
Higgs measurements at \mathbf{F} Manqi Ruan

Higgs...

Higgs factories

luon Collider Conceptual Lavout

Higgs Measurements

 $g_{_{F}}$

At any Higgs factory, we can measure

 $\sigma(I \rightarrow H \rightarrow F) \sim g_{_{I}}^{_{2}}Br(H \rightarrow Final State) \sim$

 $g_{I}^{2}g_{F}^{2}/\Gamma_{total}$

Event rates with specified

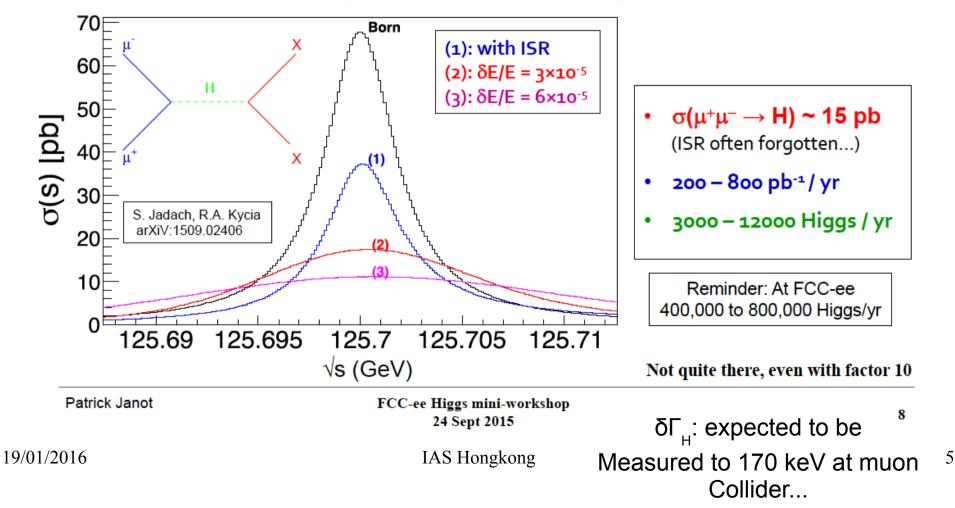
generation/decay mode:

Differential distributions: operator,

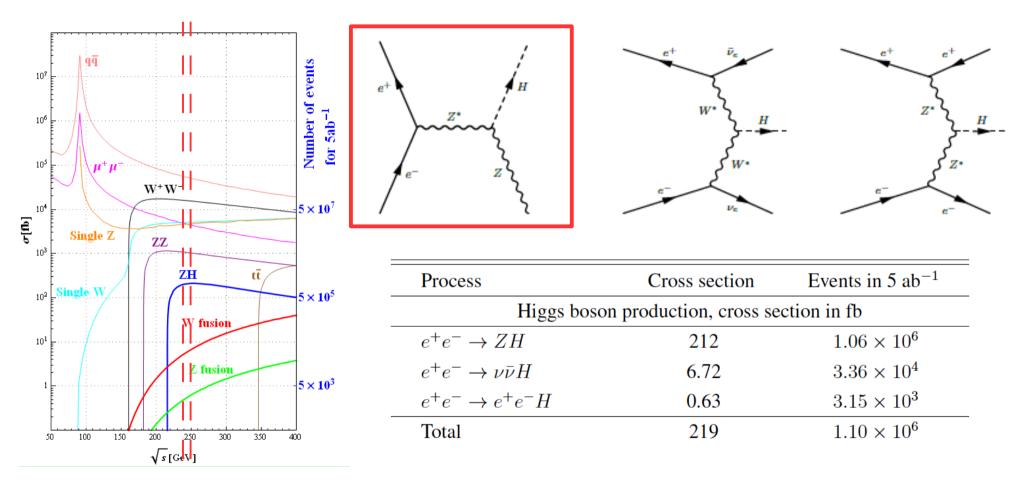
quantum numbers

Besides:

g


Inclusive cross section measurement of Higgsstralung processes at electron-positron Collider: $\sigma(ZH)$

Higgs width scan at muon collider


<u> / Time</u>

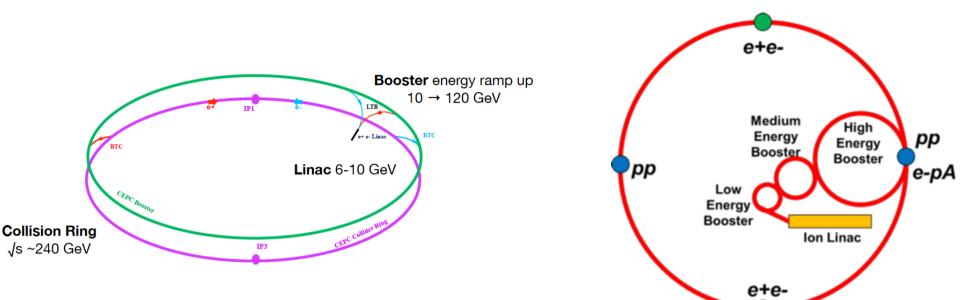
Higgs boson production (2)

