
used the numbers of the ILC 500 scenario with the machine running at 250 GeV and 500 GeV with
luminosities of 1150 fb�1 and 1600 fb�1 and the 1000 scenario with the machine running at 1 TeV in
addition to the 500 case with a luminosity of 2500 fb�1. For FCC-ee, the number assumes the machine
running at 240 GeV and 350 GeV with luminosities of 104 fb�1 and 2600 fb�1. From Fig. 5, one could
see that the FCC-ee scenario is the most sensitive case. Again at the special point Xt ⇠

q
m2

˜t1
+m2

˜t2
,

r˜tG ⇡ 0 from Eq. 2.13 and the bound vanishes.
The strongest limit on the stop parameters comes from the measurement of hgg coupling. This is

due to a combination of the large size of the correction and the high precision of the measurements of
this coupling at the Higgs factories.

6 The Light Stop Blind Spot

It is apparent from Fig. 5 that in the case X2

t ⇡ m2

˜t1
+m2

˜t2
, all of the precision loop observables we

consider have a significantly poorer reach than for other choices of Xt. This is a “blind spot” for
precision tests of light stops. In calling this choice of Xt a blind spot, we follow the terminology of
ref. [82], which coined the term for regions of neutralino parameter space that evade direct detection
experiments. The analogy is a close one: the neutralino blind spots exist when the lightest neutralino
has a vanishing tree-level coupling to the Higgs boson. The underlying reason for the blind spot in
stop detection is that the lightest stop mass eigenstate has a vanishing tree-level coupling to the Higgs
boson. In this case, the heavy stop can still contribute to precision observables, but its contributions
are relatively small due to the larger mass suppression. (While this draft was being finalized, the blind
spot region of parameter space was independently pointed out in ref. [65].)

To understand where the blind spot occurs, we can integrate out the heavy stop mass eigenstate
t̃h to determine an e↵ective quartic coupling of the light stop t̃l to the Higgs boson:

+

t̃l t̃l

h h

y2t t̃l

t̃h

t̃l

h h

ytXt ytXt (6.1)

This leads to an e↵ective coupling:

L
e↵

=

 
y2t �

y2tX
2

t

m2

˜th
�m2

˜tl

!
|Hu|2

��t̃l
��2 . (6.2)

This leads to the “blind spot” mixing for which the coupling of the light stop to the Higgs boson
vanishes:

X⇤
t =

⇣
m2

˜th
�m2

˜tl

⌘
1/2

. (6.3)

This is also apparent from Eq. 2.15. Alternatively, one could find this critical mixing by evaluating
the light stop mass eigenvalue and solving the equation @ logm

˜tl
/@ log v = 0 for Xt.
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The light stop mass eigenstate may be decoupled from the 
Higgs at tree level, at a certain critical mixing angle:
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If the light stop is decoupled 
from the Higgs, it’s irrelevant for 
naturalness! Then it’s the heavy 
stop that matters.Figure 8. Regions in the physical stop mass plane that precision measurements are sensitive to, with contours

of tunings, at future e+e� colliders (left: ILC; middle: CEPC; right: FCC-ee). Top row: bounds on stops with

no mixing, Xt = 0. Dashed vertical lines: 2� bounds on stop masses from S and T (mostly T ); solid lines: 2�

bounds on stop masses from Higgs coupling constraints. Blue dashed contours are the stop contributions to

the Higgs mass tuning. Lower row: bounds on stops in the blind spot X2
t = m2

t̃1
+m2

t̃2
. There are no Higgs

measurement constraints. For CEPC with possible improvements (purple dash-dotted line in the middle) or

FCC-ee (orange solid line), EWPT is only sensitive to a small region. The green dashed lines are the exclusion

contours from b ! s� for the choice µ = 200 GeV and a few di↵erent values of tan�. Each of these contours

is also labeled with corresponding tunings �µ and �A. There is also a region along the diagonal line which

cannot be attained by diagonalizing a Hermitian mass matrix [32].

7.2 Implications for Folded Stops

EWPT could be the most sensitive experimental probe in some hidden natural SUSY scenarios such as
“folded SUSY” [28]. In folded SUSY, the folded stops only carry electroweak charges and some beyond
SM color charge but no QCD charge. The most promising direct collider signal is W+ photons which
dominates for the “squirkonium” (the bound state of the folded squarks) near the ground state [84, 85].
It is a very challenging experimental signature. Among the Higgs coupling measurements, folded stops
could only modify the Higgs–photon coupling, the Higgs–photon–Z coupling, and (at a subleading
level) the Higgs–Z–Z coupling. Yet the Higgs–photon coupling measurements, even at future e+e�

colliders, have very limited sensitivities. Even FCC-ee Higgs measurements could only probe folded
stops up to 400 GeV, as illustrated in Fig. 9 (which updates the result in [32] to include CEPC). Notice
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b ! s�Green:
Purple: CEPC EWPT

(also see Craig, Farina, McCullough, Perelstein 1411.0676)



Folded SUSY
In folded SUSY, stops have no QCD color (makes life 
difficult at LHC). But still have electroweak interactions.  

Measuring Higgs decays to photons and the T parameter 
can help constrain folded SUSY stops.
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Figure 9. Projected constraints in the folded stop mass plane from a one-parameter fit to the Higgs–photon–

photon couplings from future experiments. Directly analogous to Fig. 7. Results from the ILC 250/500/1000

would be similar to CEPC; lower-energy ILC measurements provide even weaker constraints. These constraints

are subdominant to the constraints on left-handed folded stops arising from T -parameter measurements, which

are the same as those for ordinary stops in the left-hand column of Fig. 5.

that we have also taken into account of a precise determination of �(h ! ��)/�(h ! ZZ) at HL-LHC.
It has been demonstrated that combing this with Higgs measurements at future e+e� colliders could
result in a significant improvement of sensitivity to Higgs–photon–photon coupling [86, 87].

On the other hand, the reach of the electroweak precision we derived in this article (the left
column of Fig. 5) applies to folded stops as well as the usual stops. Except for the blind spot in the
parameter space, future EWPT could probe left-handed folded stops, via their correction to the T

parameter, up to 600 GeV (e.g. at the ILC) or even 1 TeV (e.g. at FCC-ee). CEPC’s preliminary
plans fall close to the ILC reach, but conceivable upgrades could achieve similar reach to FCC-ee.
These EWPT constraints would surpass the Higgsstrahlung constraints on folded SUSY estimated in
ref. [65]. Improved measurements of the W mass, then, may be one of the most promising routes
to obtaining stronger experimental constraints on folded SUSY. Therefore, with the help of future
electroweak precision measurements, we can test the fine tuning of folded SUSY at the few percent
level.
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The T-parameter bounds 
previously shown for stops are 
exactly the same for folded stops!  

Higgs factories have exciting 
potential for uncolored naturalness!
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Other Precision Z Physics
Rare Z decays: Standard Model predicts

102 ELECTROWEAK PRECISION PHYSICS AT THE CEPC

We take as our definition of the number of neutrinos N⌫ = �

inv

/�⌫ , i.e. the ratio of the
invisible width to the Standard Model expectation for the partial width to a single neutrino
species.

Using the input from the SM model, we can rewrite equation (4.1) as the following:

N⌫ =

�`

�⌫

 s
12⇡R`

M2

Z�
0

had

� R` � 3

!
. (4.2)

As shown in equation (4.2), the precision of N⌫ depends on the lepton partial width R`

measurement, the Z mass measurement, and the hadronic cross section of the Z boson on
its mass peak (�0

had

). The precision of �0

had

gives the largest impact to N⌫ measurement,
and it is very sensitive to the precision of the luminosity. Therefore the precise luminosity
measurement is the key to determine N⌫ .

Precise measurements of N⌫ have been made by LEP collaborations [8], and they ob-
tained a precision of 0.27% using this indirect method. The main systematics of the N⌫

measurement is coming from the uncertainty in the luminosity measurement (0.14%) and
the theory uncertainty in the predicted cross section of the small angle Bhabha process
(0.11%).

