IAS Program on "The Future of High Energy Physics" HKUST Jockey Club IAS, Hong Kong, Jan 18-21, 2016

Searches for top and Higgs compositeness at the LHC and beyond

Aurelio Juste ICREA/IFAE, Barcelona

Composite Higgs Paradigm

- Models where the Higgs boson is a composite state give a natural solution to the hierarchy problem.
- The Higgs boson can be light if it is a PNGB emerging from the breaking of a global symmetry (e.g. SO(5)→SO(4)).
- Partial compositeness:
 - SM fermions mix linearly with composite fermions.
 - Fermion mass generation needs separate composite partner for each SM fermion.
- Basic phenomenology:
 - Deviations in Higgs couplings to fermions and vector bosons.
 - New heavy gauge bosons (since vector boson scattering not fully unitarized by the composite Higgs).
 - New fermionic resonances \rightarrow searches for top/bottom partners.
 - Partially composite top quark can be strongly coupled to the composite sector → anomalous four-top-quark production.
 - Indirect effects: deviations in top couplings to EW gauge bosons, and in precision EW observables.

Outline

- Introduction
- Direct searches for vector-like quarks at the LHC
 - Overview of Run 1 results
 - Run 2 plans and prospects
- Constraints from precision measurements
 - Higgs and top couplings
 - Precision EW observables
- Summary and outlook

Vector-Like Quarks: Production and Decay

- Top/bottom partners are vector-like quarks (left and right components transform the same under SU(2)_L). VLQs present in many BSM scenarios.
- Production:
 - Pair production via QCD: "universal" mode (just depends on m_Q).
 - → Focus of Run 1 searches
 - Single production via EW: potentially important at high m_Q (depends on coupling strength).
 - → Important to consider in Run 2
- Decay: Q→Wq, Zq, Hq all with sizable BR
 JHEP 11, 030 (2009) (triplets not included)

	Label	Charge	Decay mode
T singlet	Τ _s	+2/3	T → W⁺b, Zt, Ht
B singlet	Β _S	-1/3	B → W⁻t, Zb, Hb
(T,B) doublet	ΤΒ _d	(+2/3, -1/3)	T→Zt, Ht B→W ⁻ t
(X,T) doublet	XT _d	(+5/3, +2/3)	X→W⁺t T→Zt, Ht
(B,Y) doublet	BY _d	(-1/3, -4/3)	B→Zb, Hb Y→W ⁻ b

Strategies

- Very rich phenomenology, depending on the heavy quark mass and quantum numbers.
- Goal is to probe full BR plane in as model independent possible way.

→ Searches specialized on particular heavy quark decay modes, but also able to probe part of the plane.

- → Multiple searches required, ideally overlapping in the plane.
- Searches typically have considered one heavy quark at a time, assuming other resonances do not contribute to the signature. Single production typically neglected.
 - → Something to improve upon for Run 2.

Signatures

• There are many signatures that could be exploited, and which are ultimately needed both to enhance discovery potential and model discrimination. Just looking at pair-production:

		50(2)				
		T _S	B _S	TB _d	XT _d	BY _d
	41 (2Z)	ΤŢ	BB	TT,BB	$T\overline{T}$	BB
7	4l (1Z)	ΤŢ	BB	TT,BB	$T\overline{T}$	$B\overline{B}$
4 leptons	41 (0Z)	ΤŢ	BB	TT,BB	$T\overline{T}, X\overline{X}$	$B\overline{B}$
	31 (1Z)	ΤŢ	Β Β	TT,BB	$T\overline{T}$	
3 leptons	31 (0Z)	ΤŢ	BB	TT,BB	$T\overline{T},X\overline{X}$	
	l+l- (1Z)	ΤŢ	Β Β	TT,BB	$T\overline{T}$	$B\overline{B}$
OS dileptons 🧖	l+l- (0Z)	ΤŢ	Β Β	TT,BB	$T\overline{T},X\overline{X}$	$B\overline{B}, Y\overline{Y}$
SS dileptons 🛶]±]±		$B\overline{B}$	$B\overline{B}$	$X\overline{X}$	
lepton+iets	l± (4j)	ΤŢ		$T\overline{T}$	$T\overline{T}$	$Y\overline{Y}$
	l± (≥6j)	$T\overline{T}$	ВĒ	TT,BB	$T\overline{T},X\overline{X}$	

And not even including all-hadronic final state and Higgs tagging!

