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Scaling law 1: at fixed RF power, stored charge ∼ R^2 
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1 INTRODUCTION

1.1 Organization of the Paper

the energy loss per turn, per electron, as a function of ring
radius R, and electron beam energy E;

U1 [GeV] = Cγ
E4

R
, (2)

where, for electons, Cγ = 0.8846 × 10−4 m/GeV3. For pro-
tons Cγ = 0.7783×10−17 m/GeV3, For proton colliders pre-
ceeding LHC synchrotron radiation (SR) was always negli-
gibly small owing to the large proton mass. For the LHC,
SR influenced the design only through the efforts needed to
avoid dissipating the radiated energy at liquid Helium tem-
perature. The post-LHC future circular collider will be the
first for which beam dynamics and ring optimization will
be dominated by SR. This has always been true for electron
colliders.

There are three phenomena giv-
ing luminosity limits: LRF , RF-power limitation; Lbs,
beamstrahlung limitation; and Lbb, beam-beam interac-

tion limitation, all of which have complicated dependencies
on ring parameters. Since the achievable luminosity is

equal to the smallest of these limits, the optimal choice of

parameters requires them all to be equal. To be specially
exploited is a scaling law to be obtained according to which
the optimized luminosity is a function only of the product
RPRF , tunnel-radius multiplied by RF power.

true for the p,p collider. But it already suggests that the

excess cost incurred in tunnel circumference needed for

eventual p,p operation at energy approaching 100 TeV

(over and above what could be minimally adequate for

the Higgs factory) may not be exhorbitant.

1.2 CepC, then CPPC in the Same Tunnel

The quite low Higgs particle mass makes a circular elec-
tron collider an effective Higgs factory. Furthermore, just as
LHC followed LEP in the same tunnel, building first an elec-
tron collider, and later a proton collider in the same tunnel,
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represents a natural future for elementary particle physics.

A pos-
sible modest initial cost increase can be far more than com-
pensated by the improvement in ultimate proton collider per-
formance.

The parameter most implicated in this discussion is,

of course, the ring circumference. Once fixed this choice
will constrain the facility for its entire, at least half century,
life. Furthermore this choice needs to be made before any
of the many remaining design decisions have to be made.

Minimizing the initial cost (and thereby improving the
approval likelihood) makes optimizing the electron ring de-
sign more urgent than optimizing the proton ring design.
In fact, since the ideal circumference for protons is surely
greater than for electrons, what is needed is to maximize

the electron ring circumference while minimizing its

cost—a seemingly impossible task.

The thesis of this paper is that this optimization is not

as hard as it seems. More concretely, it will be shown
that making the electron ring circumference “unnecessarily
large” (from the point of view of minimally adequate Higgs
particle production) can increase its cost less than propor-
tionally, if at all, provided the RF power is reduced propor-
tionally. This argument relies on a scaling law according
to which the optimized luminosity is a function only of the
product of circumference times RF power.
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β∗y = 0.008 m, in order to establish trends. According to

the simulation model, the optimum is near β∗y ≈ 5 mm

at the Higgs energy. Numerical examples in the text are
usually taken from the shaded rows.

Even in quite favorable cases the energy loss per turn U1

is as much as several percent of the total energy. To keep
the energy within 1% will then require a dozen or more RF
accelerating sections. Because of its high energy loss, the
Higgs factory will actually resemble a slowly curving linac.
Nevertheless, it represents an economy, relative to a linear
collider, to retain electrons along with most of their energy
and restore their radiated energy every turn, rather than dis-
carding and replacing them, as is required in a linear col-
lider.

1.4 Optimization Considerations

This paper pays special attention to the beamstrahlung
limitation pointed out by Telnov [3], and proceeds to quan-
tify the limitation by a “beamstrahlung penalty” Pbs. This
penalty turns out to be so severe, and its onset (with increas-
ing beam energy E) so sudden (see Figure 14) that a sensible
strategy is to fix parameters so that Pbs remains just barely
consistent with the capability to replenish the lost particles.

In all cases the luminosity is limited by available RF
power per beam. Following recent designs that have
adopted Prf = 50 MW as a kind of nominal choice, some
tables in this paper use this value. Other tables reflect my

recommendation to reduce power to Prf = 25 MW while

doubling the ring circumference. Fixing Prf fixes the max-
imum total number Ntot of particles stored in each beam.
At pre-LEP beam energies all other parameters would then
have been adjusted to “saturate the beam-beam tune shift
[4]”. At Higgs factory energies the RF power limitation, in
conjunction with the beamstrahlung constraint, could make
this impossible which will limit the luminosity accordingly.
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E C R f U1 eVexcess n1 U1/(D/2) δ = α4 uc ǫx σarc
x

GeV km km KHz GeV GeV elec./MW MV/m GeV nm mm
100 28 3.0 10.60 3.0 62 2.00e+11 0.626 0.0074 0.00074 6.354 0.523
150 28 3.0 10.60 14.9 50 3.94e+10 3.169 0.0249 0.00249 14.297 0.784
200 28 3.0 10.60 47.2 18 1.25e+10 10.016 0.0590 0.00591 25.417 1.05
250 28 3.0 10.60 115.2 -50 5.11e+09 24.453 0.1152 0.01155 39.715 1.31
300 28 3.0 10.60 239.0 -1.7e+02 2.46e+09 50.707 0.1991 0.01995 57.189 1.57
100 57 6.0 5.30 1.5 64 7.98e+11 0.157 0.0037 0.00037 3.177 0.37
150 57 6.0 5.30 7.5 58 1.58e+11 0.792 0.0124 0.00125 7.149 0.554
200 57 6.0 5.30 23.6 41 4.99e+10 2.504 0.0295 0.00296 12.709 0.739
250 57 6.0 5.30 57.6 7.4 2.04e+10 6.113 0.0576 0.00577 19.857 0.924
300 57 6.0 5.30 119.5 -54 9.85e+09 12.677 0.0996 0.00998 28.595 1.11
100 75 8.0 3.98 1.1 64 1.42e+12 0.088 0.0028 0.00028 2.383 0.32
150 75 8.0 3.98 5.6 59 2.80e+11 0.446 0.0093 0.00094 5.361 0.48
200 75 8.0 3.98 17.7 47 8.87e+10 1.409 0.0221 0.00222 9.532 0.64
250 75 8.0 3.98 43.2 22 3.63e+10 3.439 0.0432 0.00433 14.893 0.8
300 75 8.0 3.98 89.6 -25 1.75e+10 7.131 0.0747 0.00748 21.446 0.96
100 94 10.0 3.18 0.9 64 2.22e+12 0.056 0.0022 0.00022 1.906 0.286
150 94 10.0 3.18 4.5 61 4.38e+11 0.285 0.0075 0.00075 4.289 0.429
200 94 10.0 3.18 14.2 51 1.39e+11 0.901 0.0177 0.00177 7.625 0.573
250 94 10.0 3.18 34.6 30 5.68e+10 2.201 0.0346 0.00346 11.914 0.716
300 94 10.0 3.18 71.7 -6.7 2.74e+10 4.564 0.0597 0.00599 17.157 0.859
100 113 12.0 2.65 0.7 64 3.19e+12 0.039 0.0018 0.00018 1.589 0.261
150 113 12.0 2.65 3.7 61 6.31e+11 0.198 0.0062 0.00062 3.574 0.392
200 113 12.0 2.65 11.8 53 2.00e+11 0.626 0.0148 0.00148 6.354 0.523
250 113 12.0 2.65 28.8 36 8.17e+10 1.528 0.0288 0.00289 9.929 0.653
300 113 12.0 2.65 59.7 5.3 3.94e+10 3.169 0.0498 0.00499 14.297 0.784

Table 1: Ring parameters for rings of various bending radii, assuming 2/3 fill factor, with half of total straight section
length D taken up by RF. The U1/(D/2) column therefore indicates the minimum required energy gain per meter to be
supplied by the RF. uc is the critical energy of the synchrotron radiation energy spectrum. α4 is the appropriate damping
decrement for N∗ = 4 interaction points.

name E C R f U1 eVexcess n1 δ = α2 uc ǫx† σarc
x

GeV km km KHz GeV GeV elec./MW GeV nm mm
Z 46 100 10.6 3.00 0.04 20 5.81e+13 0.00020 0.00002 0.573 2
W 80 100 10.6 3.00 0.34 20 6.08e+12 0.00107 0.00011 1.771 1.19

LEP 100 100 10.6 3.00 0.83 19 2.49e+12 0.00209 0.00021 2.767 0.972
H 120 100 10.6 3.00 1.73 18 1.20e+12 0.00361 0.00036 3.984 0.824
tt 175 100 10.6 3.00 7.83 12 2.66e+11 0.01119 0.00112 8.473 0.585

Table 2: Single beam parameters, assuming 100 km circumference. The second last column (†) lists the value of ǫ x
appropriate only for β∗y = 5 mm. Though determined by arc optics, ǫ x has to be adjusted, according to the value of β∗y , to
optimize the beam shape at the IP. Other cases can be calculated from entries in other tables. U1 is the energy loss per turn
per particle. uc is the critical energy for bending element synchrotron radiation. δ is the synchrotron radiation damping
decrement.