The precision of 0.1% in N⌫ measurement with the indirect method can be achieved in
CEPC measurement, which improves the current precision by a factor of three. Benefitting
from the recent development of luminosity detector technology, the uncertainty due to
luminosity can be reduced to 0.05%. The uncertainty from the small angle Bhabha process
can be reduced to 0.05% due to recent progress in studying this process[9].

Direct Method Using e+e� ! ⌫⌫̄� Events The most precise direct N⌫ measurements
at LEP were carried out by the L3 and DELPHI collaborations [10, 11]. By combining
the direct measurements at LEP, the current experimental result is N⌫ = 2.92 ± 0.05.
The statistical uncertainty of N⌫ in the previous measurement is 1.7%. The main sys-
tematic uncertainty from the L3 measurement includes the uncertainty in single photon
trigger efficiency (0.6%), and photon identification efficiency (0.3%), and the uncertainty
in identifying the converted photons (0.5%).

A precision of 0.2% can be achieved for the direct measurement of N⌫ at CEPC, and it
will improve the current precision by a factor of 10. Due to the excellent performance of
the CEPC inner tracker, the uncertainty due to converted photons’ selection efficiency is
expected to be negligible. The granularity of the CEPC EM calorimeter is expected to be
10 to 100 times better than the detectors at LEP. Therefore photons can be identified with
high purity with loose EM shower shape based selection. The uncertainty of the photon
efficiency can be reduced to less than 0.05%.

4.1.1.7 Rare Z Decays

CEPC may have the opportunity to probe rare Z decays, including exclusive processes
like Z ! J/ � or Z ! ⌥ �. These processes are predicted to have small branching
ratios in the Standard Model [12, 13]. For example, [13]

Br(Z0 ! J/ �) ⇡ 8 ⇥ 10

�8

Br(Z0 ! ⌥(nS) �) ⇡ 1.0 ⇥ 10

�7. (4.3)

Given these expectations, CEPC’s sample of order 10

9 to 10

10 Z bosons could allow the
branching ratio to these decays to be measured to better than 10% statistical accuracy. The

(Grossman, Koenig, Neubert 
1501.06569; see also Huang, 
Petriello 1411.5924)

No current collider has had a large enough Z sample to 
see them. The CEPC or FCC-ee, with > 1010 Z bosons, can 
explore a new frontier of the SM. 

CEPC could also search for flavor-violating processes like 
Z to muon + tau. Probe of high-scale flavor violation 
beyond the Standard Model!
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Figure 3.20 The 10 parameter fit result and comparison with the ILC. The CEPC at 250 GeV with 5 ab�1

integrated luminosity and the ILC 250+500 GeV at 250+500 fb�1 are shown. The CEPC and ILC result without
combination with HL-LHC input as shown in dashed edges.

Table 3.13 Coupling measurement precision in percent from the 10 parameter fit described in the text for several
benchmark integrated luminosity of CEPC, and corresponding results after combination with the HL-LHC. All the
numbers refer to are relative precision except for BR

inv

for which 95% CL upper limit are quoted respectively.

CEPC CEPC+HL-LHC
Luminosity (ab�1) 0.5 2 5 10 0.5 2 5 10

�h 8.7 4.4 2.8 1.9 6.2 3.7 2.5 1.8
b 4.1 2.1 1.3 0.92 2.8 1.7 1.2 0.87
c 5.4 2.7 1.7 1.2 4.2 2.4 1.6 1.2
g 4.8 2.4 1.5 1.1 3.2 2.0 1.4 1.0
W 3.9 1.9 1.2 0.87 2.4 1.6 1.1 0.82
⌧ 4.5 2.3 1.4 1.0 3.2 1.9 1.3 0.97
Z 0.81 0.40 0.26 0.18 0.81 0.40 0.26 0.18
� 15 7.4 4.7 3.3 2.7 2.5 2.3 2.0
µ 28 14 8.6 6.1 8.9 7.7 6.3 5.1

BR

inv

0.88 0.44 0.28 0.20 0.88 0.44 0.28 0.20

3.4.2 Higgs self coupling2368

The Higgs self-coupling, �(hhh), is a critical parameter governing the dynamics of the electroweak2369

symmetry breaking. It does not enter the CEPC phenomenology directly, but it affects the hZZ coupling2370

at 1-loop level. Therefore, a limit on Z can be interpreted as a limit on �(hhh)

with some model2371

assumptions [63]. Of course, other new physics can also alter Z . Unless in the case of a cancellation,2372

the limit on �(hhh)

should be regarded as a reasonable estimate.2373
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Any new scalar fields that perturbatively solve the hierarchy problem by stabilizing the Higgs
mass also generate new contributions to the Higgs field-strength renormalization, irrespective of their
gauge representation. These new contributions are physical and their magnitude can be inferred from
the requirement of quadratic divergence cancellation, hence they are directly related to the resolution
of the hierarchy problem. Upon canonically normalizing the Higgs field these new contributions lead
to modifications of Higgs couplings which are typically great enough that the hierarchy problem and
the concept of electroweak naturalness can be probed thoroughly within a precision Higgs program.
Specifically, at a Linear Collider this can be achieved through precision measurements of the Higgs
associated production cross-section. This would lead to indirect constraints on perturbative solutions
to the hierarchy problem in the broadest sense, even if the relevant new fields are gauge singlets.

I. INTRODUCTION

The discovery of the Higgs at the LHC [1, 2] and
lack of evidence for physics beyond the Standard Model
have heightened the urgency of the electroweak hierarchy
problem. This motivates focusing experimental searches
towards testing “naturalness from the bottom up” as
broadly as possible. In practice this means generalizing
beyond the specifics of particular UV-complete models
and instead constraining the additional degrees of free-
dom whose couplings to the Higgs are responsible for
canceling the most pressing quadratically divergent Stan-
dard Model contributions to the Higgs mass. While these
couplings may appear tuned from the perspective of the
low-energy e↵ective theory, we may assume they are dic-
tated by symmetries of the full theory. To a certain ex-
tent, this strategy is already being pursued in searches
for stops in SUSY and t0 fermions, however the Stan-
dard Model gauge representations of top partners are
not necessarily fixed by the cancellation of quadratic di-
vergences. For example, in twin Higgs models [3] the
degrees of freedom protecting the Higgs mass are com-
pletely neutral under the Standard Model, while in folded
supersymmetry [4] the scalar top partners are neutral un-
der QCD and only carry electroweak quantum numbers.
Such models provide proof of principle that the Higgs
mass may be protected by degrees of freedom that carry
a variety of Standard Model gauge charges, and there are
likely to be broad classes of theories with similar proper-
ties.

As we will discuss further in Sec. II, direct searches for
these additional degrees of freedom can be particularly

⇤Electronic address: ncraig@ias.edu
†Electronic address: christoph.englert@durham.ac.uk
‡Electronic address: mccull@mit.edu

challenging depending on the gauge charges. Therefore
in this work we will advocate an additional and comple-
mentary approach, concerned with exploring naturalness
indirectly. In certain cases this may be the most promis-
ing avenue for constraining additional degrees of freedom
associated with the naturalness of the Higgs potential.1

Specifically, we establish for the first time a quanti-
tative connection between quadratically divergent Higgs
mass corrections and new contributions to the Higgs
wave-function renormalization in natural theories. The
latter are physical and modify Higgs couplings.

To illustrate the possible indirect e↵ects of natural
new physics, consider a scenario where the Higgs is cou-
pled to some new top-partner fields that cancel the one-
loop quadratic divergences arising from top-quark loops.
Eq. (1) schematically indicates that, as well as the usual
Higgs mass corrections, one will also in general have cor-
rections to the Higgs wave-function renormalization2

�Zh, �m
2
h ⇠

(a)

e�

e+

h

ZG0

(b)

e�

e+

h

ZZ

h h
. (1)

At the Higgs mass-scale we may write the full one-loop
e↵ective Lagrangian as

L = LSM +
1

2
�Zh(@µh)2 + ... (2)

where �Zh is directly related to the new quadratic Higgs
mass corrections, LSM is the full SM Lagrangian at one
loop, and the ellipsis denote corrections to the Higgs
mass, cubic and quartic couplings coming from the new

1 For recent work probing naturalness indirectly when new fields
are charged under QCD and contribute directly to Higgs digluon
and Higgs diphoton couplings at one loop, see e.g. [5–7].