• Of course, some of them are more challenging and/or powerful than others...

Overview of Run 1 Results

Vector-Like Top: 1-lepton Searches

- Searches targeting high BR(T_{2/3}→W⁺b), but also sensitive to other decay modes.
- Most sensitive searches exploit lepton+jets final state. Also searches on all-hadronic mode but lower sensitivity.
- Basic strategy:
 - Presel: 1 lepton, high E_T^{miss} , \geq 4 jets/ \geq 1 b-tags.
 - Reconstruct boosted hadronic W boson.
 - Tight cuts: high H_T (*), additional cuts to exploit boosted topology for W bosons.
 - Uses reconstruct heavy quark mass.
 - All BRs tested. Best exclusion for $BR(T \rightarrow Wb)=1$.

(*)
$$H_T = \sum p_T^{\text{jets}} + p_T^{\text{lep}} + E_T^{\text{miss}}$$

95% CL obs (exp) limits [100% WbWb]: ATLAS: m_{T} >770 (795) GeV CMS: m_{T} >912 (851) GeV Limits also apply to $Y_{-4/3}$, since BR($Y_{-4/3}$ ->W⁻b)=1.

Vector-Like Top: 1-lepton Searches

- Search targeting high BR(T_{2/3}→Ht), but designed as broad-band search sensitive to multiple decay modes: TT→HtHt, HtWb, HtZt, ZtZt, ZtWb
- Basic strategy:
 - Presel: 1 lepton, high E_T^{miss} , ≥ 5 jets/ ≥ 2 b-tags.
 - Analyze H_T spectrum across 8 channels: (5 jets, ≥6 jets) x (2 b-tags, 3 b-tags, ≥4 b-tags)
 ≥6 jets/≥3 b-tags channels split in low/high M_{bb}
 - Signal-depleted channels used to constrain in-situ bkg uncert. through likelihood fit to data.
- All BRs tested. Best exclusion for $BR(T \rightarrow Ht)=1$.

95% CL obs (exp) limits: Singlet: m_T>**765** (720) GeV Doublet: m_T>**855** (820) GeV BR(T→Ht)=1: m_T>**950** (885) GeV

Vector-Like Top: Multilepton Searches

- Inclusive multilepton searches. Consider multiple search channels that are eventually combined.
- CMS search:

	OS1	OS2	SS	Multile	ptons
$H_{\rm T}$ (GeV)	> 300	> 500	> 500	>5	500
$S_{\rm T}$ (GeV)	>900	> 1000	> 700	>7	700
Number of jets	2 or 3	≥ 5	≥ 3	≥ 3	3
b tags	≥ 1	\geq 2	≥ 1	≥ 1	L
$E_{\rm T}^{\rm miss}$ (GeV)	> 30	> 30	> 30	>3	30
$M_{\mathrm{b}\ell}$ (GeV)	> 170				
$M_{\ell\ell}$ (GeV)	>20	>20	>20	>2	20
Z boson veto	yes	no	no	nc)
	OS1	OS_{2}^{2}	2	SS	Multileptons
Total background	17.4 ± 3	$8.7 84 \pm$	12 16.5	5 ± 4.8	3.7 ± 1.3
Data	20	86		18	2

Events

10³

10²

10

1

10⁻¹

-2 -3

SRVLQ0

SRVLQ1

SR4t0

SRVLQ2

SR4t1

SRVLQ3

SRVLQ4

SRVLQ5

SR4t2

SRVLQ6

SR4t3

SRVLQ7

SR4t4

Significance

• ATLAS search:

$e^{\pm}e^{\pm} + e^{\pm}\mu^{\pm} + \mu$	$\iota^{\pm}\mu^{\pm} + ee$	$e + ee\mu + e\mu\mu + \mu\mu\mu, N_{3}$	$_{j} \geq 2$	
	$N_b = 1$		SRVLQ0	
$400 < H_{\rm T} < 700~{\rm GeV}$	$N_b = 2$	$E_{\rm T}^{\rm miss} > 40 {\rm GeV}$	SRVLQ1	
	$N_b \ge 3$		SRVLQ2	
	$N_b = 1$	$40 < E_{\rm T}^{\rm miss} < 100~{\rm GeV}$	SRVLQ3	
		$E_{\rm T}^{\rm miss} \ge 100 ~{ m GeV}$	SRVLQ4	
$H_{\rm T} \ge 700~{ m GeV}$	N O	$40 < E_{\rm T}^{\rm miss} < 100~{\rm GeV}$	SRVLQ5	
	$N_b = 2$	$E_{\rm T}^{\rm miss} \ge 100 ~{\rm GeV}$	SRVLQ6	
	$N_b \ge 3$	$E_{\rm T}^{\rm miss} > 40 { m ~GeV}$	SRVLQ7	