- Muons are heavy, unlike electrons: m_u/m_e ~ 200
 - Large direct coupling to the Higgs boson: $\sigma(\mu^+\mu^- \rightarrow H) \sim 40,000 \times \sigma(e^+e^- \rightarrow H)$
 - Much less synchrotron radiation, hence potentially superb energy definition
 - $\delta E/E$ can be reduced to 3-4 × 10⁻⁵ with more longitudinal cooling
 - → Albeit with equivalent reduction of luminosity: 2 8 × 10³¹ cm⁻²s⁻¹

Higgs program at CEPC

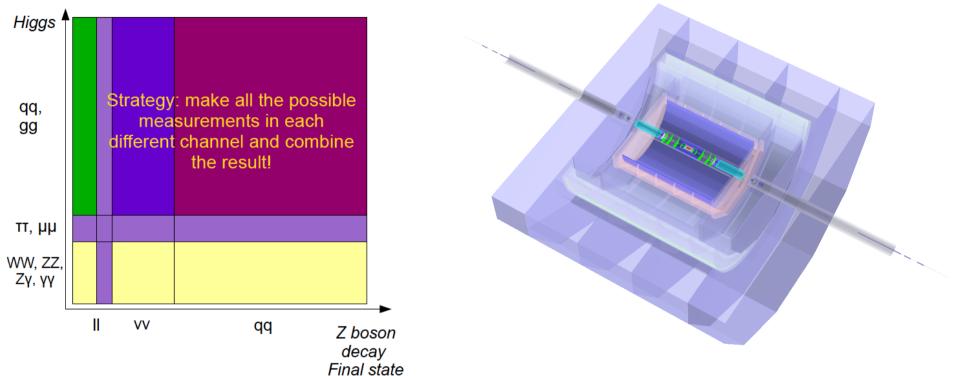
 σ (ZH), determined model independently from recoil mass method

Observables: Higgs mass, CP, $\sigma(ZH)$, event rates ($\sigma(ZH, vvH)^*Br(H->X)$)

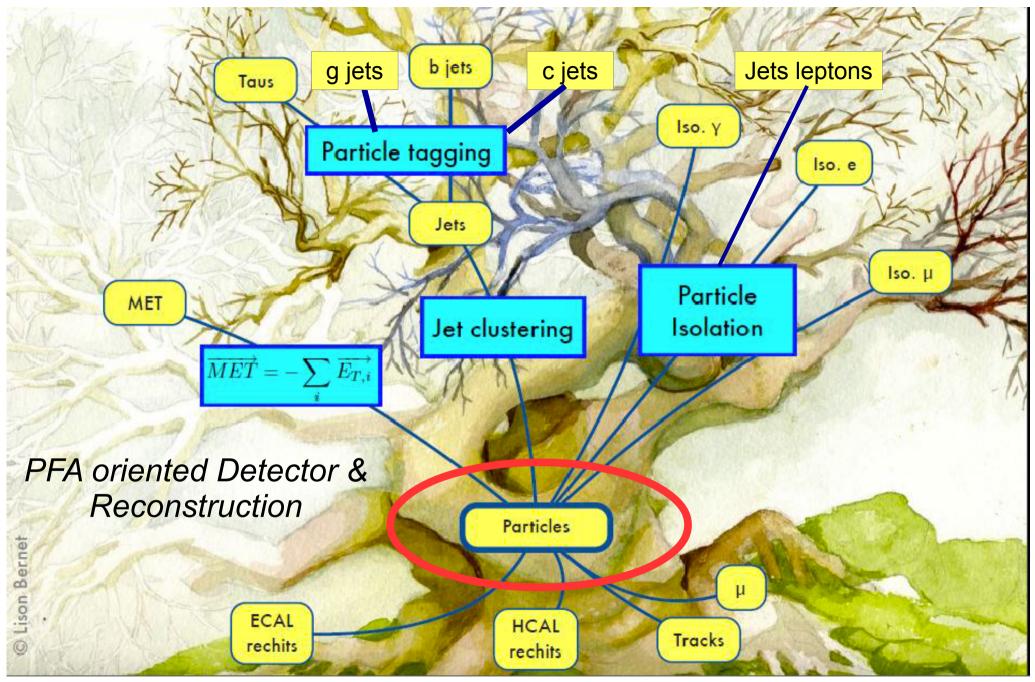

19/01/2016 Derive: Higgs width, branching ratios & absolute value of coupling constants 6

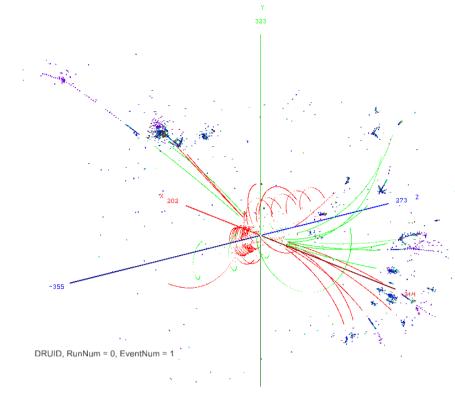
Determine absolute Higgs couplings at e+ecollider