2 There are also typically corrections to the cubic and quartic cou-
plings as well, which we do not show in this diagram.
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FIG. 1: Sample counterterm diagrams that depend on the
Higgs self-energy.

O(0.5%) uncertainty [15]. Thus Higgs boson coupling
measurements can constrain natural new physics for
generic top partners even when they are neutral under

the SM gauge group. To see the relevant e↵ects clearly,
consider the theory of Eq. (3) when all scalar top part-
ners, �i, are gauge singlets. In the limit m� � v, we may
integrate out the �i and express their e↵ects in terms
of an e↵ective Lagrangian below the scale m� involv-
ing only Standard Model fields with appropriate higher-
dimensional operators. At one loop, integrating out the
�i leads to shifts in the wave-function renormalization
and potential of the Higgs doublet H as well as opera-
tors of dimension six and higher. Most of these shifts
and operators are irrelevant from the perspective of low-
energy physics, except for one dimension-six operator in
the e↵ective Lagrangian:

Leff = LSM +
cH
m2

�

✓
1

2
@µ|H|2@µ|H|2

◆
+ . . . (10)

where the ellipses include additional higher-dimensional
operators that are irrelevant for our purposes. Match-
ing to the full theory at the scale m�, we find cH(m�) =
n�|��|2/96⇡2. Although this operator may be exchanged
for a linear combination of other higher-dimensional op-
erators using field redefinitions or classical equations of
motion, the physical e↵ects are unaltered. Below the
scale of electroweak symmetry breaking, Eq. (10) leads
to a shift in the wave-function renormalization of the
physical scalar h as in Eq. (2), with �Zh = 2cHv2/m2

�.
Canonically normalizing h alters its coupling to vectors
and fermions, leading to a measurable correction to, e.g.,
the hZ associated production cross-section

��Zh = �2cH
v2

m2
�

= �n�|��|2
48⇡2

v2

m2
�

. (11)

where we have defined ��Zh as the fractional change in
the associated production cross section relative to the SM
prediction, which by design vanishes for the SM alone.
Since n�|��|2 is required to be large in order to cancel the
top quadratic divergence, this e↵ect may be observable
in precision measurements of �Zh despite arising at one
loop.

While this e↵ective Lagrangian approach makes the
physical e↵ect transparent, naturalness dictates that
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FIG. 2: Scalar top-partner corrections to the Higgs associ-
ated production cross-section at a 250 GeV linear collider as
a function of the top-partner mass m� in the e↵ective the-
ory of naturalness of Eq. (3). Corrections are shown for
n� = 1, .., 6 top partners. Estimates for the measurement
precision of 2.5% [22, 23] and 0.5% [29] are also shown. It
is remarkable that with current precision estimates a large
portion of model-independent parameter space for Higgs nat-
uralness can be probed. In particular, if one compares with
the tuning estimates of Eq. (9), this broadly corresponds to
probing 10% tuned regions for a single scalar top partner and
close to 25% tuned regions for n� = 6 scalar top partners as
in SUSY. Optimistically, if the precision could be improved to
��Zh ⇠ 0.1%, then virtually all parameter space for generic
natural scalar theories with up to ⇠ 10% tunings could be
probed.

m� ⇠ v, and threshold corrections to Eq. (10) may be
large and a complete calculation is required. In the on-
shell renormalization scheme, the Higgs self-energy en-
ters through the counter-term part of the renormalized
e+e� ! hZ amplitude via the diagrams depicted in
Fig. 1. Thus the hG0Z and hZZ vertices receive correc-
tions from the Higgs wave-function renormalization.10

For scalar top partners the Higgs wave-function renor-
malization arises at one loop through scalar trilinear cou-
plings, which gauge invariance relates to the quartic ver-
tices, which are in turn directly relevant for the cancel-
lation of the quadratic divergences in �m2

h.
At one loop the e↵ective theory of naturalness defined

in Eq. (3) leads to a correction to the associated produc-
tion cross-section of the form [15]

��Zh = n�
|��|2v2
8⇡2m2

h

(1 + F (⌧�)) (12)

=
9�2

tm
2
t

2⇡2n�m2
h

(1 + F (⌧�)) (13)

10 See e.g. Ref. [31] for a complete list of SM Feynman rules.
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consider the theory of Eq. (3) when all scalar top part-
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integrate out the �i and express their e↵ects in terms
of an e↵ective Lagrangian below the scale m� involv-
ing only Standard Model fields with appropriate higher-
dimensional operators. At one loop, integrating out the
�i leads to shifts in the wave-function renormalization
and potential of the Higgs doublet H as well as opera-
tors of dimension six and higher. Most of these shifts
and operators are irrelevant from the perspective of low-
energy physics, except for one dimension-six operator in
the e↵ective Lagrangian:

Leff = LSM +
cH
m2

�

✓
1

2
@µ|H|2@µ|H|2

◆
+ . . . (10)

where the ellipses include additional higher-dimensional
operators that are irrelevant for our purposes. Match-
ing to the full theory at the scale m�, we find cH(m�) =
n�|��|2/96⇡2. Although this operator may be exchanged
for a linear combination of other higher-dimensional op-
erators using field redefinitions or classical equations of
motion, the physical e↵ects are unaltered. Below the
scale of electroweak symmetry breaking, Eq. (10) leads
to a shift in the wave-function renormalization of the
physical scalar h as in Eq. (2), with �Zh = 2cHv2/m2

�.
Canonically normalizing h alters its coupling to vectors
and fermions, leading to a measurable correction to, e.g.,
the hZ associated production cross-section

��Zh = �2cH
v2

m2
�

= �n�|��|2
48⇡2

v2

m2
�

. (11)

where we have defined ��Zh as the fractional change in
the associated production cross section relative to the SM
prediction, which by design vanishes for the SM alone.
Since n�|��|2 is required to be large in order to cancel the
top quadratic divergence, this e↵ect may be observable
in precision measurements of �Zh despite arising at one
loop.

While this e↵ective Lagrangian approach makes the
physical e↵ect transparent, naturalness dictates that

200 400 600 8000.1

0.2

0.5

1.0

2.0

5.0

10.0

mf @GeVD

dsZh @%D
dsZh> 2.5%

dsZh> 0.5%

nf=1

nf=6

FIG. 2: Scalar top-partner corrections to the Higgs associ-
ated production cross-section at a 250 GeV linear collider as
a function of the top-partner mass m� in the e↵ective the-
ory of naturalness of Eq. (3). Corrections are shown for
n� = 1, .., 6 top partners. Estimates for the measurement
precision of 2.5% [22, 23] and 0.5% [29] are also shown. It
is remarkable that with current precision estimates a large
portion of model-independent parameter space for Higgs nat-
uralness can be probed. In particular, if one compares with
the tuning estimates of Eq. (9), this broadly corresponds to
probing 10% tuned regions for a single scalar top partner and
close to 25% tuned regions for n� = 6 scalar top partners as
in SUSY. Optimistically, if the precision could be improved to
��Zh ⇠ 0.1%, then virtually all parameter space for generic
natural scalar theories with up to ⇠ 10% tunings could be
probed.

m� ⇠ v, and threshold corrections to Eq. (10) may be
large and a complete calculation is required. In the on-
shell renormalization scheme, the Higgs self-energy en-
ters through the counter-term part of the renormalized
e+e� ! hZ amplitude via the diagrams depicted in
Fig. 1. Thus the hG0Z and hZZ vertices receive correc-
tions from the Higgs wave-function renormalization.10

For scalar top partners the Higgs wave-function renor-
malization arises at one loop through scalar trilinear cou-
plings, which gauge invariance relates to the quartic ver-
tices, which are in turn directly relevant for the cancel-
lation of the quadratic divergences in �m2

h.
At one loop the e↵ective theory of naturalness defined

in Eq. (3) leads to a correction to the associated produc-
tion cross-section of the form [15]