Apparent excess in VLQ6 and VLQ7 SRs ←

Vector-Like Top: Multilepton Searches

- Inclusive multilepton searches. Consider multiple search channels that are eventually combined.
- CMS search:

	OS1	OS2	SS	Multilep	tons
$H_{\rm T}$ (GeV)	> 300	> 500	> 500	> 50	00
$S_{\rm T}$ (GeV)	>900	> 1000	> 700	>70	00
Number of jets	2 or 3	≥ 5	≥ 3	≥ 3	
b tags	≥ 1	≥ 2	≥ 1	≥ 1	
$E_{\rm T}^{\rm miss}$ (GeV)	> 30	> 30	> 30	> 30)
$M_{\rm b\ell}$ (GeV)	> 170	—		_	
$M_{\ell\ell}$ (GeV)	>20	>20	>20	> 20)
Z boson veto	yes	no	no	no	
	OS1	OS	2	SS]	Multileptons
Total background	17.4 ± 3	$3.7 84 \pm$	12 16.5	5 ± 4.8	3.7 ± 1.3
Data	20	86		18	2

➔ No significant excess

• ATLAS search:

	SRVLQ5/SR4t2	SRVLQ6/SR4t3	SRVLQ7/SR4t4
$t\bar{t}W/Z$	$1.87 \pm 0.09 \pm 0.80$	$2.46 \pm 0.11 \pm 1.06$	$0.57 \pm 0.05 \pm 0.25$
$t\bar{t}H$	$0.31 \pm 0.04 \pm 0.05$	$0.44 \pm 0.04 \pm 0.06$	$0.08 \pm 0.02 \pm 0.02$
Dibosons	$0.33 \pm 0.14 \pm 0.10$	$0.04 \pm 0.12 \pm 0.03$	$0.00 \pm 0.12 \pm 0.00$
Fake/Non-prompt	$1.03 \pm 0.97 \pm 0.60$	$0.00 \pm 1.02 \pm 0.28$	$0.04 \pm 0.83 \pm 0.24$
Q mis-Id	$1.17 \pm 0.16 \pm 0.38$	$1.09 \pm 0.14 \pm 0.34$	$0.30 \pm 0.09 \pm 0.10$
Other bkg.	$0.16 \pm 0.08 \pm 0.02$	$0.23 \pm 0.08 \pm 0.05$	$0.14 \pm 0.08 \pm 0.08$
Total bkg.	$4.9 \pm 1.0 \pm 1.0$	$4.3 \pm 1.1 \pm 1.1$	$1.1 \pm 0.9 \pm 0.4$
Data	6	12	6
<i>p</i> -value	0.46	0.029	0.036

1.9σ 1.8σ

Vector-Like Top: Multilepton Searches

- Dedicated search probing $TT \rightarrow Zt + X$ (*).
- Multiple search channels that are eventually combined.

Event selection					
	Z boson candida	te preselection			
	$\geq 2 \text{ cent}$	ral jets			
	$p_{\mathrm{T}}(Z) \ge 1$	$150 {\rm GeV}$			
Dilepton	channel	Trilepto	n channel		
=2 le	eptons	≥ 3 leptons			
$\geq 2 b$ -ta	gged jets	≥ 1 b-tagged jet			
Pair production	Single production	Pair production	Single production		
$H_{\rm T}({\rm jets}) \ge 600 {\rm ~GeV}$	≥ 1 fwd. jet	$ \geq 1$ fwd. jet			
Final discriminant					
<i>m</i> (.	Zb)	$H_{ m T}({ m jets+leptons})$			

arXiv:1409.5500

(*) Not orthogonal to inclusive multilepton search.

