

Sensitivity to new high-mass particles decaying to $t\bar{t}$ in fully

boosted regime at a 100 TeV collider

S.Chekanov

ANL

January, 28, 2015

IAS program on the Future of High-Energy Physics

Not a summary talk! A summary of several studies! In collaboration with B.Auerbach, J.Love, A.V. Kotwal, J.Proudfoot

Heavy particles decaying to $\ensuremath{t\bar{t}}$

- Extensions of the SM predict the existence of heavy particles
- Decays to tt is one of the promising channels
 - Top is heaviest known particle! A window to new physics
- Decays to "golden" channels (leptons, photons) can be suppressed

100 TeV collider & BSM models with top decays

- 100 TeV collider can study physics beyond 10 TeV
- Most interesting mass range is > 5 TeV
- Such masses lead to highly boosted top decays pT(t) > 2-3 TeV

Questions:

- How to measure tt resonances at the 10 TeV mass scale?:
 - separate decay particles cannot be "resolved"
 - how to use "traditional" calorimetry measurements?
- What are sensitivity limits for a "generic" tt resonance using boosted techniques?

Boosted top from high-mass particles

- M ~ 10 TeV generates top quarks with pT > 3-5 TeV
- ΔR distance between 2 particles (W,b) from top decay
- ΔR ~ 2* pT / m(top)

We use tt as an example!

There are many similar decays (W' \rightarrow tW) with boosted topologies!

Separation of top decay products for X (10 TeV) $\rightarrow t\bar{t}$

Phys. Rev. D81 (2010) 114038 S.C. J.Proudfoot

- For ~10 TeV object, typical opening angle between q, \overline{q} and b from t (\overline{t}) is 5 degree
- "Highly boosted" regime: decay products are inside "standard" jets with R=0.5
- Event kinematics → "back-to-back" jets
 - top decays form a narrow "core"
 - large final-state gluon radiation introduces extra smearing (Snowmass13, arXiv:1307.6908)

Zprime (10 TeV) \rightarrow **t** \overline{t} **.** Fast detector simulation using Delphes

anti-kT jets with R=0.5

Heavy particles decaying to tt at a 100 TeV collider. S.Chekanov (ANL)

6

Current landscape of experimental searches

- 8 TeV: ATLAS & CMS (CERN-PH-EP-2013-032, Phys.Rev.Lett. 111 (2013) 211804)
 - ATLAS:
 - A narrow leptophobic (narrow) Z' is excluded for M<1.7 TeV
 - KK excitation is excluded up to M=2.1 TeV
 - Upper limits: 0.03 pb up to 3 TeV
 - CMS:
 - Z' is excluded up to 2 TeV
 - KK excitation up to 2.5 TeV
 - \rightarrow Methods: lepton+jets channel:
 - resolved+ some boosted technique (HepTopTagger)
- **14 TeV** for pp with 3 ab⁻¹ (Snowmass13, K.Agashe et al, arXiv:1309.7847)
 - Masses < 4-5 TeV can be excluded (depends on reconstruction scenario)
- Region with M(X)>5 TeV is new territory for such searches
- Lepton+jets reconstruction will be very difficult due to large overlap of decay products (especially for e+/e-)

Current landscape of experimental searches

Isolated lepton (muon or electron) is required

Current landscape of experimental searches

Exclusion limits for Z' up to 5 TeV using:

- HL-LHC (3 ab-1)
- a mix of "resolved" and "boosted" techniques (typically requires isolated μ/e)

Goals and analysis plan for 100 TeV collider studies

- Exploring the unexplored. Use ~10-20 TeV mass range
- Using MC simulations, set model-independent sensitivity limits for observation of a "generic" tr resonance assuming 10 ab⁻¹ (10,000 fb⁻¹)
- Use Z' and g_{κκ} simulations as examples of expected "signal"
 - Z' is narrow ($\Gamma/M \sim 3\%$) while g_{KK} is broad ($\Gamma/M \sim 16\%$)
- Use basic substructure techniques to deal with background
 - irreducible $\ensuremath{t\bar{t}}$ background and QCD dijet background
- Use a b-tagging with reasonable assumption on efficiency and fake rates
- No detector simulation
 - Our limits are for the best-possible scenarios for $X \to t \bar{t}$ reconstruction
 - Be careful in extracting limits on the production of $Z'/g_{\kappa\kappa}$
 - Leptonic decays may have better chances for detection!
 - See, for example D.Hayden, R.Brock, C.Willis (2013) arXiv:1308.5874