��Zh = n�
|��|2v2
8⇡2m2

h

(1 + F (⌧�)) (12)

=
9�2

tm
2
t

2⇡2n�m2
h

(1 + F (⌧�)) (13)

10 See e.g. Ref. [31] for a complete list of SM Feynman rules.



Probes Any Natural Physics
E.g. toy model:

2

fields.3 As with the precision electroweak program [8–13]
we need to determine which corrections are physical and
can be constrained by measurement, and which are un-
physical. We first canonically normalize the Higgs field
by the re-scaling h ! (1 � �Zh/2)h. This re-scales all
Higgs couplings and the mass operator. The Higgs cubic
and quartic couplings have not been measured directly,
and so the new re-scaled values are unconstrained. Also,
the Higgs mass is a free parameter of the theory which
can absorb this field re-definition. However all Higgs
couplings to weak gauge bosons and fermions have been
re-scaled by the same amount. This re-scaling is physi-
cal: it can be moved around by re-scaling other fields or
couplings but cannot be removed from the theory. For
canonically normalized fields this re-scaling will in gen-
eral break the SM prediction for the relationship between
the mass of a field and its coupling to the Higgs. This
deviation from SM predictions can then be constrained
with precision Higgs coupling measurements.

In the case where the new fields are not gauge sin-
glets one expects additional corrections beyond the wave-
function renormalization. Some of these corrections in-
volve the gauge sector alone, and can be constrained via
the Peskin-Takeuchi parameters [8, 9] and their general-
ization [14]; other corrections may also directly correct
the Higgs-weak boson vertices. Although this situation
is more involved, the wave-function renormalization typ-
ically dominates [15]. Hence we see that if the hierarchy
problem is resolved by new physics then it may leave its
footprint through indirect signatures in SM processes via
modified Higgs couplings, even in situations where it is
di�cult to observe the new physics directly.

Thus far the discussion has been rather general. To
render these e↵ects quantitative, we must commit to a
concrete, calculable set-up. In Sec. II we will construct a
general scenario based solely on the naturalness criterion:
a “weak-scale e↵ective theory of naturalness,” restricted
only by the simplifying assumption that the new fields
canceling the top quadratic divergence are scalars.4 In
Sec. III we describe how, guided by naturalness alone, one
is led to very specific quantitative predictions for Higgs
coupling corrections within this e↵ective natural theory,
with the only free variables being the number of fields
and their masses. We will clearly demonstrate that, even
if direct evidence for a natural weak scale remains elu-
sive, the generic parameter space of natural theories can
be thoroughly explored through percent-level precision
Higgs coupling measurements at a Linear Collider (LC)
or potentially at the LHC.

3 We have, for now, assumed that the new fields are gauge singlets
and so expect no corrections to the weak fields or couplings other
than Higgs self-couplings. We will discuss scenarios with non-
gauge-singlet fields shortly.

4 We note that a generalization to spin-1/2 or even spin-1 partners
is also in principle possible.

II. WEAK-SCALE EFFECTIVE THEORY OF
NATURALNESS

Assuming that the leading natural degrees of freedom
are scalar top partners we can define the perturbative
e↵ective natural theory as

L = LSM +
X

i

�|@µ�i|2 � m2
i |�i|2 � �i|H|2|�i|2

�
, (3)

where without loss of generality we take the scalars
to be complex, and we use the EW symmetry break-
ing conventions H ! v + h/

p
2 with v ⇡ 174 GeV

and m2
�i

= m2
i + �iv

2, leading to a trilinear coupling

L � p
2�ivh|�i|2.5 Here the index i = 1, . . . , n� counts

the number of fields coupled to H, which may be re-
lated by gauge or global symmetries. For example, in
SUSY n� = 6 counts the two top squarks transforming
as triplets under SU(3)c, while in folded SUSY n� = 6
counts the two top squirks transforming as triplets under
a distinct SU(3) gauge group.

In order to cancel one-loop quadratic Higgs mass cor-
rections from the top quark alone it is simply required
that

X

i

�i = 6�2
t , (4)

where �t is the top Yukawa coupling.6 For simplicity
we can make the further assumption that all n� scalars
have the same mass, m�, and the same coupling ��. As
we will show, this extremely simple e↵ective theory of
naturalness is broad enough to capture the dominant in-
direct corrections to Higgs physics even though we have
not specified the gauge representations and are agnostic
as to the UV-completion of the model.

From this point we can define a measure of natural-
ness. Although the theory so far is renormalizable we
should choose an energy scale, ⇤, at which the theory
is UV-completed.7 We can then calculate corrections to
the high-scale Higgs mass, mH , due to logarithmic run-
ning from ⇤ down to the weak scale. At one loop this
correction is

�m2
H = �n�

��

8⇡2
m2

� log

✓
⇤

m�

◆
, (5)

= �6�2
t

8⇡2
m2

� log

✓
⇤

m�

◆
, (6)

5 If the top partners are in weak doublets we could also have cou-
plings such as V � |H · �|2, as in the MSSM for the left-handed
top squark. However, since we are only really concerned with the
couplings between top-partners and the neutral Higgs, Eq. (3)
still captures the relevant phenomenology.

6 We will not be concerned with one-loop quadratic divergences
from loops of gauge degrees of freedom, however if desired these
loops could be cancelled by extra fermions, as in SUSY, or even
by choosing a modified value of ��.

7 For example, in SUSY theories this would typically correspond
to the SUSY-breaking messenger scale.

New singlets; undetectable; cancel divergences if:

2

fields.3 As with the precision electroweak program [8–13]
we need to determine which corrections are physical and
can be constrained by measurement, and which are un-
physical. We first canonically normalize the Higgs field
by the re-scaling h ! (1 � �Zh/2)h. This re-scales all
Higgs couplings and the mass operator. The Higgs cubic
and quartic couplings have not been measured directly,
and so the new re-scaled values are unconstrained. Also,
the Higgs mass is a free parameter of the theory which
can absorb this field re-definition. However all Higgs
couplings to weak gauge bosons and fermions have been
re-scaled by the same amount. This re-scaling is physi-
cal: it can be moved around by re-scaling other fields or
couplings but cannot be removed from the theory. For
canonically normalized fields this re-scaling will in gen-
eral break the SM prediction for the relationship between
the mass of a field and its coupling to the Higgs. This
deviation from SM predictions can then be constrained
with precision Higgs coupling measurements.

In the case where the new fields are not gauge sin-
glets one expects additional corrections beyond the wave-
function renormalization. Some of these corrections in-
volve the gauge sector alone, and can be constrained via
the Peskin-Takeuchi parameters [8, 9] and their general-
ization [14]; other corrections may also directly correct
the Higgs-weak boson vertices. Although this situation
is more involved, the wave-function renormalization typ-
ically dominates [15]. Hence we see that if the hierarchy
problem is resolved by new physics then it may leave its
footprint through indirect signatures in SM processes via
modified Higgs couplings, even in situations where it is
di�cult to observe the new physics directly.

Thus far the discussion has been rather general. To
render these e↵ects quantitative, we must commit to a
concrete, calculable set-up. In Sec. II we will construct a
general scenario based solely on the naturalness criterion:
a “weak-scale e↵ective theory of naturalness,” restricted
only by the simplifying assumption that the new fields
canceling the top quadratic divergence are scalars.4 In
Sec. III we describe how, guided by naturalness alone, one
is led to very specific quantitative predictions for Higgs
coupling corrections within this e↵ective natural theory,
with the only free variables being the number of fields
and their masses. We will clearly demonstrate that, even
if direct evidence for a natural weak scale remains elu-
sive, the generic parameter space of natural theories can
be thoroughly explored through percent-level precision
Higgs coupling measurements at a Linear Collider (LC)
or potentially at the LHC.

3 We have, for now, assumed that the new fields are gauge singlets
and so expect no corrections to the weak fields or couplings other
than Higgs self-couplings. We will discuss scenarios with non-
gauge-singlet fields shortly.