14 Events / 150 GeV Events / 200 GeV ATLAS Data 95% CL obs (exp) limits: L dt = 20.3 fbATLAS 8 $Ldt = 20.3 \text{ fb}^{-1}$ Z+light jets Other bkg. √s=8 TeV 12 <u>√s</u> = 8 TeV Z+bottom jet(s) WΖ Zt+X search: Trilepton Dilepton ŧŦ tt+V Other bkg 10 6 BB (650 GeV) BB (650 GeV) Singlet: m_T>**655** (625) GeV TT (650 GeV) TT (650 GeV) 5 8 Uncertainty ////// Uncertainty Doublet: m_T>**735** (720) GeV \geq 2 b-tags \geq 1 b-tag 6 BR(T→Zt)=1: m_T>**810** (810) GeV 4 **2**È Inclusive multilepton search Data / bkg 1.5 Data / bkg Singlet: m_T>**590** (660) GeV 0.5 600 800 1000 1200 1400 0 200 400 400 800 1200 1600 2000 0 m(Zb) [GeV] H_T(jets+leptons) [GeV]

Vector-Like Top: All-Hadronic Searches

• CMS has performed several VLQ searches in the allhadronic final state using jet substructure techniques.

TT→Ht+X, H→bb

- CA R=1.5 jets used as input to HepTopTagger and Higgs tagging (based on subjet b-tagging)
- \geq 1 HTT candidate (p_T>200 GeV).
- ≥1 Higgs candidate (p_T>150 GeV), m_i>60 GeV
- Categorize events depending on number of Higgs candidates (=1 and ≥2).
- Uses likelihood discriminant based on $H_{\rm T}$ and Higgs invariant mass.

95% CL obs (exp) limits [100% HtHt]: m_B>**900** (810) GeV

Competitive with inclusive CMS search, which combines 1-lepton and multilepton searches

arXiv:1311.7667

Vector-Like Top: Complementarity

14

ATLAS

Vector-Like Top Summary

Vector-like top masses below ~720 GeV excluded for any possible combination of BRs.

	ATLAS (*)	CMS
Vector-like T BR Hypothesis	95% CL Limit on m _T (GeV) obs (exp)	95% CL Limit on m _T (GeV) obs (exp)
100% Wb (chiral, Y)	770 (795)	920 (890)
100% Zt	810 (810)	790 (830)
100% Ht	950 (885)	770 (840)
T singlet	800 (755)	740 (800)
T in (T, B) doublet	855 (820)	760 (820)

Vector-Like Bottom Summary

Vector-like bottom masses below ~740 GeV excluded for any possible combination of BRs.

	ATLAS (*)	CMS
Vector-like B BR Hypothesis	95% CL Limit on m _в (GeV) obs (exp)	95% CL Limit on m _B (GeV) obs (exp)
100% Wt (chiral, X)	730 (790)	880 (890)
100% Zb	790 (800)	750 (740)
100% Hb	700 (625)	900 (810)
B singlet	685 (670)	780 (760)
B in (B, Y) doublet	755 (755)	810 (800)

Run 2 Plans and Prospects

10

10-4

 $\sigma(pp \rightarrow T\overline{T}) (pb)$

Capitalize on Run 1 experience

- Most sensitive channels
- Complementary channels
- Missing channels
- Most powerful experimental strategies
- Improved background estimation techniques
- Reducing the impact of systematic uncertainties

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
 - Large increase in production cross section at high masses
 - Continue to exploit pair production
 above 1 TeV
 - Add single production above 1 TeV
 - Optimize strategy at high mass

QCD **pair prod**. model indep., relevant at low mass

single prod. with **t** model dep. coupling pdf-favoured at high mass

single prod. with b favoured by small b mass dominant when allowed

- Boosted techniques for all-hadronic modes crucial.
- Must ensure proper helicity propagation in decay.

- Capitalize on Run 1 experience •
- Fully exploit increased CM energy •
- Plan according to integrated luminosity
 - 2015:
- e on Run 1 experience loit increased CM energy ording to integrated luminosity 5: Recorded 3.9 fb⁻¹ For the most part Run 1-style analyses with ٠ early data.
 - Expect to exceed Run 1 sensitivity.
 - High-priority to checking Run 1 excesses.
 - Optimize searches for discovery!
 - 2016:
 - Collisions restart on April 25, 2016.
 - Expect ~20-35 fb⁻¹
 - Full Run 2 (2015-2018):
 - Expect ~100 fb⁻¹

- <µ>=13
- Reached 5.1x10³³ cm⁻²s⁻¹ (Run 1: 7-8x10³³ cm⁻²s⁻¹)

The LHC Run 2 and Beyond

Eventually will multiply by x1000 the 2015 dataset!