6



Apart from its reduced cost compared to a linear collider
(which is due to the surprisingly low mass the Higgs par-
ticle has been found to have) the greatest advantage of a
circular collider is its well-understood behavior and corre-
spondingly small risk.

2 RING CIRCUMFERENCE AND TWO

RINGS VS ONE RING

A good way to fix the circumference C is to simply ex-

trapolate from earlier colliding beam rings as is done in

Figure 2. Choosing E = 300 GeV to be the nominal beam
energy yields circumference C ≈ 100 km. Nothing in this
paper is incompatible with this choice.
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Figure 2: Relation between beam energy E and circumfer-
ence C for numerous colliding beam rings.

2.1 General Comments

The quite low Higgs mass (125 GeV) makes a circular
e+e- collider (FCC-ep) ideal for producingbackground-free
Higgs particles. There is also ample physics motivation for
planning for a next-generation proton-proton collider with
center of mass energy approaching 100 TeV. This suggests a
two-step plan: first build a circular e+e- Higgs factory; later
replace it with a 100 TeV pp collider (or, at least, center of
mass energy much greater than LHC). This paper is devoted
almost entirely to the circular Higgs factory step, but keep-
ing in mind the importance of preserving the p,p collider
potential.

The main Higgs factory cost-driving parameter choices
include: tunnel circumferenceC, whether there is to be one
ring or two, what is the installed power, and what are the
physics priorities. From the outset I confess my prejudice
towards a single LEP-like ring, optimized for Higgs produc-
tion at E = 120 Gev, with minimum initial cost, and highest
possible eventual p,p energy.

Both Higgs factory power considerations and eventual
p,p collider favor a tunnel of the largest possible radius R.

Figure 3: Higgs particle cross sections up to
√

s = 0.3 TeV
(copied from Patrick Janot); L ≥ 2 × 1034 /cm2/s, will
produce 400 Higgs per day in this range.
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2.2 Scaling up from LEP to Higgs Factory

Radius×Power Scale Invariant. Most of the conclu-
sions in this paper are based on scaling laws, either with re-
spect to bending radius R or with respect to beam energy E.
Scaling with bend radius R is equivalent to scaling with cir-
cumferenceC. (Because of limited “fill factor”, RF, straight
sections, etc., R ≈ C/10.)

Higgs production was just barely beyond the reach of
LEP’s top energy, by the ratio 125 GeV/105 GeV = 1.19.
This should make the extrapolation from LEP to Higgs

factory quite reliable. In such an extrapolation it is in-

creased radius more than increased beam energy that is

mainly required.

One can note that, for a ring three times the size of
LEP, the ratio of E4/R (synchrotron energy loss per turn) is
1.194/3 = 0.67—i.e. less than final LEP operation. Also,
for a given RF power Prf , the maximum total number of

stored particles is proportional to R2—doubling the ring

radius cuts in half the energy loss per turn and doubles

the time interval over which the loss occurs. Expressed
as a scaling law

n1 = number of stored electrons per MW ∝ R2 . (3)

This is boxed to emphasize its fundamental importance. Fol-
lowing directly from Eq. (1), it is the main consideration fa-
voring large circumference for both electron and radiation-
dominated proton colliders.

There are three distinct upper limit constraints on the lu-
minosity.

maximum luminosity results when the ring param-
eters have been optimized so the three constraints yield the
same upper limit for the luminosity. For now we concentrate
on just the simplest luminosity constraint LRF

pow, the maxi-
mum luminosity for given RF power Prf . With n1 being the
number of stored particles per MW; f the revolution fre-
quency; Nb the number of bunches, which is proportional
to R; σ∗y the beam height at the collision point; and aspect
ratio σ∗x/σ

∗
y fixed (at a large value such as 15);

LRF
pow ∝

f

Nb

(

n1Prf [MW]
σ∗y

)2
. (4)

Consider variations for which

Prf ∝
1
R
. (5)

Dropping “constant” factors, the dependencies on R are,
Nb ∝ R, f ∝ 1/R, and n1 ∝ R2. With the Prf ∝ 1/R scal-
ing of Eq. (5), L is independent of R. In other words, the

luminosity depends on R and Prf only through their product
RPrf . Note though, that this scaling relation does not imply
that L ∝ P2

rf at fixed R; rather L ∝ Prf .
In this paper this scaling law will be used in the form

L(R,Prf ) = f (RPrf ), (6)

the luminosity depends on R and Prf as a function f (RPrf )

of only their product.
This radius/power scaling formula can be checked numer-

ically by comparing Tables 6 and 8. The comparison is only
approximate since other parameters and the scalings from
LEP are not exactly the same in the two cases.

Parameter Scaling with Radius. For simplicity, even
if it is not necessarily optimal, let us assume the Higgs
factory arc optics can be scaled directly from LEP values,
which are: phase advance per cell µx = π/2, full cell length
Lc = 79 m. (The subscript “c” distinguishes the Higgs
factory collider lattice cell length from injector lattice cell
length Li .)

Constant dispersion scaling formulas are given in Ta-
ble 3. These formulas are derived in Section 4.2 “Lattice
Optimization for Top-Off Injection”. They are then applied
to extrapolate from LEP to find the lattice parameters for
Higgs factories of (approximate) circumference 50 km and
100 km, shown in Table 5.

Parameter Symbol Proportionality Scaling
phase advance per cell µ 1

collider cell length Lc R1/2

bend angle per cell φ = Lc /R R−1/2

quad strength (1/ f ) q 1/Lc R−1/2

dispersion D φLc 1
beta β Lc R1/2

tunes Qx , Qy R/β R1/2

Sands’s “curly H” H = D2/β R−1/2

partition numbers Jx /Jy /Jǫ = 1/1/2 1
horizontal emittance ǫx H /(JxR) R−3/2

fract. momentum spread σδ

√
B R−1/2

arc beam width-betatron σx, β

√
βǫx R−1/2

-synchrotron σx,synch . Dσδ R−1/2

sextupole strength S q/D R−1/2

dynamic aperture xmax q/S 1
relative dyn. aperture xmax/σx R1/2

pretzel amplitude xp σx R−1/2

Table 3: Constant dispersion Constant dispersion scaling is
the result of choosing cell length L ∝ R1/2. The entry “1”
in the last column of the shaded “dispersion” row, indicates
that the dispersion is independent of R when the cell length
Lc varies proportional to

√
R with the phase advance per

cell µ held constant.
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2.4 Scaling of Higgs Factory Magnet Fabrica-

tion

Unlike the rest of the paper, this section is conjectural and
idiosyncratic. It contains my opinions concerning how best
to construct the Higgs factory room temperature magnets.
It does not pretend to understand the economics of super-
conducting magnet technology. But it is also not ruled out
that similar arguments and conclusions may be applicable
to the eventual p,p collider.

As a disciple of Robert Wilson, one cannot avoid ap-
proaching the Higgs factory design challenge by imagining
how he would have. Certainly Bob Wilson would have en-

dorsed Nima Arkani-Hamed’s attitude that we strive for

100 TeV collisions “because the project is big”, rather

than “in spite of the fact the project is big”.