4 We note that a generalization to spin-1/2 or even spin-1 partners
is also in principle possible.

II. WEAK-SCALE EFFECTIVE THEORY OF
NATURALNESS

Assuming that the leading natural degrees of freedom
are scalar top partners we can define the perturbative
e↵ective natural theory as

L = LSM +
X

i

�|@µ�i|2 � m2
i |�i|2 � �i|H|2|�i|2

�
, (3)

where without loss of generality we take the scalars
to be complex, and we use the EW symmetry break-
ing conventions H ! v + h/

p
2 with v ⇡ 174 GeV

and m2
�i

= m2
i + �iv

2, leading to a trilinear coupling

L � p
2�ivh|�i|2.5 Here the index i = 1, . . . , n� counts

the number of fields coupled to H, which may be re-
lated by gauge or global symmetries. For example, in
SUSY n� = 6 counts the two top squarks transforming
as triplets under SU(3)c, while in folded SUSY n� = 6
counts the two top squirks transforming as triplets under
a distinct SU(3) gauge group.

In order to cancel one-loop quadratic Higgs mass cor-
rections from the top quark alone it is simply required
that

X

i

�i = 6�2
t , (4)

where �t is the top Yukawa coupling.6 For simplicity
we can make the further assumption that all n� scalars
have the same mass, m�, and the same coupling ��. As
we will show, this extremely simple e↵ective theory of
naturalness is broad enough to capture the dominant in-
direct corrections to Higgs physics even though we have
not specified the gauge representations and are agnostic
as to the UV-completion of the model.

From this point we can define a measure of natural-
ness. Although the theory so far is renormalizable we
should choose an energy scale, ⇤, at which the theory
is UV-completed.7 We can then calculate corrections to
the high-scale Higgs mass, mH , due to logarithmic run-
ning from ⇤ down to the weak scale. At one loop this
correction is

�m2
H = �n�

��

8⇡2
m2

� log

✓
⇤

m�

◆
, (5)

= �6�2
t

8⇡2
m2

� log

✓
⇤

m�

◆
, (6)

5 If the top partners are in weak doublets we could also have cou-
plings such as V � |H · �|2, as in the MSSM for the left-handed
top squark. However, since we are only really concerned with the
couplings between top-partners and the neutral Higgs, Eq. (3)
still captures the relevant phenomenology.

6 We will not be concerned with one-loop quadratic divergences
from loops of gauge degrees of freedom, however if desired these
loops could be cancelled by extra fermions, as in SUSY, or even
by choosing a modified value of ��.

7 For example, in SUSY theories this would typically correspond
to the SUSY-breaking messenger scale.

Less “toy” analogues include Twin Higgs or Folded 
Supersymmetry: cancel top loops with partner particles that 
do not have QCD color and so are hard to make directly.



Reach for new physics

(also useful to probe EW baryogenesis: e.g. Katz, Perelstein 1401.1827)

Craig, Englert, McCullough; 
CEPC pre-CDR

Also probe Higgs self-
coupling through loop effect 
(McCullough 1312.3322)

Self-Coupling Indirectly at NLO


•  At NLO modified coupling enters in the 
following loops:




•  And also:                         


MM.  2014


Self-Coupling at NLO

•  In most realistic BSM scenarios not just 

self-coupling modified and if rescaled 
couplings, really measure:


•  Can’t “fingerprint” modified self-coupling 
from a single cross section deviation.

– For similar examples of tree vs loop see many 

LEP papers (available on request).

•  However, for constraint to be invalidated 

would require unnatural cancellation 
between different contributions.


�240� = 100 (2�Z + 0.014�h)%

MM.  2014


Would see effect if order-one 
deviation from SM!



Two Higgs Doublets

(see e.g. 1212.5240 by Gupta, Montull, Riva for a clear exposition)

Size of corrections: work in basis of doublet h with VEV 
and H with no VEV. Mixing hH and quartic h3H terms 
exist and are related by absence of H tadpole.

Fermion couplings deviate at ~v2/mH2; 
gauge boson couplings at ~v4/mH4.

Leading effect: shift in 𝛤(h→bb), all branching ratios change.
_

V

V



N. Craig’s slide from 
August CEPC meeting:



Composite Higgs

V (h) ⇠ a�2

16⇡2
cos(h/f) +

b�2

16⇡2
sin

2
(h/f)

Tuning in Higgs VEV for a light Higgs. Specifically: for Higgs 
as a pseudo-Goldstone, expect a potential something like

This has v ~ f unless:
�2 cos(h/f)� (1 + ✏) sin2(h/f) ) hhi2 ⇡ 2✏f2

We tune v << f by making ϵ << 1. 

(Exception: “little Higgs” with extended symmetry structure. 
Pay a big price in complexity.)

(see Contino 1005.4269 for a review)



Composite Higgs
Constraints: S-parameter S ⇡ 4⇡v2

m2
⇢

, m(NDA)
⇢ ⇠ 4⇡fp

N

Higgs couplings: a =
gV V H

gSMV V h

=

s

1� v2

f2

Currently bounds from S and Higgs couplings translate to 
roughly

m⇢
>⇠ 3 TeV, f >⇠ max(

r
N

3

⇥ 400 GeV, 550 GeV)

FCC-ee would bring the ZZh coupling measurement to 
the 0.1% level, probing f ~ 6 TeV and achieving a factor 
of ~ 1000 tuning in the Higgs VEV



Bottom quark couplings
S. Gori, J. Gu, L.-T. Wang 1508.07010 
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Figure 1: The preferred region in the (�gLb, �gRb) plane obtained by the global fit to
(SM+S, T, �gLb, �gRb) with current data. The blue (orange) region corresponds to the
68% (95%) CL and the green dot is the SM prediction (�gLb = �gRb = 0). Left: The
individual constraints from R0

b and from the combination of Ab and A0,b
FB

are shown in red
and cyan, respectively. For these curves, the parameters other than �gLb and �gRb are set
to the best-fit values. Right: The purple contours show the preferred regions for which
↵S(M2

Z)avg. is not included in the fit. The solid line corresponds to a 68% CL and the
dotted line corresponds to a 95% CL.

assumptions, we will consider NP scenarios that contribute to the oblique parameters S

and T along with the modified Zbb̄ couplings. Therefore, our minimal model assumption

is SM together with S, T , �gLb and �gRb treated as free parameters. For later convenience

we will denote it as (SM+S, T, �gLb, �gRb).

With the model assumptions and fit procedure described above, we obtain the con-

straints on �gLb and �gRb, shown in Fig. 1. The blue (orange) region corresponds to a

confidence level (CL) smaller than 68% (95%), while the green dot is the SM prediction

(�gLb = �gRb = 0). In addition, in the left plot we show the individual constraints from

R0

b (red) and the combination of Ab and A0,b
FB

(cyan), for which the parameters other than

�gLb and �gRb are set to the best-fit values. This verifies that R0

b and A0,b
FB

(Ab) are the

most relevant measurements for constraining the Zbb̄ couplings. Given that �gLb and �gRb

are relatively small, the change in R0

b , A
0,b
FB

and Ab can be expanded in terms of �gLb and

�gRb. Keeping the first order, while fixing the other parameters to the best-fit values, we

obtain

7

existing data: some tension with 
Standard Model predictions.
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δ
g L
b
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CEPC+
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FCC-ee

solid line: 68%CL
dotted line: 95%CL

Figure 2: Preferred regions in the (�gLb, �gRb) plane, assuming SM central values for all
measurements. The model assumption is (SM+S, T, �gLb, �gRb), with S, T, �gLb, �gRb all
treated as free input parameters. The solid and dotted lines are 68% and 95% CLs,
respectively. The purple contours assume current precision for all measurements. The
cyan, blue, red and black contours correspond to the estimated precisions for CEPC,
CEPC+, ILC and FCC-ee, respectively. The plot in the right panel is a zoomed-in
version of the one in the left panel.

even for FCC-ee. This is either because the theoretical uncertainty is numerically small

(such as �
th

R0

b which is estimated to be a few times 10�5 [6]) or the observable itself has

little e↵ect on the Zbb̄ coupling constraints, such as the top quark mass. The theoretical

uncertainty of sin2 ✓e↵W also has little impact, since Ab is not very sensitive to it.