- $\sigma(ZH)$, measured from recoil mass method
- Event rates, measured by tagging specified generating & decay mode:
 - $\sigma(ZH)^*Br(H \rightarrow X)$
 - $\sigma(vvH, eeH)^*Br(H \rightarrow X)$
- Absolute Higgs width can be calculated, from:
 - $\sigma(ZH) \& \sigma(ZH)^*Br(H \rightarrow ZZ) \sim g^4(HZZ)/\Gamma_{Higgs}$
 - σ (ZH)*Br(H→bb), σ (vvH)*Br(H→bb), σ (ZH)*Br(H→WW), σ (ZH)
- Combine the Branching ratio measurement & Width measurements, the coupling between Higgs boson and its decay products can be measured...
 - Γ_{higgs} and Br(H \rightarrow X) ~ g²(HXX)/ Γ_{Higgs}



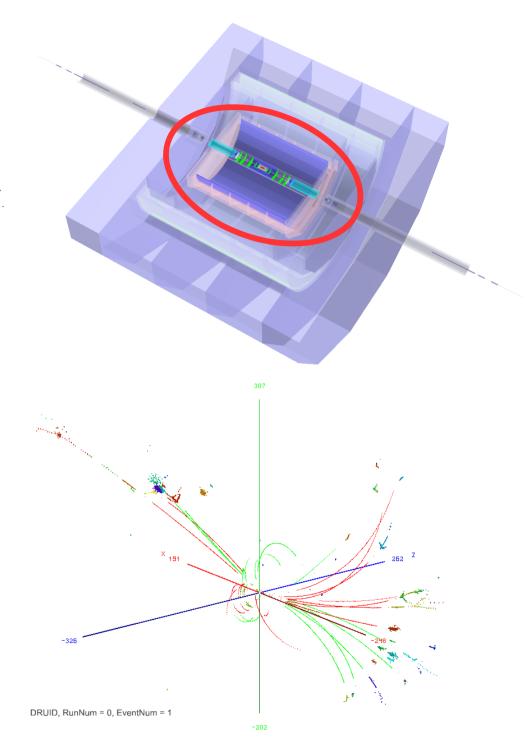
CEPC-SPPC


- Electron-positron collision phase .
 - Higgs factory: collision at ~240 250 GeV center-of-mass energy, Instant luminosity ~ 2*10³⁴ cm⁻²s⁻¹, 1M clean Higgs event at 2 IP over 10 years
 - Z pole operation for precise EW measurement
- Proton-Proton collision phase •
 - center-of-mass energy constrained by tunnel circumference and high-field dipole
 - Peak luminosity ~ $1*10^{35}$ cm⁻²s⁻¹ (*ArXiv: 1504.06108, discussion on needed Luminosity*) _
- Tunnel circumference: 54 km in the baseline design. Longer tunnel to be evaluated. 19/01/2016


CEPC Conceptual detector, developed from ILD

A detector reconstruct all the physics object (lepton, photon, tau, Jet, MET, ...) with high efficiency/precision

High Precision VTX located close to IP: b, c, tau tagging High Precision Tracking system: $\delta(1/Pt) \sim 2*10^{-5}(GeV^{-1})$ PFA oriented Calorimeter System (~o(10⁸) channels): Tagging, ID, Jet energy resolution, ect



From Hits to Final State Particles

Goal: ... Access the origin of every detector hit ...

See the talk of Gang: simulation & reconstruction at CEPC 19/01/2016

$Z \rightarrow 2 \text{ muon,}$ $H \rightarrow 2 \text{ b}$

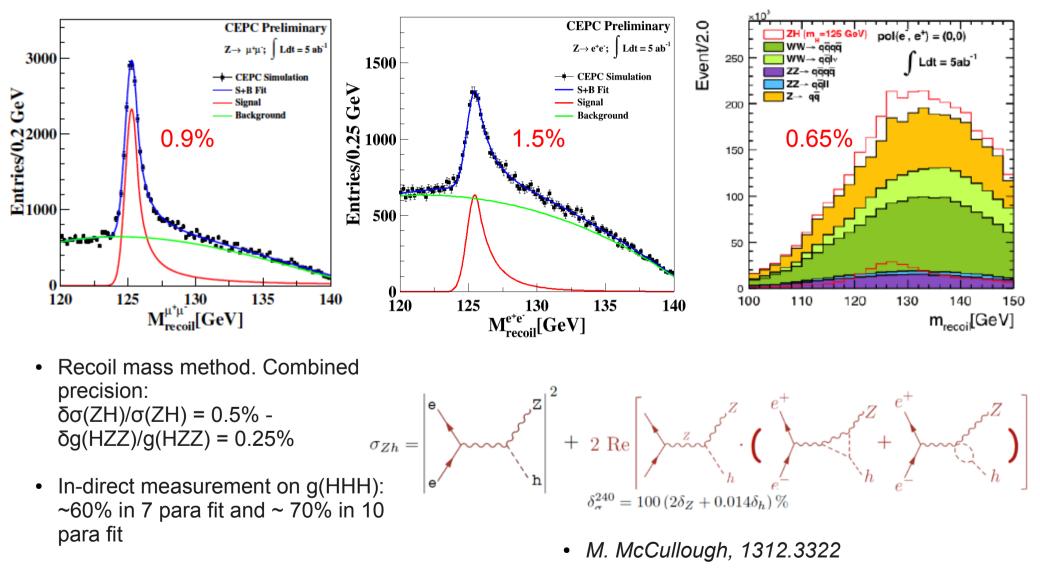
 $Z \rightarrow 2 \text{ jet},$ $H \rightarrow 2 \text{ tau}$

Extremely clean @ CEPC

Higgs finding efficiency ~o(1)