“How would Bob do it?” also suggests unconventional
design approaches. At the early design stage, based on good,
but limited, understanding of the task, one of his princi-
ples can be stated as “It is better for the tentative parame-
ter choices to be easy to remember than to be accurate”. In
the current context he would certainly have liked the round
numbers in a statement such as “To obtain 100 TeV colli-
sions we need a ring with 100 km circumference”, espe-
cially because of (or, possibly, in spite of) the fact that the
CERN FCC group favors just these values.

Another Wilson attitude was that, if a competent physi-
cist (where he had himself in mind) could conceptualize an
elegant solution to a mechanical design problem, consistent
with the laws of physics, then a competent engineer (where
he again had himself in mind) could certainly successfully
complete the design.

In extrapolating the room temperature magnet design
from LEP to CepC one must first acquire a prejudice as to
the vacuum chamber bore diameter. Many of the scaling for-
mulas in this paper are devoted to determining this, along
with other self-consistent parameters. To make the subse-
quent discussion as simple as possible one can accept, as
a first iteration, the choice of making the magnet bore the
same as LEP, promising to later improve this choice, in a
second, or third, iteration, as necessary. It is my guess that
the first iteration will be close.

In round numbers, the 100 km Higgs factory ring magnet
length is four times as great as LEP’s, and the Higg’s fac-
tory energy is greater than the maximum LEP energy in the

ratio 120/100. The required Higgs factory magnetic field
is therefore less than the LEP magnetic field in the ratio
1.2/4 = 0.3. The stored magnetic energy density scales as
the square of this ratio. With the magnetic bore constant,
the Higgs factory stored magnetic energy is less than for
LEP in the ratio 4 × 0.32

= 0.36. Ferromagnetic magnets
are often costed in Joules per cubic meter. If this were valid
the Higgs factory magnet would be three times cheaper than
the LEP magnet.

When one actually looks into magnet costs one finds the
calculation in the previous paragraph to be entirely mislead-
ing. The actual costs tend to be dominated by end effects,
fabrication, transportation and installation. Accepting these
costs as dominant would, one might think, force one to ac-
cept the Higgs factory magnet cost being proportional to
tunnel circumference; this would be the cost of simply repli-
cating LEP magnets. One reason this might be too conserva-
tive is that, with the Higgs factory cell length being longer,
the magnets could be longer. But this would also be mis-
leading since the LEP magnets were already as long as eco-
nomically practical (because of fabrication, transportation
and installation costs).

To hold down magnet costs, the inescapable conclusion
to be drawn from this discussion is that the magnets have to
be built in situ, in their final positions in the Higgs factory
tunnel. This is the only possible way to prevent the magnet
cost from scaling proportional to the tunnel circumference,
or worse. (The same is probably true for superconducting
magnets in the later p,p phase of the project.)

It is not at all challenging to build the Higgs factory col-
lider magnets in place. With top-off injection these magnets
do not have to ramp up in field. As a result they have no eddy
currents and therefore do not need to be laminated.

Regrettably the same is not true for the injector magnet,
which will be more challenging, and may be more expen-
sive, than the collider magnet.

An even more quixotic argument for building the magnet
in place is to compare the arcs of the collider to high voltage
electrical power lines, which carry vast amounts of power
over vast distances. For example a 106 V line, carrying
103 A, carries 109 W of power over a distance of 100 Km,
with fractional energy loss of 1%. The arcs of the Higgs
factory will similarly carry 1011 V at 10−2 A over a distance
of 100 Km with fractional energy loss of 1%. Same power,
same loss. One would not even think of building overland
power lines in a factory before transporting them to where
they are needed. The same should be true for accelerator
magnets.

CPPC: For superconducting magnetic fields B in the
range from 4 to 7 Tesla the cost per unit volume [16] is
roughly proportional B2/3 but increasing “more than lin-
early for higher magnetic fields”, perhaps proportional to B

at, say, 12 T. If true, at fixed bore diameter and fixed energy
the magnet cost would be more or less independent of tun-
nel radius R, and there would be little need to worry about

9

talman
Underline Text
When one actually looks into magnet costs one ﬁnds the calculation in the previous paragraph to be entirely mislead- ing. The actual costs tend to be dominated by end eﬀects, fabrication, transportation and installation. 

talman
Underline Text
To hold down magnet costs, the inescapable conclusion to be drawn from this discussion is that the magnets have to be built in situ, in their ﬁnal positions in the Higgs factory tunnel. This is the only possible way to prevent the magnet cost from scaling proportional to the tunnel circumference, or worse. 

talman
Underline Text
It is not at all challenging to build the Higgs factory col- lider magnets in place. With top-oﬀ injection these magnets do not have to ramp up in ﬁeld. As a result they have no eddy currents and therefore do not need to be laminated.

talman
Underline Text
Regrettably the same is not true for the injector magnet,

talman
Underline Text
An even more quixotic argument for building the magnet in place

talman
Underline Text
there would be little need to worry about

talman
Underline Text
For superconducting magnetic ﬁelds



the tunnel circumference being “too big” from this point of
view.

As discussed previously the synchrotron radiation heat
load cost is proportional to 1/R2 at fixed E. In principle,
none of the synchrotron radiation has to be stopped at liq-
uid helium temperature but, in practice, this is very hard to
achieve. As with electrons, the reduced synchrotron radia-
tion power load can be exploited to increase the stored beam
charge by increasing R.

Note that doubling the radius, while cutting the power

in half, increases the cost only modestly, while leaving

generous options for upgrading to maximize Higgs lu-

minosity, as well as maximizing the potential p,p physics

reach. The shaded row in Table 4 seems like the best deal.

2.6 Luminosity Limiting Phenomena

Saturated Tune Shift. My electron/positron beam-
beam simulation [4] dead reckons the saturation tune shift
ξmax which is closely connected to the maximum luminos-
ity. For an assumed R ∝ E5/4 tunnel circumference scaling,
ξmax is plotted as a function of machine energy E in Figure 4.
This plot assumes that the r.m.s. bunchlengthσz is equal to
β∗y , the vertical beta function at the intersection point (IP).

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0  50  100  150  200  250  300

M
ax

im
um

 s
at

ur
at

ed
 tu

ne
 s

hi
ft,

 ξ
m

ax
"

Beam Energy, Em [GeV]

Figure 4: Plot of maximum tune shift ξmax as a function
of maximum beam energy for rings such that E ∝ R5/4.
The non-smoothness has to be blamed on statistical fluctu-
ations in the Monte Carlo program calculation. The maxi-
mum achieved tune shift parameter 0.09 at 100 GeV at LEP
was less than shown, but their torturous injection and energy
ramping seriously constrained their operations.

The physics of the simulation assumes there is an equilib-
rium established between beam-beam heating versus radia-
tion cooling of vertical betatron oscillations. Under ideal
single beam conditions the beam height would be σy ≈0.
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This would give infinite luminosity in colliding beam op-
eration —but this is unphysical. In fact beam-beam forces
cause the beam height to grow into a new equilibrium with
normal radiation damping. It is parametric modulation of
the vertical beam-beamforce by horizontal betatron and lon-
gitudinal synchrotron oscillation that modulates the vertical
force and increases the beam height. The resonance driv-
ing strength for this class of resonance is proportional to
1/σy and would be infinite if σy=0—this too is unphysical.
Nature, “abhoring” both zero and infinity, plays off beam-
beam emittance growth against radiation damping. How-
ever amplitude-dependent detuning limits the growth, so
there is only vertical beam growth but no particle loss (at
least from this mechanism). In equilibrium the beam height
is proportional to the bunch charge. The simulation auto-
matically accounts for whatever resonances are nearby.

Beamstrahlung. “Beamstrahlung” is the same as syn-
chrotron radiation, except that it occurs when a particle in
one beam is deflected by the electric and magnetic fields
of the other beam. The emission of sychrotron radiation
x-rays is inevitable and the lost energy has to be paid for.
Much worse is the occasional radiation of a single photon
(or, by chance, the sum of two) of sufficiently high energy
that the reduction in momentum causes the particle itself to
be lost. This magnifies the energy loss by the ratio of the
x-ray energy lost to the energy of the circulating electron by
some two orders of magnitude. It is this process that makes
beamstrahlung so damaging. It contributes directly to the
so-called “interaction lifetime”. The damage is quantified
by the beamstrahlung-dominated beam lifetime τbs.