3.2 SM-like measurements and constraints on NP

In this Section, we assume the future experimental results agree perfectly with the SM

predictions and the estimated precision of future measurements as described in the pre-

vious Section. The preferred regions in the (�gLb, �gRb) plane obtained by our global fit

are shown in Fig. 2. The plot in the right panel is a zoomed-in version of the one in the

left panel.

From Fig. 2, it is clear that the constraints on the Zbb̄ coupling are significantly im-

proved at the future e+e� colliders, even for the relatively conservative CEPC estimation

(cyan contours), compared to the results of the current precisions (purple contours). With

beam polarization, ILC (red contours in the figure) and FCC-ee (black contours in the

figure) have better measurements of Ab, which gives a better constraint on �gRb and also

13

Future reach: if deviations are 
present, detect at high significance.



Higgs vs. EWPT
Whether the (S, T) fit or Higgs coupling measurements are 
more sensitive to new physics depends on the model. Two 
well-motivated examples:

(from 1411.1054 Fan, MR, Wang)

Composite Higgs: probe scale f via ZH, S-parameter 
Left-handed stops: probe mass via Hgg, T-parameter



Higgs-Z Interplay
I’ve shown you results from fits of Higgs properties, and 
results from Z-pole (and near-Z-pole) physics. But these are 
not really independent. For instance, the S parameter 
operator

h†�ihW i
µ⌫B

µ⌫

will affect the Higgs decay rate to two neutral gauge bosons 
(photons or Z bosons)—though other operators do too. 

In the end, we should perform a global fit all the data together, 
including all the electroweak operators. Use all the information. 
For instance, angular observables in Higgs properties can 
also enhance the physics reach (Craig et al.1512.06877).



Exotic Higgs Decays
Because the Higgs coupling to b-quarks is so small, there is 
ample room for small couplings to new physics to lead to 
significant decay rates beyond the Standard Model.

h

�1

�2

�1

a, s

f

f̄

h

�1

�2

�1

�

(a) (b)

FIG. 17: Two significant fermionic decay topologies of the SM-like Higgs boson in the PQ symmetry

limit. Left (a): depending on whether min{ms, ma} exceeds m�2�m�1 , a(s) may or may not be on

shell. Right (b): to be non-negligible, the radiative �
2

decay requires min{ms, ma} > m�2�m�1 .)

decays, where x, y are SM partons (most likely b, ⌧ , or light jets, see §1.3.2) that reconstruct

the singlet boson mass a or s. If m�2 �m�1 < min{ms, ma}, the principal decay mode of �
2

is the three-body decay �
2

! (a, s)⇤�
1

! (xx)�
1

, while the radiative mode �
2

! �
1

� may

become significant, with Br(h ! �
1

�
1

�) as high as O(0.1). On-shell �
2

! �
1

Z does not

occur until m�2 � m�1 > mZ . Given that we require m�2 � m�1 < mh � 2m�1 , these points

are sparse. Fig. 17 shows the corresponding exotic decay topologies. Further discussion can

be found in Appendix B, together with some example model points which illustrate the main

exotic Higgs decay modes in the PQ-symmetry limit of the NMSSM in Table XXI.

Summary:

The PQ-limit of the NMSSM yields semi-invisible exotic Higgs decays into pairs of light

neutralinos, most typically h ! �
2

�
1

or h ! �
2

�
2

, with �
2

! �
1

a, �
1

s, and a, s !
(ff̄ , gg, ��) [52, 53]. This yields final states of the form (bb̄) + E/T , (⌧⌧) + E/T , (bb̄)(bb̄) + E/T ,

(⌧⌧)(⌧⌧) + E/T , (bb̄)(⌧⌧) + E/T , and the rarer but cleaner � + E/T , (2, 4)µ + E/T , (µµ)(bb̄) + E/T .

Depending on the spectrum, the visible particles may be collimated or isolated. Current

experimental constraints and future prospects for a subset of these decays are discussed in

§12 (� +E/T ), §13 (2� +E/T ), §16 (collimated 2`+X), §17 (collimated 4`+X), §18 (bb+E/T ),

and §19 (⌧⌧ + E/T ).
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review for LHC: Curtin et al., 1312.4992

Pseudoscalars, dark photons, dark matter, 
hidden valleys, …

Little study so far for Higgs 
factories! The leading “direct 
discovery” possibility for the 
circular machines.

e.g.



Exotic Higgs Decays

a

Beam axis

ECAL

� �

�⌘

Figure 2: Left: an illustration of how a long lab-frame lifetime can reduce the angular separation
�⌘(�, �) as measured in the ECAL.Right: The angular separation�⌘ between two photons produced
in the decay a ! �� where the a has a large boost. The orange solid contours correspond to Ea =
375 GeV, as in the decay of a 750 GeV resonance, whereas the purple dashed contours correspond to
Ea = mh/2 = 62.5 GeV. The vertical axis shows the proper lifetime bc⌧ in meters; we assume that the
particle decays at a finite radius L = � bc⌧ . In the blue shaded region, the particle produced in the
decay of the 750 GeV resonance reaches the ECAL (assumed to be at 1.5 meter radius, appropriate
for ATLAS) before it decays.

In general we might have multiple vector-like fields coupling to S. The parameter ✏ breaks the global
U(1) symmetry associated with S. (In [21] the symmetry breaking was chosen to be a tadpole term;
the exact choice has little impact on the phenomenology.) We assume that S gets a VEV and mixes
with the Higgs. We parametrize S as

S =
1p
2
(s+ f) eia/f (3.3)

so that s and a both are canonically normalized. We integrate out L and write the phenomenologically
relevant terms in the Lagrangian (keeping the leading behavior),

Lint = ��0vfhs+
s

f
@µa @

µa+
↵q2

4⇡f
aFµ⌫ F̃

µ⌫ . (3.4)

Here q2 would be replaced by a more complicated factor if there were multiple particles in the loop or
the mass of L does not come entirely from S.

The a boson decay width is

�(a ! ��) =
m3

a

4⇡

✓
↵q2

4⇡f

◆2

=
1

0.74 cm
q4

⇣ ma

1 GeV

⌘3
✓
1 TeV

f

◆2

(3.5)

– 7 –

Could involve particles that 
propagate macroscopic 
distances in the detector 
before decaying!

We care about possible discoveries and not just 
Standard Model measurements. Important to be 
careful when designing detectors that opportunities 
to see exotic physics aren’t unnecessarily closed off! 

/𝑗 /𝑗



Linear vs Circular
• Linear: go to higher energy. Higher direct discovery 

potential if new electroweak states exist.
•   
• Linear: easy to reach top threshold, improve top mass 

as input to electroweak fits. 

• Circular: resonant spin depolarization gives precise 
energy calibration and Z mass & width measurement

• Circular: future as high energy hadron machine. 
Important to build a large enough tunnel that 
foreseeable magnet technology can reach desired 
energies!

Complementary: in an ideal world, do both.



Conclusions
The LHC has great potential to study colored particles, but 
it can miss light uncolored particles or even colored 
particles that decay in ways that mimic backgrounds. 

Higgs factories can exhaustively probe particles that 
interact with Higgs bosons, whether or not the LHC can 
see them. EWPT and Higgs measurements contribute.
Example: the T-parameter could be the strongest constraint 
on folded stops. 

Linear and circular machines have different strengths. 
We must take all the options seriously.