ZH→4 jets

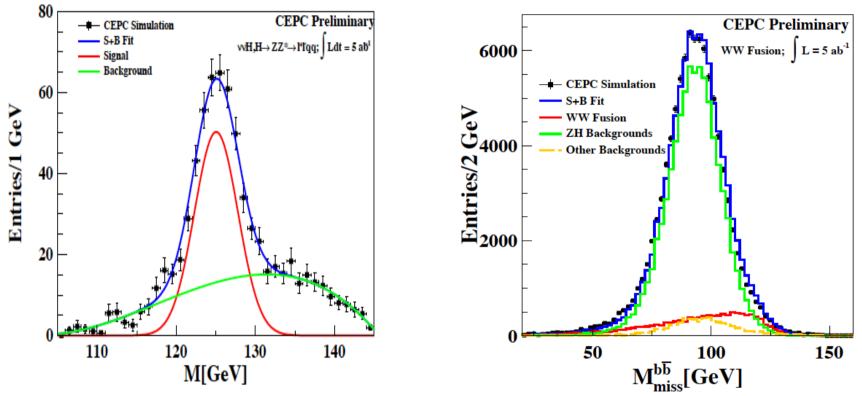
Z→2 muon H→WW*→eevv



CMS Experiment at the LHC, CERN Data recorded: 2012-May-27 23:35:47.271030 GMT Run/Event: 195099 / 137440354

> Specific Final State... Overlap with lots of PU events Higgs finding efficiency: o(10⁻³)

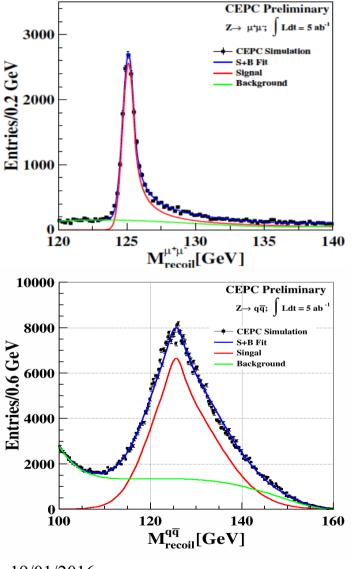
IAS Hongkong

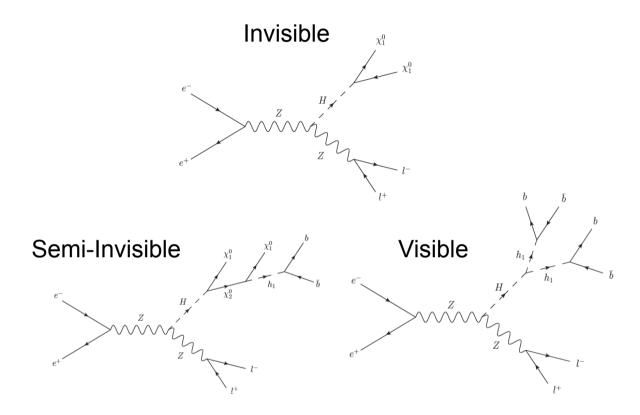

Model-independent measurement of $\sigma(ZH)$

19/01/2016

IAS Hongkong

Higgs width measurement

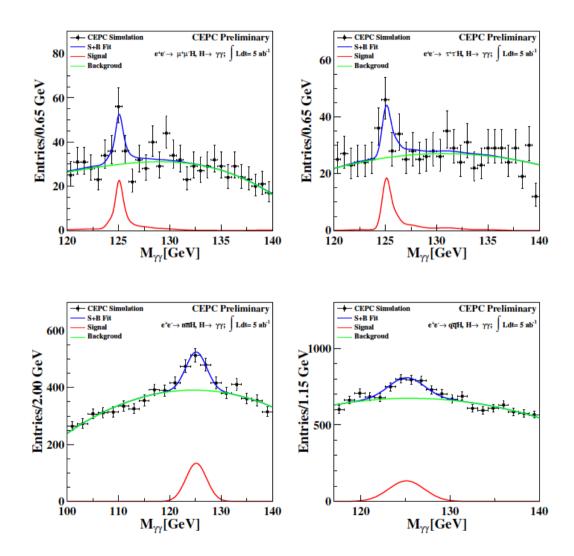


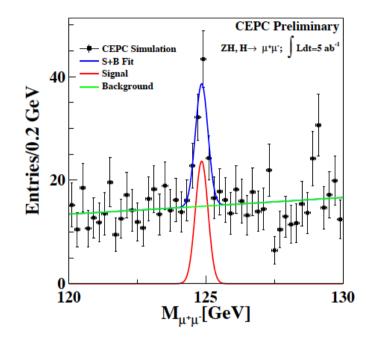

Br(H->ZZ): relative error of 5.8% achieved by combing of a limited set of final states. Extrapolation of TLEP result leads to 4.3% relative error

 $\sigma(vvH)$ *Br(H->bb): relative error of 2.8%

A combined accuracy of 2.8% for the Higgs total width measurements 19/01/2016 IAS Hongkong

Higgs invisible/exotic decays




Constrain the final state recoil to Z boson: probe the Higgs invisible/exotic decays Br(H->inv) are limited to 0.28% at 95% CL

Several benchmark exotic decay verified: 5-sigma deviation expected at Br(H->exo) of 0.1%