We are at the beginning of a ~20 year program!

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches
 - Use of simplified models
 - Combination of pair and single production
 - Take into account effect of extra resonances in some cases

arXiv:1211.5663

$$\mathcal{L} = \frac{g_w}{2} \left[c_R^{XV} \overline{X}_R \forall t_R + c_L^{XV} \overline{X}_L \forall t_L \right] + \frac{g_w}{2} \left[c_L^{XV} \overline{X}_L \forall b_L + c_R^{XV} \overline{X}_R \forall b_R \right]$$

$$+ \left[c_R^{Xh} h \,\overline{X}_L t_R + c_L^{Xh} h \,\overline{X}_R t_L \right] + \left[c_L^{Xh} h \,\overline{X}_R b_L + c_R^{Xh} h \,\overline{X}_L b_R \right] + \text{h.c.} \,,$$

		couplings						
partner (MG name)	Q	W^{\pm}	Z	h	$W^{\pm}W^{\pm}$			
$T_{2/3}$ (T23)	2/3	$c_L^{TW}, \ c_R^{TW}$	c_L^{TZ}, c_R^{TZ}	$c_L^{Th}, \ c_R^{Th}$				
$B_{1/3}$ (B13)	-1/3	$c_L^{BW}, \ c_R^{TW}$	$c_L^{BZ}, \ c_R^{BZ}$	$c_L^{Bh}, \ c_R^{Bh}$				
$X_{5/3}$ (X53)	5/3	$c_L^{XW}, \ c_R^{XW}$						
$Y_{4/3}$ (Y43)	-4/3	$c_L^{YW}, \ c_R^{YW}$						
$V_{8/3}$ (V83)	8/3				$c_L^{VW},\ c_R^{VW}$			

Typical spectrum in

minimal coset SO(5)/SO(4)

2000

23

•

•

٠

arXiv:1507.05628 Capitalize on Run 1 experience Cross section [fb] 10 $\sqrt{s} = 13 \text{ TeV}$ -QCD+HG Fully exploit increased CM energy •••• QCD Plan according to integrated luminosity ----- HG Improved interpretation of searches G→TT m_G =3.5 TeV Make sure we don't miss a signal! Non-standard production Heavy gluon: $G \rightarrow Q\overline{Q}, m_{G} \ge 2m_{Q}$ 1000 2000 3000 4000 5000 6000 $G \rightarrow Q\bar{q}, m_{Q} + m_{q} < m_{G} < 2m_{Q}$ $M(X'_{2/3}\overline{X'}_{2/3})$ [GeV] Heavy W'/Z': ٠ arXiv:1404.5558 $s_L = 0.5 m_C = 0.9 \text{ TeV}$ $W' \rightarrow Tb$, Bt, XT, depending on custodian mass and mixing WZ+Wh $T_{5/3} T_{2/3}$ Tb + Bt 0.50 . . . TB 0.20 BR W' 0.10 tb 0.05 0.02 └─ 1000 1200 1600 1800 2000 2200 2400 1400 m_{W'}(GeV)

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches

Make sure we don't miss a signal!

- Non-standard production
- Non-standard decays
 - $BR(Q \rightarrow Wq) + BR(Q \rightarrow Zq) + BR(Q \rightarrow Hq) < 1$
 - Examples:
 - Q→q+inv
 - Q→q+η, η CP-odd scalar
 - ..
 - If exotic BRs dominant, signal may be picked by existing searches (e.g. direct sbottom searches for BB→bb+E_T^{miss}).
 - For comparable BRs, it becomes difficult as signal split into challenging channels such as TT→W⁺btgg.

But also promising channels: $T\overline{T} \rightarrow W^+ b\overline{t}t\overline{t}$.