Backup



Other Colliders
Present data LHC14 ILC/GigaZ

↵s(M2

Z) 0.1185± 0.0006 [34] ±0.0006 ±1.0⇥ 10�4 [35]

�↵
(5)

had

(M2

Z) (276.5± 0.8)⇥ 10�4 [36] ±4.7⇥ 10�5 [23] ±4.7⇥ 10�5 [23]

mZ [GeV] 91.1875± 0.0021 [27] ±0.0021 [23] ±0.0021 [23]

mt [GeV] (pole) 173.34± 0.76
exp

[37] ±0.5
th

[23] ±0.6
exp

± 0.25
th

[23] ±0.03
exp

± 0.1
th

[23]

mh [GeV] 125.14± 0.24 [23] < ±0.1 [23] < ±0.1 [23]

mW [GeV] 80.385± 0.015
exp

[34]±0.004
th

[24] (±8
exp

± 4
th

)⇥ 10�3 [23, 24] (±5
exp

± 1
th

)⇥ 10�3 [23, 38]

sin2 ✓`
e↵

(23153± 16)⇥ 10�5 [27] ±16⇥ 10�5 (±1.3
exp

± 1.5
th

)⇥ 10�5 [20, 38]

�Z [GeV] 2.4952± 0.0023 [27] ±0.0023 ±0.001 [39]

Table 1. The precisions of observables in the simplified electroweak fit where we neglect non-oblique corrections

and parametrize the new physics contributions to electroweak observables in S and T . The first five observables

in the table and S, T are free in the fit while the remaining three are determined by the free ones. We quote the

precisions of current, high luminosity LHC and ILC measurements as well as the current central values. Entries

that do not display a theory uncertainty either incorporate it into the experimental error bar or have a small

enough theoretical uncertainty that it can be neglected. At the ILC, the non-negligible theory uncertainties

of the derived observables mW , sin2 ✓`
eft

and �Z come from unknown four-loop contributions assuming that in

the future, the electroweak three-loop correction will be computed. In Sec. 4, we will explain in details the

origins of all the numbers we used.

TLEP-Z TLEP-W TLEP-t

↵s(M2

Z) ±1.0⇥ 10�4 [35] ±1.0⇥ 10�4 [35] ±1.0⇥ 10�4 [35]

�↵
(5)

had

(M2

Z) ±4.7⇥ 10�5 ±4.7⇥ 10�5 ±4.7⇥ 10�5

mZ [GeV] ±0.0001
exp

[2] ±0.0001
exp

[2] ±0.0001
exp

[2]

mt [GeV] (pole) ±0.6
exp

± 0.25
th

[23] ±0.6
exp

± 0.25
th

[23] ±0.02
exp

± 0.1
th

[2, 23]

mh [GeV] < ±0.1 < ±0.1 < ±0.1

mW [GeV] (±8
exp

± 1
th

)⇥ 10�3 [23, 38] (±1.2
exp

± 1
th

)⇥ 10�3 [20, 38] (±1.2
exp

± 1
th

)⇥ 10�3 [20, 38]

sin2 ✓`
e↵

(±0.3
exp

± 1.5
th

)⇥ 10�5 [20, 38] (±0.3
exp

± 1.5
th

)⇥ 10�5 [20, 38] (±0.3
exp

± 1.5
th

)⇥ 10�5 [20, 38]

�Z [GeV] (±1
exp

± 0.8
th

)⇥ 10�4 [2, 26] (±1
exp

± 0.8
th

)⇥ 10�4 [2, 26] (±1
exp

± 0.8
th

)⇥ 10�4 [2, 26]

Table 2. The precisions of electroweak observables in the simplified electroweak fit at TLEP. We consider

three scenarios: TLEP-Z: Z pole measurement (including measurements with polarized beams); TLEP-W :

Z pole measurement plus scan of WW threshold; TLEP-t: Z pole measurement, W threshold scan and top

threshold scan. The TLEP experimental precisions are taken from either [2] and [20], where we always chose

the more conservative numbers. Entries that do not display a theory uncertainty either incorporate it into the

experimental uncertainty or have a small enough theoretical uncertainty that it can be neglected. Theoretical

uncertainties may matter for mZ at TLEP, but we lack a detailed estimate and have not incorporated them.

Similar to ILC, the non-negligible theory uncertainties of the derived observables mW , sin2 ✓`
eft

and �Z come

from unknown four-loop contributions assuming that in the future, the electroweak three-loop correction will

be computed. In Sec. 4, we will explain in details the origins of all the numbers we used.

We will present the first estimate of the reach for new physics of the electroweak program at CEPC
based on the talk in [41]. The precisions of the electroweak observables used in the simplified fit are
summarized in Table. 3.2 The W mass precision is based on the direct measurement in

p
s = 240

GeV running with 100 fb�1 integrated luminosity. The precisions of Z mass and weak mixing angle

2The summary table in the talk [41] quotes an achievable precision for sin2 ✓`
e↵

of 0.01%, but based on the earlier

slides and personal communication with Zhijun Liang we expect that 0.02% is a reasonably optimistic choice.
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We will present the first estimate of the reach for new physics of the electroweak program at CEPC
based on the talk in [41]. The precisions of the electroweak observables used in the simplified fit are
summarized in Table. 3.2 The W mass precision is based on the direct measurement in
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s = 240

GeV running with 100 fb�1 integrated luminosity. The precisions of Z mass and weak mixing angle

2The summary table in the talk [41] quotes an achievable precision for sin2 ✓`
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of 0.01%, but based on the earlier
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Figure 1. Left: 68% C.L. contours of S and T for di↵erent experiments using the simplified fit as described

in Tables 1 and 2. Right: a magnified view of 68% C.L. contours of S and T for ILC and TLEP. We set the

best fit point to be S = T = 0, which corresponds to the current SM values. Our results are in approximate

agreement with the current fit from ref. [33, 40], current/LHC14/ILC results by the Gfitter group [23], the

TLEP result from a talk by Satoshi Mishima [21]. The contours of TLEP-Z and TLEP-W almost overlap on

top of each other.

are estimated for an energy scan on and around the Z pole with (100� 1000) fb�1 luminosity on the
Z pole and 10 fb�1 for 6 energy points close to the Z pole. The weak mixing angle is derived from
the forward-backward asymmetry AFB of the b quark, which is determined from fits to the di↵erential
cross-section distribution d�/d cos ✓ / 1 + cos 2✓ + 8/3AFB cos ✓. We will also present estimates of
Higgs couplings precisions in Table 6 of Section 6.

CEPC

↵s(M2

Z) ±1.0⇥ 10�4 [35]

�↵
(5)

had

(M2

Z) ±4.7⇥ 10�5

mZ [GeV] ±(0.0005� 0.001) [41]

mt [GeV] (pole) ±0.6
exp

± 0.25
th

[23]

mh [GeV] < ±0.1

mW [GeV] (±(3� 5)
exp

± 1
th

)⇥ 10�3 [24, 38, 41]

sin2 ✓`
e↵

(±(4.6� 5.1)
exp

± 1.5
th

)⇥ 10�5 [25, 38, 41]

�Z [GeV] (±(5� 10)
exp

± 0.8
th

)⇥ 10�4 [26, 41]

Table 3. The precisions of electroweak observables in the simplified electroweak fit at CEPC. The experimental

uncertainties are mostly taken from [41]. Entries that do not display a theory uncertainty either incorporate it

into the experimental error bar or have a small enough theoretical uncertainty that it can be neglected. Similar

to ILC and TLEP, the non-negligible theory uncertainties of the derived observables mW , sin2 ✓`
eft

and �Z come

from unknown four-loop contributions assuming that in the future, the electroweak three-loop correction will

be computed. For �Z , we assumed that it has the same experimental uncertainty as mZ .
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Z pole and 10 fb�1 for 6 energy points close to the Z pole. The weak mixing angle is derived from
the forward-backward asymmetry AFB of the b quark, which is determined from fits to the di↵erential
cross-section distribution d�/d cos ✓ / 1 + cos 2✓ + 8/3AFB cos ✓. We will also present estimates of
Higgs couplings precisions in Table 6 of Section 6.
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Table 3. The precisions of electroweak observables in the simplified electroweak fit at CEPC. The experimental

uncertainties are mostly taken from [41]. Entries that do not display a theory uncertainty either incorporate it

into the experimental error bar or have a small enough theoretical uncertainty that it can be neglected. Similar

to ILC and TLEP, the non-negligible theory uncertainties of the derived observables mW , sin2 ✓`
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and �Z come

from unknown four-loop contributions assuming that in the future, the electroweak three-loop correction will

be computed. For �Z , we assumed that it has the same experimental uncertainty as mZ .
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Figure 2. 68% C.L. contours of S and T for CEPC using the simplified fit with inputs in Table 3. For

comparison, we also show the ILC allowed region (red dashed line) derived in Sec 2.We set the best fit point

to be S = T = 0, which corresponds to the current SM values. The dotted purple contour is derived with the

numbers at the higher ends of the estimated ranges in Table 3 while the solid purple contour is derived with

those at the lower ends.

