Prospects for Measuring Higgs self-coupling at FCC 100 TeV hadron collider

Weiming Yao (LBNL)

HKUST Jockey Club INSTITUTE FOR ADVANCED STUDY

The Future of High Energy Physics

5-30 Jan 2015

Outline

- Introduction
- •Review the current status on Higgs trilinear coupling
- •What we learn from HL-LHC studies
- •Prospects for 100 TeV
- •Implications of BSM
- Conclusion

Disclaim: There are many studies on di-higgs phenomenology after Higgs discovery and I apologize if I miss your paper.

Introduction

•ATLAS and CMS discovered a new boson at 125 GeV in July, 2012

- •The results are consistent with SM Higgs boson so far.
- •LHC/HL-LHC will provide unprecedented and unparalleled physics opportunities for testing the validity of SM and search for BSM.
- •But very likely, we need future FCC to explore the energy frontier.

What can we learn from HL-LHC

•Determine the Higgs couplings to a few % level. •Typical deviation for new physics: $\Delta \frac{g}{g_{SM}} < 5\% \left(\frac{1TeV}{\Lambda}\right)^2$ •For a 5 sigma deviation, require <1% precision

Based on parametric simulation

L (fb ⁻¹)	$H \rightarrow \gamma \gamma$	$H \rightarrow WW$	$H \rightarrow ZZ$	$H \to b b$	$H\to\tau\tau$	$H \rightarrow Z\gamma$	$H \rightarrow inv.$
300	[6, 12]	[6, 11]	[7, 11]	[11, 14]	[8, 14]	[62, 62]	[17, 28]
3000	[4, 8]	[4, 7]	[4, 7]	[5, 7]	[5, 8]	[20, 24]	[6, 17]

Assumptions on systematic uncertainties Scenario 1: no change Scenario 2: Δ theory / 2, rest $\propto 1/\sqrt{L}$

Extrapolated from 2011/12 results

Probing the Higgs Potential

 From the scalar potential before EWSB: 		V(\$)
$- V(\Phi)=-\mu^2 \Phi ^2+\lambda \Phi ^4$		
•V(Φ) after EWSB with $M_h^2 = 2\mu^2$, $v^2 = \mu^2/\lambda$		
− Φ=(0,(v+h)/√2)	Re(\$)	lm(\$)
$- V(h)=1/2M_{h}^{2}h^{2}+1/2M_{h}^{2}/v h^{3}+1/2h^{2}h^{2}$	8M ² /v ² h ⁴ + Const	
 Trilinear and Quartic Higgs coupling: 	Model	$\Delta g_{_{hhh}}/g_{_{hhh}}^{_{SM}}$
$- \lambda_{\rm hbh} = 3M_{\rm h}^2/v$	Mixed-in Singlet	-18%
$-\lambda = 3M^2/v^2$	Composite Higgs	Tens of %
	Minimal Supersymmetry	-2% -15%
• VVITNIN SIVI, everytning known: $\Lambda_{hhh} \sim 0.13$.	NMSSM	-25%

- •BSM: max deviations ranging from few to 20% (arxiv:1305.6397)
- •Targeted precision: <5% for both theory and experiments to confirm or discover the Higgs potential.

Advantage of probing Higgs Potential at 100 TeV

- •The $\sigma(pp \rightarrow HH)$ increased significantly at 100 TeV, opens new window to measure the Higgs potential directly.
- Initial snowmass studies were encouraging, but ignoring some of detector related backgrounds, which depends on assumed detector performances.

Recent Studies

•Many studies on di-higgs phenomenology after Higgs discovery and results are not fully understood yet.