Precision Measurements

The Role of Precision Measurements

- Non-linear Nambu-Goldstone structure and composite resonances:
 - → peculiar pattern of distortions to the Higgs couplings:

- ➔ deviations in a number of electroweak observables sensitive to the interactions between light SM fermions and gauge fields (e.g. Z pole observables, top EW couplings, etc).
- Future e⁺e⁻ colliders will allow to make a quantum leap in the precision in these observables. E.g. expected statistics in FCC-ee:

\sqrt{s} (GeV)	90	160	240	350	350+
$\mathscr{L}(ab^{-1}/year)$	86.0	15.2	3.5	1.0	1.0
Events/year	3.6×10^{12}	6.1×10^{7}	7.0×10^{5}	4.2×10^{5}	2.5×10^4
Event type	Ζ	WW	HZ	tī	$WW \rightarrow H$
Years	0.3 (2.5)	1	3	0.5	3

arXiv:1510.09056

Higgs Couplings: LHC Run 1

ATLAS-CONF-2015-044

- Combination of Run 1 Higgs analyses by ATLAS and CMS.
- Express expected number of signal events in each channel in terms of scaling factors to Higgs couplings as given by effective Lagrangian (assuming narrow width and J^{CP}=0⁺⁺).
- So far consistent with SM although some small "tensions" present for couplings to 3rd generation quarks.
- Run 1 accuracy: ~10-20%.

Higgs Couplings: LHC Prospects

arXiv:1307.7135

3000 fb⁻¹ at 1s = 14 TeV Scenario 2

0.15

expected uncertainty

3000 fb⁻¹

0.10

 Extrapolation of global fit to Higgs couplings based on CMS Higgs analyses existing at the time (*).

(*) For ttH only considered $H \rightarrow \gamma \gamma$ and $H \rightarrow bb$ searches. Will improve after including multileptons.

- Consider two scenarios:
 - <u>Scenario 1</u>: all systematic uncertainties are left unchanged.
 - <u>Scenario 2</u>: theoretical uncertainties are scaled by a factor of 1/2, while other systematic uncertainties are scaled by the square root of the integrated luminosity.

CMS Projection CMS Projection Expected uncertainties on 300 fb⁻¹ at (s = 14 TeV Scenario 1 Expected uncertainties on Higgs boson couplings 300 fb⁻¹ at (s = 14 TeV Scenario 2 Higgs boson couplings 300 fb⁻¹ κ., κ., κw κ_w κ_{7} κ_z κa κa ĸ ĸ κ, κ, κ, κ, 0.00 0.05 0.10 0.15 0.00 0.05 expected uncertainty

Higgs Couplings: Future e⁺e⁻ Colliders

- Much lower Higgs boson production cross section than at hadron colliders.
- Ability to exploit recoil method to tag Higgs events independently of decay mode.
- Experimental and theoretical precision allows percent-level precision on most Higgs boson couplings.
 - ➔ Significant constraints on composite Higgs models!

Higgs Couplings: Future e⁺e⁻ Colliders

- Much lower Higgs boson production cross section than at hadron colliders.
- Ability to exploit recoil method to tag Higgs events independently of decay mode.
- Experimental and theoretical precision allows percent-level precision on most Higgs boson couplings.
 - ➔ Significant constraints on composite Higgs models!

			arXiv	:1411.1054
Experiment	κ_Z (68%)	$f \; ({\rm GeV})$	$\kappa_g \ (68\%)$	$m_{\tilde{t}_L}$ (GeV)
HL-LHC	3%	$1.0 { m TeV}$	4%	$430~{\rm GeV}$
ILC500	0.3%	$3.1 { m ~TeV}$	1.6%	$690~{\rm GeV}$
ILC500-up	0.2%	$3.9~{\rm TeV}$	0.9%	$910~{ m GeV}$
CEPC	0.2%	$3.9~{\rm TeV}$	0.9%	$910~{\rm GeV}$
TLEP	0.1%	$5.5~{\rm TeV}$	0.6%	$1.1~{\rm GeV}$

Precision Top Couplings

 e^{-}

- New fermions and vector bosons arising in composite Higgs models affect a number of top observables:
 - Deviations on EW couplings of the top quark (via mixing).
 - Direct contributions from new vector bosons (e.g. $e^+e^- \rightarrow Z'^* \rightarrow t\bar{t}$).
- Observables:
 - LHC: ttZ differential cross sections
 - e^+e^- : $\sigma(t\bar{t})$, A_{FB}^t , lepton/b angular and energy distributions

→ Significant constraints expected from top couplings measurements at e⁺e⁻ colliders!