19/01/2016

Higgs rare decay

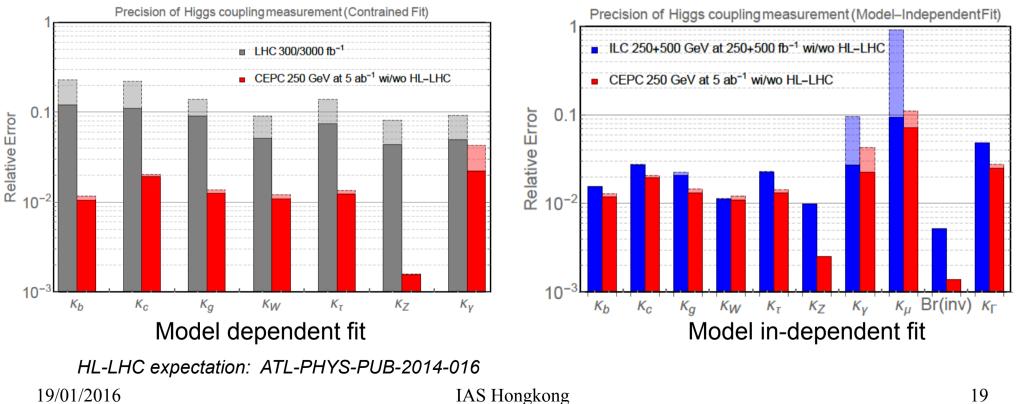
Br($H \rightarrow \gamma \gamma$): photon identification efficiency & ECAL intrinsic resolution

Br(H \rightarrow µµ):

Muon identification & Track Momentum resolution

Event rate & Branching ratio measurements

Table 3.12 Estimated precisions of Higgs boson property measurements at the CEPC. All the numbers refer to relative precision except for M_H and BR($H \rightarrow inv$) for which ΔM_H and 95% CL upper limit are quoted respectively.

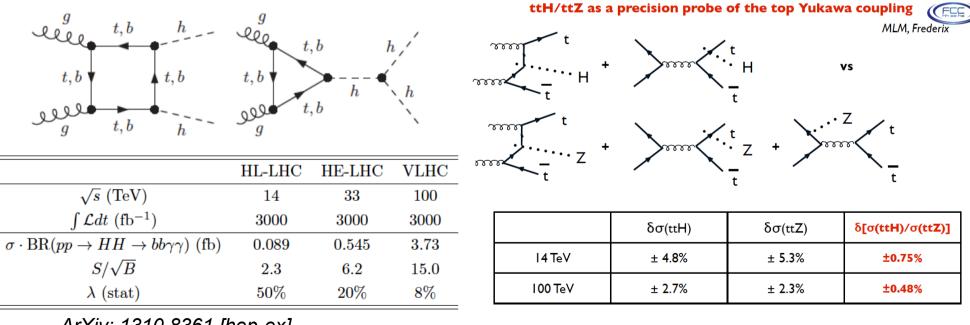

ΔM_H	Γ_H	$\sigma(ZH)$	$\sigma(\nu\nu H) \times \mathrm{BR}(H \to bb)$
5.9 MeV	2.8%	0.51%	2.8%
Decay mode		$\sigma(ZH) \times BR$	BR
$H \to b b$		0.28%	0.57%
$H \to cc$		2.2%	2.3%
$H \to gg$		1.6%	1.7%
$H\to\tau\tau$		1.2%	1.3%
$H \to WW$		1.5%	1.6%
$H \to ZZ$		4.3%	4.3%
$H ightarrow \gamma \gamma$		9.0%	9.0%
$H ightarrow \mu \mu$		17%	17%
$H \to \mathrm{inv}$			0.28%

19/01/2016

Global fit and interpretation

Higgs couplings to fermions and gauge bosons predicted by the Standard Model (SM): g(hff; SM) and g(hVV; SM); deviations from the SM couplings parameterised as:

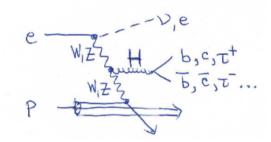
$$\kappa_f = \frac{g(hff)}{g(hff;SM)}, \kappa_V = \frac{g(hVV)}{g(hVV;SM)}$$

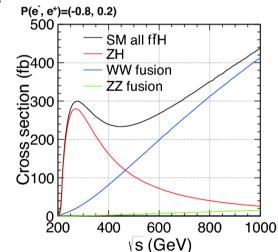

At SPPC

o(10⁹⁻¹⁰) Higgs

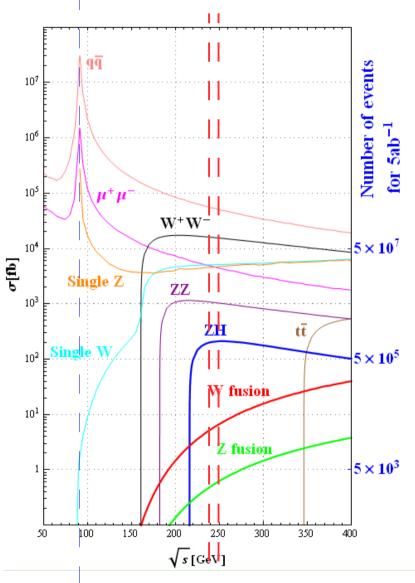
Event rates measured at pp collision $\sigma \cdot BR(X \to H \to Y) = \sigma_X \frac{\Gamma_Y}{\Gamma_{tot}}$