Decay	Issues	Expectation 3000 ifb	References	
$b \overline{b} \gamma \gamma$	 Signal small BKG large & difficult to asses Simple reconst. 	$S/B \simeq 1/3$ $S/\sqrt{B} \simeq 2.5$	[Baur, Plehn, Rainwater] [Yao 1308.6302] [Baglio et al. JHEP 1304]	
$bar{b} au^+ au^-$	• tau rec tough • largest bkg tt • Boost+MT2 might help	differ a lot $S/B \simeq 1/5$ $S/\sqrt{B} \simeq 5$	[Dolan, Englert, MS] [Barr, Dolan, Englert, MS] [Baglio et al. JHEP 1304]	
$b\bar{b}W^+W^-$	 looks like tt Need semilep. W to rec. two H Boost + BDT proposed 	differ a lot best case: $S/B \simeq 1.5$ $S/\sqrt{B} \simeq 8.2$	[Dolan, Englert, MS] [Baglio et al. JHEP 1304] [Papaefstathiou, Yang, Zurita 1209.1489]	
$b\overline{b}b\overline{b}$	 Trigger issue (high pT kill signal) 4b background large difficult with MC Subjets might help 	$S/B \simeq 0.02$ $S/\sqrt{B} \le 2.0$	[Dolan, Englert, MS] [Ferreira de Lima, Papaefstathiou, MS] [Wardrope et al, 1410.2794]	
others	 Many taus/W not clear if 2 Higgs Zs, photons no rate 			

Snowmass Studies

•Expected precisions on the trilinear Higgs coupling assuming all other Higgs coupling are SM-like and no other new physics contributions.

•Individual Collider:

	HL-LHC	ILC500	ILC800-up	ILC1000	ILC1000-up	CLIC1400	CLICinoo	HE-LHC	VLHC
$\sqrt{\pi}$ (GeV)	14000	ă00	500	600/1000	800/1000	1400	3000	33,000	100,000
$\int Ldt (fb^{-1})$	3000/expt	800	16001	800+1800	1600 ± 2500^3	1500	± 2000	3000	3000
λ	80%	83%	46%	21%	13%	21%	10%	20%	8%

•Combination of colliders:

LHC	HL-LHC							
$+\mathrm{ILC}$	+ILC-up	+(TLEP)		+ILC-up		+CLIC		
		+CLIC	+HE-LHC	+VLHC	+HE-LHC	+VLHC	+HE-LHC	+VLHC
21%	12.6%	15.2/9.8%	18.6%	7.9%	10.9%	6.8%	12.5/8.9%	7.2/6.2%

The Double Higgs Production

•The main di-Higgs production channels at pp collider:

•gg \rightarrow HH dominant production, but small only ~1/1000 of $\sigma(gg \rightarrow H)$

- due to the destructive interference ruled by yt and λ

• Other hh production channels have about 10% of total $\sigma(gg \rightarrow HH)_{Q}$

The Double Higgs Production

•The ggHH cross section and uncertainties at NNLO are available (Florian et al PRL 111 (2013) 201801)

E _{c.m.}	8 TeV	14 TeV	33 TeV	100 TeV
$\sigma_{ m NNL0}$	9.76 fb	40.2 fb	243 fb	1638 fb
Scale [%]	+9.0 - 9.8	+8.0 - 8.7	+7.0 - 7.4	+5.9 - 5.8
PDF [%]	+6.0 - 6.1	+4.0 - 4.0	+2.5 - 2.6	+2.3 - 2.6
PDF + α _S [%]	+9.3 - 8.8	+7.2 - 7.1	+6.0 - 6.0	+5.8 - 6.0

10

Triple Higgs coupling sensitivity

- •Higgs self-coupling depends on processes; VBF is most sensitive, but small
- •Some <u>degeneracies</u> likely to be resolved using kinematic and other processes: HHj, VBF, ttHH, VHH.