Precision EW Parameters

- Contributions to obligue EW parameters, S and T, that encode the corrections to the 2-point function of the EW bosons. Three sources: $\hat{T}\times 10^3$
 - Goldstone nature of the Higgs
 - EW vector resonances (mixing)
 - Fermionic resonances (loops) **Observables:**

 $\Delta m_W, \Delta \Gamma_W \propto S - 1.54T$ $\Delta \sin^2 \theta_{\text{eff}}^{\ell}, \Delta R_{\ell}, \Delta \sigma_{\text{had}}^0 \propto S - 0.71T$ $\Delta \Gamma_Z \propto S - 2.76T.$

arXiv::1411.1054

	Present data	TLEP-t		
$\alpha_s(M_Z^2)$	0.1185 ± 0.0006 [36]	$\pm 1.0 \times 10^{-4}$ [37]		
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$	$(276.5 \pm 0.8) \times 10^{-4} [38]$	$\pm 4.7 \times 10^{-5}$		
$m_Z [{ m GeV}]$	91.1875 ± 0.0021 [27]	$\begin{array}{c} \pm 0.0001_{\rm exp} \ [2] \\ \pm 0.02_{\rm exp} \pm 0.1_{\rm th} \ [2, 23] \end{array}$		
$m_t \; [\text{GeV}] \; (\text{pole})$	$173.34 \pm 0.76_{\rm exp}$ [39] $\pm 0.5_{\rm th}$ [23]			
$m_h [{ m GeV}]$	125.14 ± 0.24 [23]	$< \pm 0.1$		
$m_W \; [\text{GeV}]$	$80.385 \pm 0.015_{exp}$ [36] $\pm 0.004_{th}$ [24]	$(\pm 1.2_{\rm exp} \pm 1_{\rm th}) \times 10^{-3} [20, 40]$		
$\sin^2 heta_{ m eff}^\ell$	$(23153 \pm 16) \times 10^{-5} \ [27]$	$(\pm 0.3_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5} \ [20, 40]$		
$\Gamma_Z \ [GeV]$	2.4952 ± 0.0023 [27]	$(\pm 1_{\rm exp} \pm 0.8_{\rm th}) \times 10^{-4} \ [2, 26]$		

Impressive improvements in precision expected!

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$$

			arXIV:1411.1054	
Experiment	S~(68%)	$f \; ({\rm GeV})$	T (68%)	$m_{\tilde{t}_L}$ (GeV)
ILC	0.012	$1.1 { m TeV}$	0.015	$890~{\rm GeV}$
CEPC (opt.)	0.02	$880~{\rm GeV}$	0.016	$870~{\rm GeV}$
CEPC (imp.)	0.014	$1.0 { m TeV}$	0.011	$1.1~{\rm GeV}$
TLEP- Z	0.013	$1.1 { m ~TeV}$	0.012	$1.0 { m TeV}$
TLEP- t	0.009	$1.3 { m TeV}$	0.006	$1.5 { m ~TeV}$

→ Less stringent constraints than from Higgs couplings

Summary and Outlook

- Broad program of direct searches for top and Higgs compositeness at LHC Run 1.
 - No evidence for composite resonances found.
 - VLQs with mass below ~800 GeV excluded in typical MCHM scenarios.
 - Serves as a stepping stone for more incisive tests during Run 2.
- Great potential for discovery in Run 2:
 - First results exceeding Run 1 sensitivity by Winter 2016.
 - With 100 fb⁻¹ should be able to probe VLQ masses up to 1.5 TeV via pair production and even beyond depending of the electroweak couplings.
 - Should also target bosonic resonances!
- Future colliders would provide critical information to unravel a new stronglyinteracting sector:
 - e⁺e⁻ colliders: indirectly via precise coupling measurements (top, Higgs) and other EW parameters.
 - 100 TeV pp collider: directly probing most a large fraction of the spectrum of composite resonances (fermionic and bosonic).