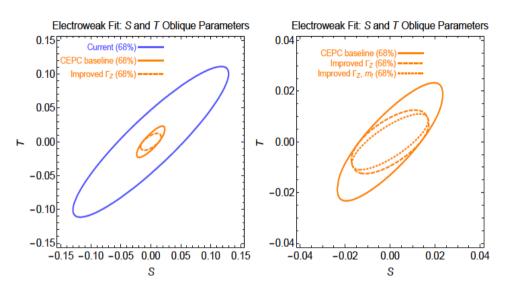
Complementary to CEPC result: better access/interpretation to rare decay/generation...


Direct access to g(HHH) & g(Htt) and better access to Higgs rare decays



ArXiv: 1310.8361 [hep-ex]


Complementary between CEPC and others


- CEPC + pp colliders
 - Enhance rare decay measurements, better g(Hγγ) & g(Hµµ) measurements
 - Better interpretation of Higgs rare generation measurements
 - Access to g(Htt) & g(HHH)
- CEPC + LHeC
 - Improve the width measurement
- CEPC + ILC/CLIC
 - Improve the width measurement
- Absolute Higgs coupling measurements need the input from e+e- or muon collider. The Higgs total width can be measured to 2.8% at CEPC; better than that of muon collider

EW@CEPC

• EW precision measurements with significantly reduced uncertainties:

 $R_b, A_{FB}^b, \sin \theta_W^{eff}, m_Z, m_W, N_{\nu} \cdots$

	Present data	CEPC fit	
$lpha_s(M_Z^2)$	0.1185 ± 0.0006 [23]	$\pm 1.0 imes 10^{-4}$ [24]	
$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	$(276.5\pm0.8) imes10^{-4}$ [25]	$\pm 4.7 \times 10^{-5}$ [26]	
m_Z [GeV]	91.1875 ± 0.0021 [27]	± 0.0005	
m_t [GeV] (pole)	$173.34 \pm 0.76_{\mathrm{exp}}$ [28] $\pm 0.5_{\mathrm{th}}$ [26]	$\pm 0.2_{exp} \pm 0.5_{th}$ [29, 30]	
m_h [GeV]	125.14 ± 0.24 [26]	< ±0.1 [26]	
$m_W [{ m GeV}]$	$80.385\pm0.015_{\rm exp}$ [23]±0.004 $_{\rm th}$ [31]	$(\pm 3_{ m exp} \pm 1_{ m th}) imes 10^{-3}$ [31]	
$\sin^2 heta_{ m eff}^\ell$	$(23153\pm16) imes10^{-5}$ [27]	$(\pm 2.3_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5}$ [32]	
Γ_Z [GeV]	2.4952 ± 0.0023 [27]	$(\pm {f 5}_{ m exp} \pm 0.8_{ m th}) imes 10^{-4}$ [33]	
$R_b \equiv \Gamma_b / \Gamma_{\rm had}$	0.21629 ± 0.00066 [27]	$\pm 1.7 imes 10^{-4}$	
$R_\ell\equiv\Gamma_{ m had}/\Gamma_\ell$	20.767 ± 0.025 [27]	± 0.007	

19/01/2016

IAS Hongkong

Detector optimization

- Specify benchmark channels & scan the key detector design/parameters: see Jianming's talk (*Detector requirement for Higgs factory*)
- Preliminary list Benchmark channels:
 - Higgs
 - σ(ZH),
 - μμH: muon id & tracker performance
 - eeH: electron id, brems photon recovering & momentum resolution
 - qqH: Jet Clustering, JER
 - Br(H \rightarrow bb, cc, gg): VTX & Flavor Tagging, Jet Clustering
 - $Br(H \rightarrow di photon, di muon)$: ECAL intrinsic resolution & tracker performance
 - $Br(H \rightarrow di tau)$: PFA & Tau finding
 - Br(H->WW, ZZ): need every thing
 - EW
 - ISR/Isolated photon: ECAL
 - Afb(B): Jet lepton

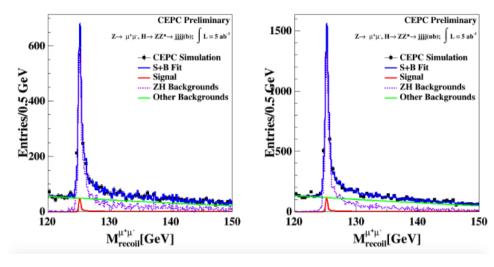
Detector optimization

- Key detector design/parameters...
 - Global: Tracker Size, Detector Size & Solenoid Strength
 - Interface: MDI & Shielding
 - Technology choice
 - Tracker: TPC Silicon
 - Realistic digitizer, intrinsic performance & material budgets...
 - Calorimeter: PFA
 - Local structure, sensor technology, absorber type, granularity, layer thickness, dynamic range & noise rates...
 - VTX layout (constrained by MDI)
- Remark: Dedicated digitizer, reconstruction/analysis algorithm will be developed/adjusted. Standard set of benchmark performance plots are expected at different geometry setting

Summary

- CEPC-SPPC: precision measurement of the Higgs boson at electron-positron machine and search for New Physics at ~100 TeV pp collisions
 - CEPC provides
 - **absolute** measurements to the Higgs couplings.
 - **σ(ZH)**, invisible/exotic branching ratios, Total Width
 - Rich EW & flavor programs
 - SPPC: naturalness, dark matter, electro-weak phase transition, etc
- Synergies between e+e- & other facilities, especially e+e- & pp collider
- Current focus: physics performance & detector optimization

Your ideas & Help: more than welcome!

