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Outline 

• Introduction (DA limiting factors and 
requirements) 

• DA in the arcs 
• Comparison of nonlinear sources of FF 
• Simulation results, radiation influence 
• Conclusion 
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High luminosity e+e‐ colliders 
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• Head‐on collider with low IP beta (~1 mm) 
     (preCDR CEPC) 

• Nanobeam collider 
     (Super KEKB) 

• CW collider 
     (CW CEPC, FCC‐ee, SuperB/Italy, SuperCT/BINP) 
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DA limiting factors 
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*) Large dispersion is required for local chromaticity correction in the low‐beta head‐on collision as well 
as in the CW scheme. For this reason the IR design for both schemes is almost same. But the beam 
separation in the arcs (pretzel) for the head‐on scheme can destroy the symmetry and reduce the DA. 
**) Single aperture first quad is undesirable for large collision angle due to the strong fringe sextupole. 
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DA requirements 
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Beam lifetime due to bb effects. 
Recommendation from 
simulations by D.Shatilov: 
 
DA ≈ 10σx x 50σy 
(incl.errors, misalignments,etc.)  

Vertical beam tail growth example due to bb effects in FCC‐ee at 120 GeV 
(D. Shatilov)  

Effective injection (conventional type, on‐energy, off‐axis) 
 
M. Aiba et al. FCCee review at CERN, 14.10.2015 
Ax ≈ 13 mm         N ≈ 16σx 
J. Seeman. FCC week, Washington DC, March 25, 2015  
Ax ≈ 16 mm         N ≈ 15σx 
K. Oide. FCC‐ee Optics Meeting, CERN, 11 Sep. 2015 
N ≈ 14.6σx @175 GeV   N ≈ 30σx @45.6 GeV (@2.5σe) 

Required DA ≈ 20σx x 50σy 
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Interaction region DA 
• Due to the low vertical beta (≤ 1 mm) at the IP a 

paraxial approximation is not longer valid and the 
next (octupole‐like) terms should be included. 

• Due to the low vertical beta at the IP chromatic 
effects are severe and require strong sextupoles for 
compensation. In spite the sextupoles are usually 
arranged in the “ – I pairs”, the high order effects 
reduce the DA.  

• Due to the high (~few km) betas in the first FF 
quadrupoles, the fringe field nonlinearities as well as 
the field errors are emphasized.  
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Optics blocks example 

‐I 

‐I 

Chromatic section: strong sextupoles, large beta 

First quad fringes: large strength and beta  
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IP: Kinematic terms: low beta 

Strong Crab Sextupoles 

A. Bogomyagkov, FCC‐ee 2015 



Final focus example 

D0=2 m 
Q0: L=3.6 m, G=90 T/m @ 175 GeV 
D1=0.4 m 
Q1: L=2 m, G=84 T/m @ 175 GeV 

IP 

L*(D0) QD0 
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Old version, for 
example only 
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DA size simple 
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Strong low order resonance limits DA directly. Weak high order resonances overlap and form 
stochastic layer that also limits DA. Nonlinearity α = dν/dJ brings particle to resonance.  

FODO lattice with fixed sextupoles but α = dν/dJ varied 
by octupoles.  

α = dν/dJ << 1, DA small  

α = dν/dJ >> 1, DA small  

α = dν/dJ ≈ 0, 
DA large  



IR nonlinearities figure of merit 

How to compare power of different IR nonlinearities for different 
machines? Fortunately all three main ones (kinematics, fringes and – 
I sextupole pairs) are 3rd order (octupole‐like) in leading term and we 
propose to use the first order nonlinear detuning 

∆ν = 𝛼𝛼𝛼𝛼, 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 =
𝐴𝐴2

2𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜
 

Advantages 
• The detuning α is calculated by 1st order of perturbation theory.  
• α is additive for different sources  

∆ν = 𝛼𝛼 𝛼𝛼1 + 𝛼𝛼2 + 𝛼𝛼3 + ⋯ = 𝛼𝛼 � 𝐹𝐹1 + 𝐹𝐹2 + 𝐹𝐹3 + ⋯ 𝑑𝑑𝑑𝑑  

                                For estimation and comparison! 
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Final quad QD0 and chromaticity 
Defining the QD0 (thin lense) focusing requirements as αo = –αI one 
can find   ( )
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Note: For FF µ’ corresponds to the chromatic function excitation introduced by 
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Kinematics 

For the extremely low β* and large transverse momentum the first 
order correction of non‐paraxiality is given by  
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The main contribution comes from the IP and the first drift: 

where 2L is the distance between 2 QD0 quads around the IP. 
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QD0 Fringe Fields 

Quadrupole fringe field nonlinearity is defined by 

( ) 24/62/)( 224
1

2
1 yxykypxskH y −′′+′−=

and the vertical detuning coefficient is given by  
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E.Levichev, P.Piminov, arXiv: 0903.3028 
A.V.Bogomyagkov et al. IPAC13,  WEPEA049, 2615 

Or, with above assumptions (k10 is the central strength): 
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Chromatic sextupoles 
Vertical chromatic sextupole  pair separated by –I transformer gives 
the following coordinate transformation in the first order*)  

*) A.Bogomyagkov, S.Glykhov, E.Levichev, P.Piminov  http://arxiv.org/abs/0909.4872 
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By analogy to the octupole and using the expression for the FF 
chromaticity we found for the vertical detuning (2 pairs) 
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http://arxiv.org/abs/0909.4872


Discussion 
Kinematic effect increases with L* 
increase and β* decrease. 
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L* increase and β* decrease. It is 
sensitive to the QD0 central 
gradient k10. 