We also performed a profile likelihood fit and present the allowed (S, T ) region for CEPC at 68%
C.L. in Fig. 2. For comparison, we put the ILC result in the same plot. For the more optimistic
evaluation in which all precisions take the lower end values of the estimated ranges in Table 3, the
ILC and CEPC have similar sensitivities to new physics. For the more pessimistic evaluation based
on precisions at the higher ends of the estimated ranges, the CEPC allows larger S mostly because of
the worse precision of sin2 ✓`

e↵

compared to ILC.

3.1 Hypothetical Improvements of CEPC EWPT

In this section, we will consider possible improvements of electroweak observable precisions at CEPC
and study how they a↵ect the CEPC’s sensitivity to new physics. There are four potential improve-
ments of electroweak observables: mt, mW , sin2 ✓`

e↵

and �Z (together with mZ), which are listed in
Table 4.

The top quark mass gives the largest parametric uncertainties on the derived SM observables in
the global fit (more details could be found in Sec. 4.2.2) and thus improving its precision might improve
the fit. In the fit for CEPC above, we assumed the precision of the top mass after the HL-LHC running.
A top threshold scan is not included in the current CEPC plan, so CEPC itself cannot improve the
precision of mt. However, a top threshold scan is part of the ILC plan. The possibility exists if the
ILC program with the top threshold scan is implemented before or at the same time of CEPC, the
input value of mt precision for the CEPC electroweak fit could be improved by a factor of ⇠ 10. The
precision of the W mass could be slightly improved by a WW threshold scan to 2 MeV [41]. Finally,
the uncertainty of sin2 ✓`

e↵

in the current CEPC plan is still dominated by the statistical uncertainty,
which is 0.02% while the systematic uncertainty is 0.01%. If the luminosity of the o↵-peak Z running
could be increased by a factor 4 to 40 fb�1 (at each energy), the overall uncertainty of sin2 ✓`

e↵

could be
reduced down to 0.01%, which is 2.3⇥10�5. Another possible way to reduce the uncertainty of sin2 ✓`

e↵

down to 0.01% is to use polarized electron/positron beams, which would require more infrastructure.
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Figure 4. 68% C.L. contours of S and T for ILC (red dashed), the optimistic case of current CEPC plan

(named as the CEPC baseline in the figure; purple solid), the optimistic CEPC plan with sin2 ✓W (green solid)

or �Z (green dashed) improved, both sin2 ✓W and �Z improved (blue dotted), and three observables sin2 ✓W ,

�Z and mt improved (blue solid).

4.1 Nuisance Parameters

4.1.1 The Top Mass mt

Recently, the first combination of Tevatron and LHC top mass measurements reported a result of
173.34 ± 0.76 GeV, with the error bar combining statistical and systematic uncertainties [37]. New
results continue to appear, with a recent CMS combination reporting 172.38±0.10 (stat.)±0.65 (syst.)
GeV [42] and a D0 analysis finding 174.98± 0.76 GeV [43]. These results have similar error bars but
fairly di↵erent central values, which may be a statistical fluke or may in part reflect ambiguities in
defining what we mean by the top mass (see [44] and Appendix C of [45]). This suggests that we
proceed with some caution in assigning an uncertainty to the top mass in any precision fit.

The relevant physics issues have been reviewed recently in refs. [46–48]. At the LHC, kinematic
measurements are expected to reach a precision of 0.5 or 0.6 GeV on the top mass, but theoretical
uncertainty remains in understanding how the measured mass relates to well-defined schemes like the
MS mass. Other observables like the total cross section are easier to relate to a choice of perturbative
scheme, but will have larger uncertainties. The top mass is a very active area of research, in part for
its importance in questions of vacuum stability in the Standard Model (see, for example, refs. [49–
52]). As a result, we can expect continued progress in understanding how to make the best use of
the LHC’s large sample of top quark data to produce more accurate mass determinations. For a
sampling of recent ideas in this direction, see [53–56]. We will follow ref. [23] in assuming that the
LHC will achieve a measured precision of 0.6 GeV and that further experimental and theoretical e↵ort
will reduce the theoretical uncertainty on the meaning of this number to 0.25 GeV. We will also use
their estimate of the current theoretical uncertainty as 0.5 GeV, although we suspect this is overly
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uncertainties also receive corrections at order O(↵2↵s),O(↵↵2

s),O(↵3) and O(↵↵3

s) beyond the
leading mt terms. The unknown final state QCD correction at order O(↵5

s) will also contribute.
The total theory error adds up to about 0.5 MeV. Once the bosonic two-loop and the complete
three-loop results are known, the theory error will be reduced to about 0.08 MeV. Notice that
similar to mZ , �Z also has theoretical uncertainties from initial state radiation, fermion-pair
radiation and line-shape parametrization, which we do not include under the assumption that
they will be accurately computed in the future.

In our fits, we assumed that by the time when future e+e� colliders are built, complete three-loop
electroweak corrections have been computed and the theory uncertainties originate from the four-loop
and higher-order corrections.

Current mt mZ mh ↵s �↵
(5)

had

(M2

Z)

�mW [MeV] 4.6 2.6 0.1 0.4 1.5

� sin2 ✓`
e↵

(10�5) 2.4 1.5 0.1 0.2 2.8

��Z [MeV] 0.2 0.2 0.004 0.30 0.08

ILC mt mZ mh ↵s �↵
(5)

had

(M2

Z)

�mW [MeV] 0.2 2.6 0.05 0.06 0.9

� sin2 ✓`
e↵

(10�5) 0.09 1.5 0.04 0.03 1.6

��Z [MeV] 0.007 0.2 0.002 0.05 0.04

TLEP-Z(W ) mt mZ mh ↵s �↵
(5)

had

(M2

Z)

�mW [MeV] 3.6 0.1 0.05 0.06 0.9

� sin2 ✓`
e↵

(10�5) 1.9 0.07 0.04 0.03 1.6

��Z [MeV] 0.1 0.01 0.002 0.05 0.04

TLEP-t mt mZ mh ↵s �↵
(5)

had

(M2

Z)

�mW [MeV] 0.1 0.1 0.05 0.06 0.9

� sin2 ✓`
e↵

(10�5) 0.06 0.07 0.04 0.03 1.6

��Z [MeV] 0.004 0.01 0.002 0.05 0.04

CEPC mt mZ mh ↵s �↵
(5)

had

(M2

Z)

�mW [MeV] 3.6 0.6-1.3 0.05 0.06 0.9

� sin2 ✓`
e↵

(10�5) 1.9 0.4-0.7 0.04 0.03 1.6

��Z [MeV] 0.1 0.05-0.1 0.002 0.05 0.04

Table 5. Parametric errors from each free parameter in the fit for current, ILC, TLEP-Z (TLEP-W ), TLEP-t

and CEPC scenarios.

We list the breakdown of parametric uncertainties for current and future experimental scenarios
in Table 5. It is clear that currently the top and Z boson masses are the dominant contributions to
the parametric uncertainties. ILC can measure mt precisely, and Z mass remains as the dominant
uncertainty. When both are measured very precisely at TLEP-t, the dominant source of the parametric
uncertainty is �↵

(5)

had

(M2

Z). In Sec. 5, we will examine how improvement of each observable’s precision
a↵ects the sensitivity to new physics.

5 To Do List for a Successful Electroweak Program

So far we have studied the reach of future e+e� colliders for new physics parametrized by S and T ,
based on estimated precisions of electroweak observables in the literature. In this section, we want to
answer slightly di↵erent questions: what are the most important observables whose precisions need to
be improved to achieve the best sensitivity of EWPT? What levels of precision are desirable for these
observables? The answers are already contained in the simplified fits for di↵erent experiments but we
want to make it clearer by decomposing the fit into three steps and changing the error bar of only one
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