The important parameter governing beamstrahlung is the
“critical energy” u∗c which is proportional to 1/bunch-length
σz ; beamstrahlung particle loss increases exponentially
with u∗c . To decrease beamstrahlung by increasing σz also
entails increasing β∗y which reduces luminosity. A favor-
able compromise can be to increase charge per bunch along
with β∗y .

Reconciling the Luminosity Limits. The number of
electrons per bunch Np is itself fixed by the available RF
power and the number of bunches Nb . For increasing the
luminosity Nb needs to be reduced. To keep beamstrahlung
acceptably small Nb needs to be increased. The maximum
achievable luminosity is determined by this compromise be-
tween beamstrahlung and available power.

Three limiting luminosities can be defined: LRF
pow is the

RF power limited luminosity (introduced earlier to analyse
constant luminosity scaling); Lbb

sat is the beam-beam satu-
rated luminosity; Lbs

trans is the beamstrahlung-limited lumi-
nosity. Single beam dynamics gives σy = 0 which implies
LRF

pow = ∞? Nonsense. Recalling the earlier discussion, the
resonance driving force, being proportional to 1/σy would
also be infinite. As a result the beam-beam force expands
σy = 0 as necessary. Saturation is automatic (unless the
single beam emittance is already too great for the beam-
beam force to take control—it seems this condition was just
barely satisfied in highest energy LEP operation [6]). For-
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mulas for the luminosity limits are:

LRF
pow =

1
Nb

H (ryz )
1

axy

f

4π

(n1Prf [MW]
σy

)2
, (11)

Lbb
sat = Ntot.H (ryz ) f

γ

2re
(ξsat./βy ), (12)
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trans = NbH (ryz ) axyσ

2
z f

(

√
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√
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)2
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e Ẽ2
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)

)2
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Here H (ryz ) is the hourglass reduction factor. If Lbs
trans <

Lbb
sat we must increase Nb . But Lbs

trans ∝ Nb , and
LRF

pow ∝ 1/Nb . We accept the compromise Nb,new/Nb,old =

Lbb
sat/Lbs

trans as good enough.
Parameter tables, scaled up from LEP, are given for

100 km circumference Higgs factories in Tables 6 and 8.
The former of these tables assume the number of bunches
Nb is unlimited. The latter table derates the luminosity un-
der the assumtion that Nb cannot exceed 200. Discussion
of the one ring vs two rings issue can therefore be based on
Table 8.

Some parameters not given in tables are: Optimistic=1.5
(a shameless excuse for actual optimatization), ηTelnov=0.01
(lattice fractional energy acceptance), τbs=600 s, RGauUnif=
0.300, Pr f = 25 MW, Over Voltage=20 GeV, aspect ratio
axy=15, ryz = β∗y/σz=1, and βarc max=198.2 m.

With the exception of the final table, which is specific to
the single ring option, the following tables apply equally to
single ring or dual ring Higgs factories. The exception re-
lates to Nb , the number of bunches in each beam. With Nb

unlimited (as would be the case with two rings) all parame-
ters are the same for one or two rings (at least according to
the formulas in this paper).

2.7 One Ring or Two Rings?

With one ring, the maximum number of bunches is lim-
ited to approximately≤ 200. (I have not studied crossing an-
gle schemes which may permit this number to be increased.)
For Nb > 200 the luminosity L has to be de-rated accord-
ingly; L → Lactual = L × 200/Nb. This correction is
applied in Table 8. This table, whose entries are simply
drawn from Table 6, makes it easy to choose between one
and two rings. Entries in this table have been copied into
the earlier Table 4. When the optimal number of bunches is
less than (roughly) 200, single ring operation is satisfactory,
and hence favored. When the optimal number of bunches
is much greater than 200, for example at the Z0 energy, two
rings are better.

Note though, that the Z0 single ring luminosities are still
very healthy. In fact, with β∗y=10 mm, which is a more con-
servative estimate than most others in this paper and in other
FCC reports, the Z0 single ring penalty is substantially less.

Luminosities and optimal numbers of bunches in a sec-
ond generation scaled-up-luminosity Higgs factory running
are shown in Figure 6.
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Figure 6: Dependence of luminosity on single beam en-
ergy (after upgrade to Stage II luminosity). The number
of bunches (axis label to be read as Nb/60) is also shown,
confirming that (as long as the optimal value of Nb is 1
or greater) the luminosity is proportional to the number of
bunches. There is useful luminosity up to E = 500 GeV
CM energy.

2.8 Predicted Luminosities

With one 100 km circumference ring, the maximum num-
ber of bunches is limited to about 200. For Nb < 200
the luminosity L has to be reduced proportionally. L →
Lactual = L×Nb/200. Luminosities in the 100 km, 25 MW
case are given in Section “Ring Circumference and Two
Rings vs One Ring”. Here, for comparison, and to more
nearly match the separation scheme shown in Figure 11,
the circumference is assumed to be C=50 km, the RF power
50 MW per beam, and the number of bunches Nb=112. The
results are shown in Table 7 (unlimited Nb) and Table 9
(with Nb=112).

The values of parameters not shown in the tables are
ηTelnov=0.01, β∗y =5 mm, xityp./β∗y=22.8, τbs=600 s, Opti-
mistic= 1.5, RGau−unif=0.30, eVrf=20 GeV, OVreq.=20 GV,
axy=15, ryz=1, βx,arcmax=120 m.

2.9 Reconciling the Luminosity Formulas

Several formulas have been given for the luminosity. The
luminosity actually predicted is the smallest of the entries
intries in the three luminosity columns, for example in Ta-
ble 6. For the middle shaded row the lowest value is L =
1.14 × 1034 cm−2s−1.

Including some formulas already given, the following se-
quence of equations supports a strategy for searching param-
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Parameter Symbol Value Unit Energy-scaled Radius- scaled
bend radius R 3026 m 3026 5675 11350

R/3026 1 1.875 3.751
Beam Energy E 45.6/91.5 GeV 120 120 120

Circumference C 26.66 km 26.66 50 100
Cell length Lc m 79 108 153

Momentum compaction αc 1.85e-4 1.85e-4 0.99e-4 0.49e-4
Tunes Qx 90.26 90.26 123.26 174.26

Qy 76.19 76.19 104.19 147.19
Partition numbers Jx/Jy/Jǫ 1/1/2 1/1.6/1.4 ! 1/1/2 1/1/2
Main bend field B0 0.05/0.101 T 0.1316 0.0702 0.0351

Energy loss per turn U0 0.134/2.05 GeV 6.49 3.46 1.73
Radial damping time τx 0.06/0.005 s 0.0033 0.0061 0.0124

τx/T0 679/56 turns 37 69 139
Fractional energy spread σδ 0.946e-3/1.72e-3 0.0025 0.0018 0.0013
Emittances (no BB), x ǫ x 22.5/30 nm 21.1 8.2 2.9

y ǫy 0.29/0.26 nm 1.0 0.4 0.14
Max. arc beta functs βmax

x 125 m 125 171 242
Max. arc dispersion Dmax 0.5 m 0.5 0.5 0.5

Beta functions at IP β∗x , β
∗
y 2.0,0.05 m 1.25/0.04 N/Sc. N/Sc.

Beam sizes at IP σ∗x ,σ
∗
y 211, 3.8 µm 178/11 N/Sc. N/Sc.

Beam-beam parameters ξx , ξy 0.037,0.042 0.06/0.083 N/Sc. N/Sc.
Number of bunches Nb 8 4 N/Sc. N/Sc.

Luminosity L 2e31 cm−2s−1 1.0e32 N/Sc. N/Sc.
Peak RF voltage VRF 380 MV 3500 N/Sc. N/Sc.
Synchrotron tune Qs 0.085/0.107 0.15 N/Sc. N/Sc.