Higgs Pair Production at HL-LHC

- •The HH production cross section at 14 TeV is small, 40 fb.
- •Selection of HH final states has been studied:
 - $-HH \rightarrow bb\gamma\gamma$: clean but small rate, seems best
 - Other channels suffered either too small rate or huge background from ttbar or Z+jets, but work is on going.
 - -Have to combine all possible channels to improve the sensitivity

Decay Channel	Branching Ratio	Total Yield (3000 fb ⁻¹)
$b\overline{b} + b\overline{b}$	33%	40,000
$b\overline{b} + W^+W^-$	25%	31,000
$b\overline{b} + \tau^+\tau^-$	7.3%	8,900
$ZZ + b\overline{b}$	3.1%	3,800
$W^+W^-+\tau^+\tau^-$	2.7%	3,300
$ZZ + W^+W^-$	1.1%	1,300
$\gamma\gamma + b\overline{b}$	0.26%	320
$\gamma\gamma + \gamma\gamma$	0.0010%	1.2

$HH \rightarrow bb\gamma\gamma \text{ at HL-LHC}$

- •ATLAS and CMS updated the HH \rightarrow bbyy at HL-LHC with 3000 fb-1
- •Obtained significance is 1.3 σ for ATLAS and 2σ for CMS (ATL-PHYS-PUB-2014-019)
- •ATLAS set limit on trilinear Higgs coupling -1.3< λ/λ_{SM} <8.7 @ 95% CL.

Expected yields (3000 fb ⁻¹)	Total	Barrel	End-cap
Samples			
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM} = 1)$	8.4 ± 0.1	6.7±0.1	1.8±0.1
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=0)$	13.7 ± 0.2	10.7 ± 0.2	3.1±0.1
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM} = 2)$	4.6 ± 0.1	3.7 ± 0.1	0.9 ± 0.1
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=10)$	36.2 ± 0.8	27.9 ± 0.7	8.2 ± 0.4
ЬБүү	9.7±1.5	5.2±1.1	4.5±1.0
εēγγ	7.0±1.2	4.1±0.9	2.9 ± 0.8
ьБγј	$-8.4{\pm}0.4$	4.3±0.2	4.1±0.2
bbjj	1.3 ± 0.2	0.9 ± 0.1	$0.4{\pm}0.1$
jjγγ	7.4±1.8	5.2±1.5	2.2±1.0
$t\bar{t} \ge 1$ lepton)	0.2 ± 0.1	0.1 ± 0.1	0.1 ± 0.1
tīγ	3.2±2.2	1.6 ± 1.6	1.6 ± 1.6
$t\bar{t}H(\gamma\gamma)$	6.1±0.5	4.9±0.4	1.2 ± 0.2
$Z(b\bar{b})H(\gamma\gamma)$	2.7 ± 0.1	1.9±0.1	0.8 ± 0.1
$b\bar{b}H(\gamma\gamma)$	1.2 ± 0.1	1.0 ± 0.1	0.3 ± 0.1
Total Background	47.1±3.5	29.1±2.7	18.0 ± 2.3
$S / \sqrt{B} (\lambda / \lambda_{SM} = 1)$	1.2	1.2	0.4

14 TeV vs 100 TeV

- The Kinematic of products of gg→HH are very similar.
- •Signal and background should scale well with its ratio of cross section.

Br*σ(pb)	14TeV	100 TeV	R
hh->bbγγ	0.000105	0.0035	34
bbyy	0.49	8.4	17
bbjγ	480	8960	19
jjүү	14.5	164.2	11
zh	0.00011	0.00087	8
bbh	0.00223	0.0505	23
tth	0.00068	0.0373	55

Fast Simulation Setup

- •Focus on HH \rightarrow bb $\gamma\gamma$ channel as baseline.
- •Signal: Madgraph V1.5.14+pythia6.2
- •Background: MadGraph5.14 with MLM matching up to 1 partons
- •Simulated with Delphes V3.1.2 with ATLAS responses
 - _Ecal smeared with: $\sigma_{_{ET}}/E_{_{T}}=0.20/\sqrt{E}_{_{T}}\oplus 0.17\%$
 - –Use the anti-kT for jets with a radius of 0.5
 - –btag eff. at 75% for b, 18.8% for c and 1% for mistag, up $|\eta|{<}2.5$
 - -Including faking photon contributions:
 - •Fake rate =0.0093exp(-Et(GeV)/27) from ATLAS
 - •Fake photon Et scaled from Jet Et by 75% with σ =0.12
- •For future studies, we should converge the expected detector performances.
 - -Tracking coverage, lepton ID efficiency, and fakes
 - -Jet resolutions, missing Et resolution, and pile-up rejections.