Sextupole pair effect increases with 
L* increase and β* decrease. Short 
sextupole and large dispersion are 
desirable.  

In spite the estimations are very rough, they seem reasonable and are confirmed by 
tracking simulation.  
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CEPC parameters 
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CEPC‐SppC PreCDR, March 2015. 
L* = 1.5 m, βy

* = 1.2 mm, βyFFmax ≈ 3 km, βCCY ≈ 6 km, ηCCY ≈ 5 cm  
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V.detuning for different lattices 

1) SuperC‐Tau CDR, Novosibirsk, 2009. 
2) K.Oide, FCC Kick‐off Meeting, Geneva, 14 Feb 2014 
3) T.M.Taylor, PAC 1985 
4) A.Bogomyagkov, FCC‐ee asymmetric design, BINP, Dec 2015. 
5)

  CEPC‐SPPC PreCDR, v.II, March 2015. 

LEP3) 

CERN 
Super C‐Tau1) 

Novosibirsk 
SuperKEKB2) 

Japan 
FCC‐ee/AB 

20154) 
CEPC*) 

IHEP 

103 β*(m) 10 0.8 0.26 1 1.2 

L*(m) 3.5 0.6 0.76 2 1.5 

‐ξ* 700 1500 5600 4000 2500 

‐K1(m‐2) 0.11 12.8 5.1 0.15 0.75 

LQD0(m) 2 0.2 0.32 3.6 1.25 

βSY (m) 180 2000 3700 ≈6000 

ηSY (cm) 13 46 15 ≈5 

10‐6 αf (m‐1) 0.015 0.34 2.6 0.1 0.14 

10‐6 αk (m‐1) 0.008 0.11 1.3 0.24 0.12 

10‐6 αsp (m‐1) NA 0.53 0.52 3.5 12 
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*) I have no precise data, many guesses. 
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Comparison with simulation 

Kin Fringe Sextupole pair 
Simulation 

αxx (cm‐1) 0.6 11 ‐23 
αxy =αyx (cm‐1) 3.8 153 ‐712 
αyy (cm‐1) 755 1137 ‐1.8×105 

Estimation 
αyy (cm‐1) 844 830 ‐0.2×105 

Simulation considers all quads fringes (included those 
strong in the Y chromatic section) and realistic beta 
behavior  
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Simulation 
• We use the following tracking codes: MAD8 and Acceleraticum1) 

(BINP home made). 
• The tunes are fixed at (0.53, 0.57) to get large luminosity. 
• Dynamic aperture and other nonlinear characteristics are 

defined from tracking for different sources to found their power 
ranking. 

• We try to compensate (mitigate) every source locally by 
optimizing the phase advance, insertion of additional sextupoles 
and octupoles. 

• We collect all the ring sections together and optimize 6D DA 
globally (damping, tapering, errors, BB effects, etc. can be 
included at this stage). 

1) D.Einfeld, Comparison of lattice codes, 2nd NL Beam Dynamics Workshop, Diamond Light Source, 2009 
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Recent example 
FCC‐ee DA optimization (November 2015)  
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P. Piminov 
Acceleraticum 

SY5 OY1 SY1 SY2             SY4 SY3 OY2                                                                … → SD (arcs) 
SX6 SX5 OX1 SX1 SX2        SX4 SX3 OX2   … → SF (arcs) 
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SY5, SX6, SX5 – increase of the noninear (dynamic) bandwidth 
SY1, SY3 – main vertical section for the FF chromaticity compensation. Arranged in the – I pair. 
SY2, SY4 – sextupole corrector to compensate the finit length effect of SY1 and SY3. Also arranged in the – I pair.   
SX1, SX3 – main horizontal section for the FF chromaticity compensation. Arranged in the – I pair. 
SX2, SX4 – sextupole corrector to compensate the finit length effect of SX1 and SX3. Also arranged in the – I pair. 
OY1, OY2, OX1, OX2 – octupole correctors to mitigate the kinematic and FF fringes effects 
SD, SF – vertical and horizontal sextupoles in the arcs.    
  



DA FCCee with/without damping 
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Conclusion 

• For high performance e+e‐ factories DA limitation is a challenging 
problem. 

• Main limiting factors are: vertical sextupole chromatic section in 
IR, FF quads fringes, arc sextupoles.  

• Local + global compensation can schemes provide reasonable DA. 
• Damping at high energy is an important factor increasing the DA. 
• Remaining problems: interference of CW sextupoles with other IR 

nonlinearities reduces the DA; proper (distributed) radiation in 
the arcs; quads radiation contribution (“damping DA”); magnet 
tapering; detector solenoid (and other MDI elements) effects; 
machine errors and misalignments; BB effects.   
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