Low curr. bunch length σz 0.88 cm αcRσe

QsE
N/Sc. N/Sc.

Table 5: Higgs factory parameter values for 50 km and 100 km options. The entries are mainly extrapolated from Jowett’s,
45.6 Gev report [8], and educated guesses. “N/Sc.” indicates (important) parameters too complicated to be estimated by
scaling. Duplicate entries in the third column, such as 45.6/91.5 are from Jowett [8]; subsequent scalings are based on the
45.6 Gev values.

eter space for the optimal design.
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Under ideal single beam conditions, the beam height σy is
vanishingly small and Eq. (14) predicts infinite luminosity,
even for arbitrarily small RF power. Of course this is non-
sense; nature “abhors” both zero and infinity. In fact, when
in collision, the beam-beam force causes σy to grow (as
the simulation model assumes). In the current context this
implies that it is always possible to saturate the tune shift op-

erationally. In this circumstance Eq. (16) is applicable, and
gives the beam area Aβy

small enough for the tune shift to
be saturated with the available number of electrons, which
is given by Eq. (16). Tentatively we assume Nb = 1 and,
therefore, Np = Ntot. Then

σy =

√

Aβy

πaxy

, and σx = axyσy . (20)

With the beam aspect ratio axy being treated as if known,
this permits the bunch height and width to be determined.
But this determination is only preliminiary since the num-
ber of bunches Nb is not yet fixed. Then, for a tentatively
adopted value of bunch length σz , with (ξsat./βy ) read
from Figure 5, Eq. (17) gives the predicted luminosity with
all the beam in one bunch.

But this has neglected the beamstrahlung limitation;
Eq. (18) gives the maximum luminosity allowed by beam-
strahlung. (Factors have not been collected in this
embarrassingly-cluttered formula so they can be traced
from earlier formulas.) This beamstrahlung-limited lumi-
nosity will usually be less than the beam-power limited lu-
minosity. The only recourse in this case is to split the beam
into Nb bunches. Changing Nb does not change Lbb

sat, be-
cause Nb Np is fixed, but it increasesLbs

trans, and it decreases
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name E ǫx β∗y ǫy ξsat Ntot σy σx u∗c n∗
γ,1 LRF Lbs

trans Lbb Nb β∗x Prf

GeV nm mm pm 1012 µm µm GeV 1034 1034 1034 m MW
Z 46 0.949 2 63.3 0.094 1500 0.356 5.34 0.000 2.01 52.5 103 52.5 65243 0.03 25
W 80 0.336 2 22.4 0.101 150 0.212 3.17 0.001 2.10 9.66 17.2 9.6 10980 0.03 25

LEP 100 0.223 2 14.9 0.101 62 0.172 2.59 0.002 2.13 4.95 8.46 4.94 5421 0.03 25
H 120 0.159 2 10.6 0.102 30 0.146 2.19 0.003 2.17 2.86 4.74 2.86 3044 0.03 25
tt 175 0.078 2 5.33 0.118 6.6 0.103 1.55 0.006 2.24 0.923 1.43 0.92 920 0.03 25
Z 46 17.2 5 1140 0.094 1500 2.39 35.89 0.001 2.16 21 35.1 21. 3605 0.075 25
W 80 6.11 5 408 0.101 150 1.43 21.42 0.003 2.26 3.86 5.83 3.86 602 0.075 25

LEP 100 4.07 5 271 0.101 62 1.16 17.47 0.005 2.31 1.98 2.86 1.97 296 0.075 25
H 120 2.92 5 195 0.102 30 0.987 14.80 0.008 2.35 1.15 1.6 1.14 166 0.075 25
tt 175 1.47 5 98.1 0.118 6.6 0.7 10.51 0.017 2.43 0.369 0.479 0.37 49 0.075 25
Z 46 155 10 10300 0.094 1500 10.2 152.3 0.002 2.29 10.5 15.5 10.5 400 0.15 25
W 80 55.4 10 3690 0.101 150 6.08 91.17 0.007 2.41 1.93 2.55 1.93 66 0.15 25

LEP 100 37.0 10 2470 0.101 62 4.97 74.48 0.011 2.46 0.989 1.25 0.99 32 0.15 25
H 120 26.6 10 1770 0.102 30 4.21 63.15 0.016 2.50 0.573 0.696 0.57 18.3 0.15 25
tt 175 13.5 10 898 0.118 6.6 3.0 44.94 0.036 2.60 0.185 0.207 0.19 5.5 0.15 25

Table 6: The major factors influencing luminosity, assuming 100 km circumference and 25 MW/beam RF power. The
predicted luminosity is the smallest of the three luminosities, LRF, Lbs

trans, and Lbb. All entries in this table apply to either
one ring or two rings, except where the number of bunches Nb is too great for a single ring.

name E ǫx β∗y ǫy ξsat Ntot σy σx u∗c n∗
γ,1 LRF Lbs

trans Lbb Nb β∗x Prf

GeV nm mm pm µm µm GeV 1034 1034 1034 m MW
Z 46 0.916 2 61.1 0.094 7.3e+14 0.35 5.24 0.000 1.97 52.5 96.8 52.513 33795 0.03 50
W 80 0.323 2 21.6 0.101 7.6e+13 0.208 3.12 0.001 2.06 9.66 16.2 9.661 5696 0.03 50

LEP 100 0.215 2 14.3 0.101 3.1e+13 0.169 2.54 0.002 2.10 4.95 8 4.947 2814 0.03 50
H 120 0.153 2 10.2 0.102 1.5e+13 0.143 2.15 0.003 2.13 2.86 4.48 2.863 1581 0.03 50
tt 175 0.077 2 5.12 0.118 3.3e+12 0.101 1.52 0.006 2.19 0.923 1.35 0.923 478 0.03 50
Z 46 16.5 5 1100 0.094 7.3e+14 2.35 35.21 0.001 2.12 21 33.2 21.005 1872 0.075 50
W 80 5.88 5 392 0.101 7.6e+13 1.4 20.99 0.003 2.22 3.86 5.52 3.864 313 0.075 50

LEP 100 3.91 5 261 0.101 3.1e+13 1.14 17.12 0.005 2.26 1.98 2.71 1.979 154 0.075 50
H 120 2.80 5 187 0.102 1.5e+13 0.966 14.50 0.007 2.30 1.15 1.52 1.145 86 0.075 50
tt 175 1.41 5 94 0.118 3.3e+12 0.686 10.28 0.016 2.38 0.369 0.455 0.369 26 0.075 50
Z 46 149 10 9900 0.094 7.3e+14 9.95 149.28 0.002 2.24 10.5 14.7 10.503 208 0.15 50
W 80 53.1 10 3540 0.101 7.6e+13 5.95 89.26 0.007 2.36 1.93 2.42 1.932 34 0.15 50

LEP 100 35.4 10 2360 0.101 3.1e+13 4.86 72.88 0.011 2.41 0.989 1.19 0.989 17 0.15 50
H 120 25.4 10 1700 0.102 1.5e+13 4.12 61.78 0.016 2.45 0.573 0.663 0.573 9.5 0.15 50
tt 175 12.9 10 857 0.118 3.3e+12 2.93 43.92 0.035 2.54 0.185 0.198 0.185 2.9 0.15 50

Table 7: Luminosity influencing parameters and luminosities with unlimited number of bunches Nb , assuming 50 km
circumference ring and 50ṀW per beam RF power.

E β∗y ξsat Lactual Nb,actual Prf

GeV m 1034 MW/beam
46 0.002 0.094 0.161 200 25
80 0.002 0.1 0.176 200 25
100 0.002 0.1 0.182 200 25
120 0.002 0.1 0.188 200 25
175 0.002 0.12 0.200 200 25
46 0.005 0.094 1.165 200 25
80 0.005 0.1 1.282 200 25
100 0.005 0.1 1.334 200 25
120 0.005 0.1 1.145 166 25
175 0.005 0.12 0.369 50 25
46 0.010 0.094 5.247 200 25
80 0.010 0.1 1.932 66.5 25
100 0.010 0.1 0.989 32.7 25
120 0.010 0.1 0.573 18.3 25
175 0.010 0.12 0.185 5.5 25

Table 8: Luminosites achievable with a single ring for
which the number of bunches Nb is limited to 200, assum-
ing 100 km circumference and 25 MW/beam RF power. En-
tries in this table have been distilled down to include only
the most important entries in Table 6, as corrected for the
restricted number of bunches. The luminosity entries in Ta-
ble 4 have been obtained from this table.