Detector responses and kinematics

•Photon, btag efficiency and mass distributions

•Mγγ and Mbb are similar to LHC; Photon ID eff is better(0.76-2*exp(-Et(GeV)/16.1))

•Higgs kinematic at Tev100 are very similar to LHC, bit extending to large eta

HH→bbγγ Kinematics

•Comparing HH kinematic with background distributions.

H→γγ, H→bb

•Comparing $H \rightarrow \gamma \gamma$, $H \rightarrow bb$ with background distributions. .

18

Events Selections

•Selecting bjet and photon:

- Require 2 bjets with Et>35 GeV, |eta|<2.0
- Require 2 photons with Pt>35 GeV, |eta|<2.0
- bjet tag via truth matching of b-quark within cone of 0.4

•Mass and Angular cuts:

- Tighten $|M_{yy}$ -125|<3 GeV from 5 Gev used for snowmass.

- $\Delta R_{\gamma\gamma}$ <2.0; ΔR_{bb} <2.0
- $_{\rm H}$ H decay angle $|{\rm cos}\theta_{_{\rm H}}|{<}0.8$ in the rest frame of HH

•Kinematic cuts:

$$-$$
 Pt_{yy}>100 GeV, Pt_{bb}>100 GeV

Requiring Sum of (njet+npho+nlep+nmet)<7

Results

•bb $\gamma\gamma$ seems still dominant and can be further reduced with MVA.

•Expected S/ \sqrt{B} ~16.5 for Tev100 with 3 fb⁻¹.

•Recent studies from 1412.7154: reported 8.4 significance with difference eff.

Higgs Self-Coupling Measurement

- •Once gg \rightarrow HH \rightarrow bbyy established, we estimated d λ with slop of d $\sigma/\sigma/d\lambda$
- •Expected precision with $d\sigma/\sigma/d\lambda$ =-0.51 - $d\lambda = d\sigma/\sigma/(d\sigma/\sigma/d\lambda)$ =15%.
- •Loose cuts with $d\sigma/\sigma/d\lambda$ =-0.57 : - Having more BKG, $d\lambda$ =16.6%
- •Sensitivity seems not depend on cuts.
- This is based on 3 ab⁻¹ data. In order to achieve 5% precision, we need more data ~30 ab⁻¹ at Tev100.
- •Studying HHj, VBF and ttHH production processes, which are useful to break the degeneracy of Higgs self-coupling.

$\textbf{VBF} {\rightarrow} \textbf{HH} {\rightarrow} \textbf{bbyy at 100 TeV}$

•Cross section for VV \rightarrow HH \rightarrow bbyy is much smaller than gg \rightarrow HH production.

•First look by selecting:

- -Two forwarded jets: Et>15 GeV; |η|>2.5; dη>3.0; mjj>400 GeV
- –Using the same selections for Higgs decay: $H \rightarrow bb$ and $H \rightarrow \gamma \gamma$
- -Signal rate seems small, other decay channels that may be useful.

Samples	$\sigma \cdot BR$ (fb)	Generated Evt	Selected Evt	Acc.	Expected (Statistic)
$VBF(b\bar{b}\gamma\gamma)(\lambda = 1)$	0.0823	100000	715	0.0072	1.77 ± 0.066
$VBF(bb\gamma\gamma)(\lambda = 0)$	0.175	100000	485	0.0048	2.55 ± 0.12
$VBF(b\bar{b}\gamma\gamma)(\lambda = 2)$	0.0801	100000	468	0.0047	1.12 ± 0.052
$H(b\bar{b})H(\gamma\gamma)(\lambda = 1)$	3.53	100000	19	0.00019	2.01 ± 0.46
$Z(bb)H(\gamma\gamma)jj$	0.18	2779	4	0.0014	0.78 ± 0.39
$t\bar{t}H(\gamma\gamma)$	37.26	63904	4	6.26e-05	7.00 ± 3.50
$t\bar{t}\gamma$	108400	285787	0.0015	5.14e-09	1.67 ± 1.18
$jj\gamma\gamma$	164200	813797	0.0002	2.46e-10	0.12 ± 0.086
Total background	-	-	-	-	11.57871 ± 3.742603
S/\sqrt{B}	-	-	-	-	0.5187966