Vector-Like Bottom: 1-lepton Searches

- Searches targeting high BR($B_{1/3} \rightarrow W^{-1}$), but also sensitive to other decay modes.
- Basic strategy:
 - Preselection: 1 lepton, ≥ 6 jets w/ p_T>25 GeV ≥ 1 b-tags, H_T>500 GeV
- **ATLAS**
- ≥1 hadronic W/Z candidate
 - Dijet pair with ΔR_{ii} <1.0, p_{T,ii}>200 GeV, 60<m_{ii}<110 GeV
- Uses BDT as final discriminant variable.
- Preselection: 1 lepton, \geq 4 jets w/ p_T>200,60,40,30 GeV, \geq 1 b-tags

CA R=0.8 jets, p_T >200 GeV, pruned/mass drop, 50<m_i<150 GeV

- CMS
- Categorize events in 0, 1, \geq 2 tagged W/Z candidates
 - Uses S_T as final discriminant variable.

95% CL obs (exp) limits [100% WtWt]: ATLAS: m_B>810 (760) GeV CMS: m_B>(~800) GeV

Vector-Like Bottom: Multilepton Searches

- ATLAS: same multilepton searches used for vector-like top interpreted in the context of vector-like bottom (sometimes even better optimized for the latter, e.g. Zb+X).
- CMS: several analysis channels
 - SS 2I, \geq 4 jets, $E_T^{miss}>$ 30 GeV; uses S_T
 - OS 2I, Z candidate, ≥1 b-jet, p_{T,Z}>150 GeV; uses M(Zb)
 - Multileptons: ≥3 leptons (incl τ), several categories depending on number of leptons and flavor; uses S_T

95% CL obs (exp) limits: ATLAS: BR(B→Wt)=1: m_B >730 (790) GeV [Multilepton] BR(B→Zb)=1: m_B >790 (800) GeV [Zb+X]

CMS multilepton combination: BR(B \rightarrow Wt)=1: m_B>(~800) GeV BR(B \rightarrow Zb)=1: m_B>(740) GeV

Vector-Like Bottom: All-Hadronic Searches

$BB \rightarrow Hb + X, H \rightarrow bb$

- Search targeting high BR($B \rightarrow Hb$), with $H \rightarrow bb$.
- Strategy:
 - ≥1 Higgs-tagged jet
 - CA R=0.8, p_T>300 GeV, pruned, 90<m_i<140 GeV
 - 2-prong-like ($\tau_2/\tau_1 < 0.5$), 2 b-tagged subjets
 - H_T >950 GeV (from AKT5 jets with p_T >50 GeV)
 - ≥1 additional b-tagged AKT5 jet
 - Events categorized into =1 and ≥2 additional b-tagged jets
 - Uses H_T as final discriminant

Vector-Like Bottom: Complementarity

Four-Top-Quark Production

- Production cross section for 4-top within the SM very small (~1 fb).
- (Partially) composite top quark strongly coupled to composite sector. Most economical solution is to have composite t_R:

➔ anomalous four-top-quark production that can be orders of magnitude larger than the SM prediction.

- Other BSM scenarios that can lead to enhanced 4-top production:
 - Sgluon pair production
 - Universal extra-dimensions
 - etc

Four-Top-Quark Production: Searches

 VLQ searches for SS dileptons/trileptons and TT→Ht+X reinterpreted in the context of SM and BSM 4-top production.

ATLAS SS dilepton/trileptons:

- Most search channels in common with VLQ search → excess
 - 95% CL obs (exp) limits: SM 4-top: σ_{SM-4t}<**70** (27) fb EFT 4-top: σ_{EFT-4t}<**61** (22) fb Sgluon: m_σ>**0.83** (0.94) TeV

Four-Top-Quark Production: Searches

• VLQ searches for SS dileptons/trileptons and TT→Ht+X reinterpreted in the context of SM and BSM 4-top production.

ATLAS SS dilepton/trileptons:

- Most search channels in common with VLQ search → excess
- 95% CL obs (exp) limits: SM 4-top: σ_{SM-4t}<**70** (27) fb EFT 4-top: σ_{FFT-4t}<**61** (22) fb

• Data excess actually more compatible with 4-top than with VLQ hypothesis.

ATLAS TT→Ht+X (lepton+jets):

- Comparable or better sensitivity to same BSM scenarios.
- 95% CL obs (exp) limits:

SM 4-top: σ_{SM-4t}<**23** (32) fb EFT 4-top: σ_{EFT-4t}<**12** (16) fb Sgluon: m_σ>**1.06** (1.02) GeV

Rules out 4-top interpretation for multilepton search.