LRF
pow by the same factor. Unfortunately, not yet definitively

knowing σy , we cannot yet reckon the optimal value of Nb .

E β∗y ξsat Lactual Nb,actual Prf

GeV m 1034 MW
46 0.002 0.094 0.174 112 50
80 0.002 0.1 0.190 112 50
100 0.002 0.1 0.197 112 50
120 0.002 0.1 0.203 112 50
175 0.002 0.12 0.216 112 50
46 0.005 0.094 1.256 112 50
80 0.005 0.1 1.380 112 50
100 0.005 0.1 1.434 112 50
120 0.005 0.1 1.145 86.6 50
175 0.005 0.12 0.369 26.1 50
46 0.010 0.094 5.644 112.0 50
80 0.010 0.1 1.932 34.7 50
100 0.010 0.1 0.989 17.1 50
120 0.010 0.1 0.573 9.5 50
175 0.010 0.12 0.185 2.9 50

Table 9: Luminosity influencing parameters and luminosi-
ties with the number of bunches limited to Nb = 112, as-
suming 50 km circumference ring and 50ṀW per beam RF
power.

As a compromise we use the square-rooted ratio in Eq. (19)
to fix Nb . This increases Lbs

trans and decreases LRF
pow by the

same factor (assuming Nb > 1).

A more agressive approach is to replace Eq. (19) by
Nb = Lbb

sat/Lbs
trans. This is justifiable, since Lbb

sat depends
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4 LATTICE OPTIMIZATION FOR

TOP-OFF INJECTION

This section discusses Higgs factory injection. Full en-
ergy, top-off injection is assumed. Vertical injection seems
preferable to horizontal (as will be shown). Kicker-free,
bunch-by-bunch injection concurrent with physics running
may be feasible. Achieving high efficiency injection jus-
tifies optimizing injector and/or collider lattices for maxi-
mum injection efficiency. Stronger focusing in the injec-
tor and weaker focusing in the collider improves the injec-
tion efficiency. Scaling formulas (for the dependence on
ring radius R) show injection efficiency increasing with in-
creasing ring circumference. Scaling up from LEP, more
nearly optimal parameters for both injector and collider are
obtained. Maximum luminosity favors adjusting the col-
lider cell length Lc for maximum luminosity and choosing

a shorter injector cell length, Li < Lc , for maximizing in-
jection efficiency.

4.1 Injection Strategy: Strong Focusing Injec-

tor, Weak Focusing Collider

Introduction. I take it as given that full energy top-
off injection will be required for the FCC electron-positron
Higgs factory. Without reviewing the advantages of top-off
injection, one has to be aware of one disadvantage. The cost
in energy of losing a full energy particle due to injection
inefficiency is the same as the cost of losing a circulating
particle to Bhabha scattering or to beamstrahlung or to any
other loss mechanism. Injection efficiency of 50% is equiv-
alent to doubling the irreducible circulating beam loss rate.
To make this degradation unimportant one should therefore
try to achieve 90% injection efficiency.
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Figure 11: Short partial sections of the multibump beam separation are shown: one at the beginning, one at an RF location
in the interior, and one at the far end of a long arc in Figure 8. The bunch separations are 480 m in a 50 km ring with
cell length Lc = 60 m. IP’s are indicated by vertical black bars, RF cavities by blue rectangles, electron bunches are
green rectangles moving left to right, positron bunches are open rectangles moving from right to left. Counter-circulating
bunches are separated at closed bump loop locations, and they must not pass through the nodes at the same time.

Achieving high efficiency injection is therefore suffi-
ciently important to justify optimizing one or both of injec-
tor and collider lattices to improve injection. The aspect
of this optimization to be emphasized here is shrinking the
injector beam emittances and expanding the collider beam
acceptances by using stronger focusing in the injector than
in the collider. What are the dynamic aperture implications?
They will be shown to be progressively more favorable as
the ring radius R is increased relative to the LEP value. The
dynamic-aperture/beam-widthratio increases as R1/2 and is
the same for injector and collider.

4.2 Constant Dispersion Scaling with R

Linear Lattice Optics. Most of the following scaling
formulas come from Jowett [8] or Keil [10] or from refer-
ence [11]. The emphasis on parameter scaling is in very
much the spirit emphasized by Alex Chao [12]. For simplic-
ity, even if it is not necessarily optimal, assume the Higgs
factory arc optics can be scaled directly from LEP values,
which are: phase advance per cell µx = π/2, full cell length
Lc = 79 m. (The subscript “c” distinguishes the collider lat-
tice cell length from the injector lattice cell length Li .) At
constant phase advance, the beta function βx scales as Lc

and dispersion D scales as bend angle per cell φ = Lc/R

multiplied by cell length Lc ;

D ∝ L2
c

R
. (24)

(For 90 degree cells, the constant of proportionality in this
formula is approximately 0.5, for the average dispersion
< D >.) Holding Lc constant as R is increased would de-
crease the dispersion, impairing our ability to control chro-
maticity. Let us therefore tentatively adopt the scaling

Lc ∝ R1/2, corresponding to φ ∝ R−1/2. (25)

This is tantamount to holding dispersion D constant, and is
consistent with electron storage ring design trends over the
decades.

These quantities and “Sands curly H”H then scale as

βx ∝ R1/2, D ∝ 1, H ∝ D2

βx
∝ 1

R1/2
. (26)

Copied from Jowett [8], the fractional energy spread is
given by
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σ2
ǫ =

55

32
√

3

~

mec
γeFǫ , where

Fǫ =
< 1/R3 >

Jx < 1/R2 >
∝ 1

R
, (27)

and the horizontal emittance is given by

ǫ x =
55

32
√

3

~

mec
γeFx , where

Fx =
< H/R3 >

Jx < 1/R2 >
∝ 1

R3/2
. (28)

The betatron contribution to beam width scales as

σx,betatron ∝
√

βx ǫ x ∝ 1/R1/2. (29)

Similarly, at fixed beam energy, the fractional beam energy
(or momentum) spread σδ scales as

σδ ∝
√

B ∝ 1/R1/2. (30)

Scaling with R of Arc Sextupole Strengths and Dy-

namic Aperture. At this stage in the Higgs Factory de-
sign, it remains uncertain whether the IP-induced chro-
maticity can be cancelled locally, which promises more than
a factor of two increase in luminosity, but would require
strong bends close to the IP. For the time being I assume
the IP chromaticity is cancelled in the arcs. Individual sex-
tupole strengths can be apportioned as

S = Sarc chr.
+ SIP chr. (31)

The IP-compensating sextupole portion SIP chr. depends on
the IP-induced chromaticity. A convenient rule of thumb
has the IP chromaticity equal to the arc chromaticity. By
this rule doubling the arc-compensating sextupole strengths
cancels both the arc and the IP chromaticity.

With dispersion D ∝ 1, quad strength q ∝ 1/R1/2,
and Sarc chr. ∝ q/D, one obtains the scaling of sextupole
strengths and dynamic aperture;

S ∝ 1

R1/2
, and xdyn. ap. ∝ q

Sarc chr.
∝ 1. (32)

The most appropriate measure of dynamic aperture is its
ratio to beam width,

xdyn. ap.

σx

∝ 1

1/R1/2
∝ R1/2 . (33)

The increase of this ratio with increasing R would allow
the IP optics to be more aggressive for the Higgs factory
than for LEP. Unfortunately it is the chromatic mismatch
between IP and arc that is thought to be more important in
limiting the dynamic aperture than is the simple compensa-
tion of total chromaticity. The constant dispersion scaling
formulas derived so far are given in Table 3.