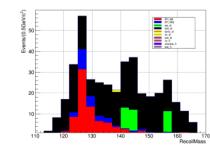

Thank you

Br(H->ZZ*) measurement: preliminary

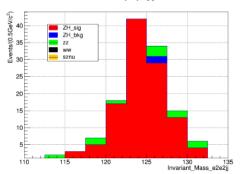
	Z->	taus	vv	qq
ZZ*->4q	888	444	2.64k	9.24k
2v + 2q	508	254	1.51k	5.29k
2l + 2q	170	85	508	1778
4v	73	36	216	756
2l + 2v	49	24	145	508
41	8	4	24	86
X + tau	120	60	356	1246

• ZH->ZZZ*->µµjjjj

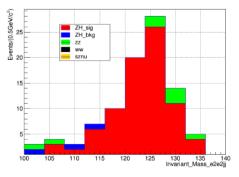
precision: 48.3%


ZH->ZZZ*->µµvvjj

ZH->ZZZ*->eevvjj


ZH->ZZZ*->vvµµjj/vvjjµµ

11.2%



ZZZ*->vvµµjj:9.7%

ZZZ*->vvjjµµ:11.7%

Higgs measurements at e+e- & proton colliders

	Productivity	Finding efficiency	Remarks
LHC	Run 1: 10 ⁶ Run 2/HL: 10 ⁷⁻⁸	~o(10 ⁻³)	Lots of Pile Up; Large theoretical/systematic uncertainties. Access to signal strength in major decay channels; Access to g(HHH)/g(Htt).
CEPC	10 ⁶	~o(1)	Absolute measurements in very clean environment; o(0.1%) accuracy on key observable (g(HZZ)); Excellent precision to total width, invisible/exotic decay ratios; Indirect constrain to g(HHH)/g(Htt);
SPPC	10 ⁹⁻¹⁰	?	Good access to Higgs rare decay/generation, g(HHH)/g(Htt),

High complementarity between electron-positron & pp colliders

Scan of the SM Higgs resonance (5)

Summary of precision measurements (after ~10 years of running)

Error on	μμ Collider	ILC	FCC-ee
m _H (MeV)	0.06	30	8
$\Gamma_{ m H}$ (MeV)	0.17	0.16	0.04
9_{ньь}	2.3%	1.5%	0.4%
g _{Hww}	2.2%	o.8%	0.2%
g _{Ηττ}	5%	1.9%	0.5%
g _{Hγγ}	10%	7.8%	1.5%
g _{нµµ}	2.1%	20%	6.2%
g _{HZZ}	-	o.6%	0.15%
g _{Hcc}	-	2.7%	0.7%
g_{Hgg}	-	2.3%	0.8%
BR _{invis}	-	<0.5%	<0.1%

Not sure of the practical use of such a precision on m_H

The Higgs width is best measured at ee colliders

These Higgs couplings are best measured at ee colliders

The SM Higgs coupling to muons is <u>the</u> added value of a μμ collider *

These Higgs couplings are <u>only</u> measured at ee colliders *

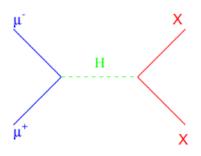
* pp colliders have their say, too

• FCC-hh best for g_{HHH} and g_{ttH} , perhaps $g_{H\mu\mu}$; FCC (ee, hh) for rare decays

 $\label{eq:BR} \textbf{BR}(\textbf{H} \rightarrow \mu\mu) \text{ can also be measured with \% precision at FCC-hh. (Will be already 10% after LHC.)}$

Patrick Janot

FCC-ee Higgs mini-workshop 24 Sept 2015


29

17

Scan of the SM Higgs resonance (1)

Resonant production

$$\sigma(\mu^+\mu^- \to H^0) = \frac{4\pi\Gamma_H^2 Br(H^0 \to \mu^+\mu^-)}{(\hat{s} - M_H^2)^2 + \Gamma_H^2 M_H^2}$$

Major background:

 $\mu^+\mu^- \rightarrow Z/\gamma^* \rightarrow XX$

- Convoluted with
 - Beam energy spectrum
 - Initial state radiation (ignored in most studies)
- The measurement of the lineshape gives access to
 - The Higgs mass, m_H
 - The Higgs width, Γ_H
 - The branching ratio into $\mu^+\mu^-$, BR(H $\rightarrow \mu\mu$)
 - Hence, the coupling of the Higgs to the muon, g_{Hµµ}
 - Some branching fractions and couplings, with exclusive decays

Patrick Janot

9

SAPPHIRE & LHeC

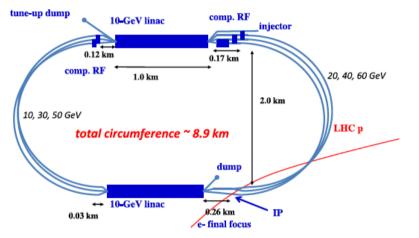


Figure 1: LHeC ERL layout including dimensions.