$\textbf{TTHH} {\rightarrow} \textbf{ttbbbb} \text{ at } \textbf{100 TeV}$

•T. Liu et al have looked ttHH→ttbbbb channel (arXiv:1410.1855v2)

•Constructing bb mass out of 6 bjets:

-Pairing bjets by minimizing $\chi^2 = \sqrt{(((m_{bb} - m_{H})/dm)^2 + ((m_{bb} - m_{H})/dm)^2)}$

-Selecting isolated lepton Et>20, |eta|<2.5

-Anti-Kt algorithm: Et>20, |eta|<4.5, njet<7

Table 1: Cut flows of searching for $pp \rightarrow t\bar{t}hh \rightarrow t\bar{t}b\bar{b}b\bar{b}$ at the 100 TeV pp -collider via the semi-leptonic top-pair channel. The unit used in the table is attobarn.

$\sqrt{s} = 100 \text{ TeV}$	tīhh	tībbbb	tībbcī	tīhbb	tīZbb	tīhcī
Preselection	830.5	72678.7	13322.6	10231.8	3252.0	1995.7
Di-Higgs rec.	608.4	31679.7	6285.2	5689.9	1504.0	1193.3
Top rec.	240.1	10384.4	2189.1	2208.6	428.0	384.9

•Significance: 3.3σ •Slop:d(σ/σ)/(λ/λ sm)=0.3 •Higgs self coupling: 70% with 3ab⁻¹, or 20% with 30 ab⁻¹. 23

HH Production in BSM

•Production cross section significant enhanced in many BSM models.

•HH resonant production (KK-gravitons, 2HDM, NMSSM...)

- Possibly enhanced large cross section
- Could cut on Mx mass to reduce the contribution
- ATLAS and CMS have carried such searches at Run1

•HH no-resonant enhancement

- Composite Higgs/Little Higgs
- Can modify coupling and kinematics

Searches for HH \rightarrow bbbb, bbyy at Run1

•ATLAS: HH→bbγγ (arXiv:1406.5053) and HH→bbbb (ATLAS-CONF-2014-005)
•CMS: HH→bbγγ (CMS-PAS-HIG-13-032) and HH→bbbb (CMS-PAS-HIG-14-013)

Non-resonant HH enhancement

 Interferences between SM and <u>BSM diagrams</u> could make σ degenerate in parameter space.(arXiv:1405.7040V1)

•Total cross section is expressed as

$$\begin{split} \sigma(gg \to hh) &= \sigma^{SM}(gg \to hh) [1.849 \ c_{box}^2 + 0.201 \ c_{tri}^2 + 2.684 \ c_{nl}^2 \\ &- 1.050 \ c_{box} c_{tri} - 3.974 \ c_{box} c_{nl} + 1.215 \ c_{tri} c_{nl}]. \end{split}$$

Constrain Couplings with Kinematic distributions

•Kinematic distributions can help to constrain the parameters

•Separating two mhh bins allows for a significant improvement in constrain coupling over cross section measurement alone.

Conclusions

- •Measuring Higgs self-coupling crucial to understand Higgs potential & EWSB.
- •The challenge is to identify the tiny signal out of huge background.
- •Projected HH \rightarrow bbyy significance is about 1.2-2.0 σ at HL-LHC with 3000 fb⁻¹. Lots of work still needed to understand the actual HL-LHC sensitivity and likely improve with run2, phase 2 upgrades.
- •Measuring HH \rightarrow bbyy seems feasible at FCC 100 TeV hadron colliders with significant increased production cross section.
- •The statistic accuracy of Higgs self-coupling is about 15% with 3000 fb⁻¹ and 5% with more data 30 ab⁻¹.
- •Although we do not know where the new physics is, the FCC collider will measure the Higgs potential precisely.