4.3 Revising Injector and/or Collider Parame-

ters for Improved Injection

What has been discussed so far has been “constant dis-
persion scalling”. But, as already stated, we wish to dif-
ferentiate the injector and collider optics such that the in-
jector emittances are smaller and the collider acceptances
are larger. This can be accomplished by shortening injector
length Li and lengthening collider cell length Lc . The re-
sulting R-dependencies and scaling formulas are shown in
Table 10. They yield the lattice parameters in Table 11 for
both the 50 km and 100 km circumference options.

Implications of Changing Lattices for Improved Injec-

tion. According to these calculations there is substantial
advantage and little disadvantage to strengthening the injec-
tor focusing and weakening the collider focusing. This is
achieved by shortening the injector cell length Li and in-
creasing the collider cell length Lc . Weakening the collider
focusing has the effect of increasing the equilibrium trans-
verse beam dimensions.

As indicated in the caption to Table 11, the improvement
in the injector emittance/collider acceptance ratio is prob-
ably unnecessaily large, at least for a 100 km ring, where
the improvement in the injector/collider emittance ratio is a
factor of seven.

Furthermore there is at least one more constraint that
needs to be met. Maximum luminosity results only when
the beam aspect ratio at the crossing point is optimal.
Among other things this imposes a condition of the hori-
zontal emittance ǫ x . At the moment the preferred method
for controlling ǫ x is by the appropriate choice of cell length
Lc . With lattice manipulations other than changing the cell
length it may be possible to increase, but probably not de-
crease ǫ x .

According to Table 2 of Section “Ring Circumference
and Two Rings vs One Ring”, with β∗y = 5 mm the optimal
choice of ǫ x is 3.98 nm. According to Table 11 the actual
value will be ǫ x = 7.82 nm. These values can be considered
“close enough for now”, or they can be considered different
enough to argue that further design refinement is required
(which is obvious in any case). But the suggestion is that
the Lc = 213 m collider cell length choice in Table 11 may
be somewhat too long.

Unfortunately the optimal value of ǫ x depends strongly
on the optimal value of β∗y , which is presently unkown.
These considerations show that the arc and intersection re-
gion designs cannot be separately optimized. Rather a full
ring optimization is required.
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Parameter Symbol Proportionality L ∝ R1/4 L ∝ R1/2 L ∝ R3/4

injector collider
phase advance per cell µx 90◦ 90◦ 90◦

cell length L R1/4 R1/2 R3/4

110 m 153 m 213 m
bend angle per cell φ = L/R R−3/4 R−1/2 R−1/4

momentum compaction φ2 R−3/2 R−1 R−1/2

quad strength (1/ f ) q 1/L R−1/4 R−1/2 R−3/4

dispersion D φL R−1/2 1 R1/2

beta β L R1/4 R1/2 R3/4

tune Qx R/β R3/4 R1/2 R1/4

243.26 174.26 125.26
tune Qy R/β R3/4 R1/2 R1/4

205.19 147.19 106.19
Sands’s “curly H” H = D2/β R−5/4 R−1/2 R1/4

partition numbers Jx/Jy/Jǫ 1/1/2 1/1/2 1/1/2 1/1/2
horizontal emittance ǫ x H/(Jx R) R−9/4 R−3/2 R−3/4

fract. momentum spread σδ
√

B R−1/2 R−1/2 R−1/2

arc beam width-betatron σx,β =

√
βǫ x R−1 R−1/2 1

-synchrotron σx,synch. = Dσδ R−1 R−1/2 1
sextupole strength S q/D R1/4 R−1/2 R−5/4

dynamic aperture xda q/S R−1/2 1 R1/2

relative dyn. aperture xda/σx R1/2 R1/2 R1/2

separation amplitude xp σx N/A R−1/2 1

Table 10: To improve injection efficiency (compared to constant dispersion scaling) the injector cell length can increase
less, for example Li ∝ R1/4, and the collider cell length can increase more, for example Li ∝ R3/4. The shaded entries
assume circumference C=100 km, R/RLEP=3.75.

Parameter Symbol LEP(sc) Unit Injector Collider
bend radius R 3026 m 5675 11350 5675 11350

beam Energy 120 GeV 120 120 120 120
circumference C 26.7 km 50 100 50 100

cell length L 79 m 92.4 110 127 213
momentum compaction αc 1.85e-4 m 0.72e-4 0.25e-4 1.35e-4 0.96e-4

tunes Qx 90.26 144.26 243.26 105.26 125.26
Qy 76.19 122.19 205.19 89.19 106.19

partition numbers Jx/Jy/Jǫ 1/1.6/1.4 1/1/2 1/1/2 1/1/2 1/1/2
main bend field B0 0.1316 T 0.0702 0.0351 0.0702 0.0351

energy loss per turn U0 6.49 GeV 3.46 1.73 3.46 1.73
radial damping time τx 0.0033 s 0.0061 0.0124 0.0061 0.0124

τx/T0 37 turns 69 139 69 139
fractional energy spread σδ 0.0025 0.0018 0.0013 0.0018 0.0013
emittances (no BB), x ǫ x 21.1 nm 5.13 1.08 13.2 7.82

y ǫy 1.0 nm 0.25 0.05 0.66 0.39
max. arc beta functs βmax

x 125 m 146 174 200 337
max. arc dispersion Dmax 0.5 m 0.37 0.26 0.68 0.97
quadrupole strength q ≈ ±2.5/Lp 0.0316 1/m 0.027 0.0227 0.0197 0.0117

max. beam width (arc) σx =
√

2βmax
x ǫ x 1.6

√
2 mm 0.865

√
2 0.433

√
2 1.62

√
2 1.62

√
2

(ref) sextupole strength S = q/D 0.0632 1/m2 0.0732 0.0873 0.0290 0.0121
(ref) dynamic aperture xda ∼ q/S ∼0.5 m ∼0.370 ∼0.260 ∼0.679 ∼0.967

(rel-ref) dyn.ap. xda/σx ∼0.313 ∼0.428 ∼0.600 ∼0.417 ∼0.621
separation amplitude ±5σx ±8.0

√
2 mm ±8.1

√
2 ±7.8

√
2

Table 11: Lattice parameters for improved injection efficiency. This table is to be compared with Table 5 to assess the
effect of lattice changes on injection efficiency. The shaded row indicates how successfully the injector emittance has been
reduced relative to the collider emittance. The factor of seven improvement, 7.82/1.08, in this ratio for a 100 km ring,
seems unnecessarily large, indicating that less radical scaling should be satisfactory.
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5 L× L
∗2 LUMINOSITY×FREE SPACE

INVARIANT

Yunhai Cai’s intersection region design [13] is analysed
in detail in Appendix E, “Deconstructing Yunhai Cai’s IR
Optics”. For maximum operational convenience in chang-
ing IP beta functions, Yunhai’s design was designed to be
scalable. This makes the IR design ideal for using dimen-
sional analysis to derive scaling law dependence on the free
space length L∗, which is the length of the space left free for
the particle collision reconstruction apparatus. This scaling
law can be employed to investigate how the choice of free
IP length L∗ affects the achievable luminosity. Yunhai’s de-
sign is probably close to optimal. But, even if it is not, the
same results, based purely on scaling behavior, will still be
valid. This prescription does not establish the absolute lu-
minosity but it does determine the relative luminosity under
the plausible hypothesis that the luminosity maximum will
be governed by the maximum β functions (anywhere in the
ring). Following the derivation of this scaling law its impact
on operations will be discussed.

MAD runs produced the beta function plots shown in Fig-
ure 12 for the four parameter sets given in Table 12. Other
than noting their identical shapes (confirming the scaling)
only the maximum βmax

y values are extracted from the plots.
Results of the MAD runs are plotted in Figure 13. The

smooth fitting function in the left plot of Figure 13 gives the
scaling law

βmax
y =

10[m2]
β∗y

( L∗

L∗nom

)p
, (34)

where L∗nom
= 2 m is the nominal distance from IP to

the entrance edge of the first quadrupole. The final factor
(which is equal to 1 for the plot) has been included to allow
power law dependence on L∗, with exponent p to be deter-
mined later. The right plot of Figure 13 gives the scaling
law

β∗y = β∗y
nom

( L∗

L∗nom

)2
. (35)

Re-arranging Eq. (34) gives

β∗y =
10[m2]
βmax
y

( L∗

L∗nom

)p
. (36)

For Eqs. (35) and (36) to be compatible requires p = 2.
Then Eq. (36) becomes

β∗y = 2.5
L∗2

βmax
y

e.g.
= 2.5

22

4900
= 2 mm. X (37)

Using Eq. (37) the luminosity is given by

Lstatic
=

4 × 1031cm−2s−1m
β∗y

(38)

or

Lstatic
= 1.6 × 1031cm−2s−1m ×

βmax
y

L∗2
. (39)

The constant of proportionality in these equation has not

been determined by the scaling formula. It has been chosen

to match independently estimated luminosities.