Table 3: LHeC Higgs factory comparison (where 1 year is
taken to be 10^7 s at design luminosity).

machine	LHeC	LHeC-HF	SAPPHiRE
luminosity	0.1	2	0.06
$[10^{34}]$	(ep)	(ep)	$(\gamma\gamma)$
$cm^{-2}s^{-1}$]			> 125 GeV)
cross section	$\sim 200 \text{ fb}$	$\sim 200 \text{ fb}$	>1.7 pb
no. Higgs/yr	2k	40k	>10k

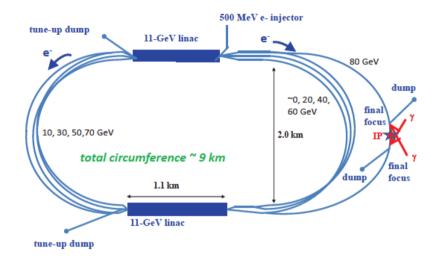
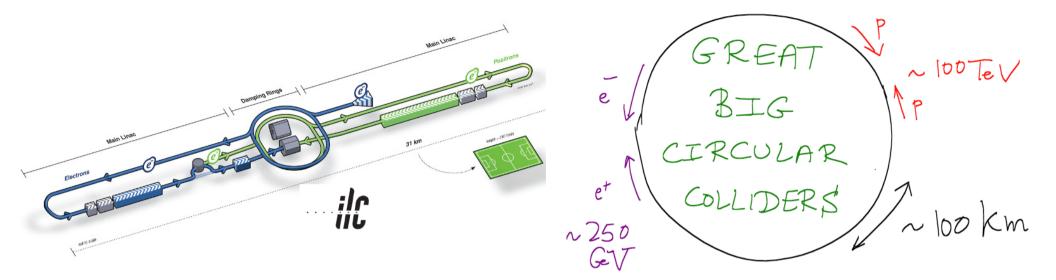



Figure 2: Sketch of a layout for a $\gamma\gamma$ collider, "SAP-PHiRE," based on the LHeC recirculating SC linacs [8].

e⁻e⁺ Higgs factory: Linear or Circular

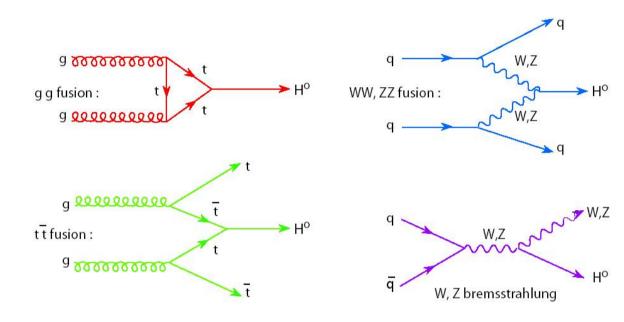
	Linear: ILC, CLIC	Circular: FCC, CEPC
Pro	C.o.M energy can be upgraded to 1-3 TeV Longitudinal polarized beam Power pulsed detector	Cost-efficient, component-mature technology Multiple interaction point High luminosity & beam quality
Con	Expensive Single interaction point, might need push- pull	Center of mass energy limited in e ⁺ e ⁻ phase (but can be upgraded to ~ 100 TeV in pp phase) No beam polarization at high energy No power pulse

Vertex & Silicon Tracking at ILD

- VTX: Inner most layer Radius: ~15 mm, Spatial resolution: ~ 5 μm
- Massive usage of silicon pixel/strips in the tracking system & VTX: ensures good accuracy in Impact parameter & momentum measurement

PFA Oriented Calorimeter

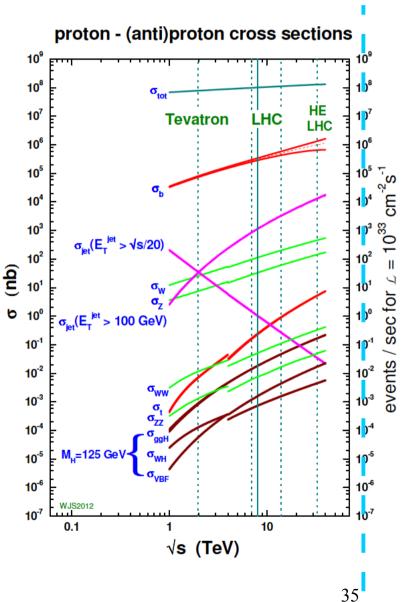
Development of micro electronics: ultra-high granularity! #channels, 10⁴-10⁵ (CMS) → 10⁸ channels (I/LC calorimeters) Imaging calorimeter in 8-D (or even 5-D) in/a high DAQ rate... Role of calorimeter Measure the incident energy


Identify and measure each incident particles with sufficient energy

10cm

DRUID, RunNum = 0, EventNum = 23

20 GeV Klong reconstructed @ ILD Calo


Higgs @ LHC

PP collider: High productivity but low finding efficiency ~already 10⁶ Higgs in Run 1 data...

Higgs signal: found via the decay final states.

 $\sigma(AA \rightarrow H \rightarrow BB) \sim g^2(HAA)g^2(HBB)/\Gamma_{total}$

IAS Hongkong