5.1 Estimating βmax
y

(and from it L)

According to Eq. (39) the achievable luminosityL is pro-
portional to the maximum achievable beta function value

24

talman
Underline Text
For maximum operational convenience in chang- ing IP beta functions, Yunhai’s design was designed to be scalable. This makes the IR design ideal for using dimen- sional analysis to derive scaling law dependence on the free space length L

, 

talman
Underline Text
his scaling law can be employed to investigate how the choice of free IP length L

aﬀects the achievable luminosity.

talman
Underline Text
This prescription does not establish the absolute lu- minosity but it does determine the relative luminosity under the plausible hypothesis that the luminosity maximum will be governed by the maximum β functions 

talman
Underline Text
The constant of proportionality in these equation has not
been determined by the scaling formula. It has been chosen to match independently estimated luminosities.



 0

 20

 40

 60

 80

 100

 2  4  6  8  10

sq
rt

(β
ym

ax
[m

])

βy
* [mm]

dependence of βmax
y on βy

*

sqrt(10000/x)

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2  2.5  3  3.5  4

β* y[
m

m
]

Ld1 [m]

dependence of βy
* on Ld1

2*(x/2)**2

Figure 13: Parameter dependencies implied by the Yunhai Cai intersection region design. The left plots βY max (or rather
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max
= 4900 m

held constant.

Using q ∝ 1/Lc , setting these equal, and solving for ∆xtol.

∆xtol.
=

DLc

βmax
y

. (41)

Dimensionally this quantity is a length. It depends primar-
ily on unknown transverse positioning imperfections. Its ab-
solute magnitude can therefore only be inferred phenomeno-
logically, by substituting the operationally determined value
of βmax

y on the right hand side.

Maximum βy Phenomenology. For half a century it

has been known that the way to get higher luminosity

is to reduce β∗y—and also that this entails increasing βmax
y ,

which is usually what is blamed for the loss of dynamic aper-
ture that limits the ability to reduce β∗y . In recent years lin-
ear collider studies have produced very small β∗y designs,
that are presumed to function satisfactorily for “Final Fo-
cus”; here “final focus” means the particles “die” there.

The “advantage” a circular collider has over a linear

collider is that every particle has millions of chances to

collide with a particle in the other beam. Applying the
term “final focus” to the IR of a circular collider is a crime
against language. The “disadvantage” of a circular col-

lider is that a particle has to survive millions of passages

through the other beam. It is operational experience with
this problem that is considered in this section.

One qualification is required. What most distinguishes a
Higgs factory from a low energy ring such as a B factory
is that RF power dominates the former, but not the latter.
With RF power insignificant the number of bunches Nb can
be very large and they can circulate in separate rings. RF
power restricts Nb in a Higgs factory. This limits the dual
ring advantage, and limits the applicability of B factory ex-
perience to the design of a Higgs factory. The extreme beam
energy ratio, 120/5 also limits IR design possibilities (such
as reducing L∗ in the Super-KEK design). For these reasons

the present paper bases most of its estimates on extrapola-
tion from LEP.

(Inverse) transverse sensitivity lengths are plotted for
various accelerators in Table 13. For convenience in pre-
dicting βmax

y for CepC, it is the inverse ratio 1/∆xtol.
=

βmax
y /(DLc ) that is tabulated.

β∗y Ring D Lc DLc βmax
y

βmax
y

DLc

m m m m2 m 1/m
0.015 CESR exp. 1.1 17 18.7 95 5.1
0.08 PETRA exp. 0.32 14.4 4.6 225 49

HERA exp. 1.5 48 72 2025 28
0.05 LEP exp. 0.8 79 63 441 7.0

0.007 KEKB exp. 0.5 20 10 290 29
LHC exp. 1.6 79 126 4500 36

0.01 CepC1 des. 0.31 47 14.6 1225 84
0.01 CepC2 des. 1.03 153 158 1225 8.8
0.001 CEPC des. 0.31 47 14.6 6000 410
0.001 FCC-ee des. 0.10 50 5.0 9025 1805

Table 13: Lattice parameters and inverse transverse sensi-
tivity lengths βmax

y /DLc for various e+e- colliders. The up-
per rows contain experimentally measured values, the lower
rows contain design values. CepC1 copies the Lc and D

values from CEPC, while CepC2 copies them from Table 5.
The IR design is assumed identical for CepC1 and CepC2,
with β∗y = 10 mm. In principle nothing in this table de-
pends directly on β∗y . But, indirectly, large βmax

y values are
correlated with small β∗y values.

When βmax
y is large, it is always because β∗y is small. But

the value of β∗y is irrelevant in assessing the dynamic aper-
ture limitation caused by the large value of βmax

y . So no β∗y
values are given in the table. If there were, β∗y would tend
to be “big” for the ancient rings toward the top of the table,
and “small” toward the bottom. The two CepC rows assume
identical IP optics with β∗y = 10 mm. For the CepC1 row
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the ring parameters are copied from the CEPC, CDR design.
For the CepC2 row the ring parameters are copied from Ta-
ble 5. For the CEPC row β∗y = 1 mm (which accounts for its
hyper-transverse-sensitivity). CEPC and FCC-ee values dif-
fer due to different dispersion and different L∗ values (1.5 m
for CEPC, 2.0 m for FCC-ee).

Compared in this way the transverse tolerances of KEKB
and LHC are close in value, even though, as storage rings,
they could scarcely be more disimilar; KEKB is a “small”
electron collider, LHC is a large proton collider. The pes-
simistic behavior of LEP can be blamed on the absence of
top-off injection, which led to the tortuous ramping and beta
squeeze operations. This limited the β∗y to be not less than
5 cm.

This transverse sensitivity discussion has been only semi-
quantitative but, at least, it is dimensionally consistent,
and it provides a prescription for comparing performance
of very different colliders. For the “transverse sensitivity
length” to be a valid comparison gauge implicitly assumes
that this length (dependent of survey and positioning preci-
sion) can be expected to be the same for accelerators of all
sizes, and for both electrons and protons. The approach has
been somewhat ad hoc however, and it depends on the va-
lidity of the scaling laws emphasized in this paper. Some
length other than DLc/β

max
y might provide a more valid

comparison, though it would probably disrupt the good
agreement between two modern rings, KEKB and LHC, in
the last column of Table 13.

5.2 Turn-On Scenarios

According to Figure 27 in Section ”Deconstructing Yun-
hai Cai’s IR Optics“ the maximum beta function value is
βy ≈ 1225m. Note, however, that β∗y = 10 mm is the value
of the IP beta function in Figure 22. This is ten times greater
than the value β∗y=1 mm sometimes assumed in FCC projec-
tions. According to Formula (38) β∗y = 1 mm would imply
βmax
y ≈ 12,250 m, which sends the transverse sensitivity off

scale.
Initially one will turn on with a conservatively large value

of β∗y = 10 mm or, at first, even higher. The luminosity in
Run I will therefore be fairly low. One will expect a much
higher luminosity in Run II. Luminosities under this sce-
nario are given in Table 14, for two choices of L∗.

Run year βmax
y L∗ β∗y Lstat Ldyn

m m mm 1034 1034

I 2025? 1000 2 10 0.40 0.40
3 22 0.178 0.178

II 2027? 3000 2 3.3 1.2 > 1.2
3 7.5 0.53 > 0.53

Table 14: Projected luminosities for conservative commis-
sioning stages for two different values of detector free space
parameter L∗.
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