MC simulation

• Signal (LO QCD). PYTHIA8

- $f\bar{f} \rightarrow Z0'$ with M=8,10,12,14,16,18,20 TeV. Code 3001. Pure Z' contribution. $\Gamma/M=3\%$
 - cross section scaled by the k-factor 1.3 (careful here \rightarrow using 8 TeV CM energy!)
- $q \overline{q} \rightarrow g_{KK}$ with M=8,10,12,14,16,18,20 TeV. Code 5006. Pure g_{KK} contribution. $\Gamma/M=16\%$
 - cross section is at LO

Background processes:

- PYTHIA8 for QCD backgrounds
 - NLOjet++ (NLO) to extract the k-factor (MSTW2008nlo68cl for PDF)
- HERWIG++ x k-factor as alternative (contain W/Z brem. events)
- SM tt process was generated with Madgraph (MSTW2008nlo68cl for PDF)
 - NLO QCD+ HERWIG6
- PYTHIA8 for all SM boson processes (like Z/W+jets)
 - Not too realistic, but the usage of "realistic" ALPGEN should not change conclusions

Software Monte Carlo toolkit for this study

Monte Carlo samples from the HepSim repository:

hep-ph > arXiv:1403.1886

- http://atlaswww.hep.anl.gov/hepsim/
- Select $p \rightarrow \leftarrow p$ then 100 TeV

Show all	Her	Sim											
$p \rightarrow \leftarrow p$	Reposito	ry with pred	lictions for HEP	experiments									
7 TeV	Selected:	Selected: pp collisions, 100000 GeV energy, all type											
8 TeV	This is a i	This is a new HepSim database. For more datasets use the Old HepSim repository											
13 TeV	ch												
14 TeV	Show 25 jentries Previous 1 2 Next Search:												
33 TeV 100 TeV	Id ^	→← 👙	E(GeV) 🔶	Name	\Rightarrow	Generator	Þ	Process	\Leftrightarrow	Topic 🔶	Info 🔶	Url	÷
	1	рр	100000.0	higgs_pythia8_100tev		PYTHIA8	gg	2Httbar and qqbar2Httbar		Higgs	Info	URL line	k
e →← e	2	рр	100000.0	higgs_ttbar_mg5		MADGRAPH+HERWIG6	Hig	ggs+ttbar (NLO+PS)		Higgs	Info	URL lini	k
	3	рр	100000.0	kkgluon_ttbar_1tev_pythia8		PYTHIA8	кк	gluon (1 TeV) to ttbar		Exotic	Info	URL lini	k
e →← p	4	pp	100000.0	kkgluon_ttbar_4tev_pythia8		PYTHIA8	кк	gluon (4 TeV) to ttbar		Exotic	Info	URL lini	k
920 GeV	7	рр	100000.0	qcd_herwigpp_pt2700		HERWIG++	All	dijet QCD events		SM	Info	URL lin	k
	8	рр	100000.0	kkgluon_ttbar_8tev_pythia8		PYTHIA8	кк	gluon(8 TeV) to ttbar		Exotic	Info	URL lin	k
	9	рр	100000.0	kkgluon_ttbar_16tev_pythia8		PYTHIA8	кк	gluon (16 TeV) to ttbar		Exotic	Info	URL lin	k
	10	рр	100000.0	kkgluon_ttbar_20tev_pythia8		PYTHIA8	кк	gluon (20 TeV) to ttbar		Exotic	Info	URL lini	k
	11	рр	100000.0	qcd_pythia8_pt300		PYTHIA8	All	dijet QCD events		SM	Info	URL lin	k
	12	рр	100000.0	qcd_pythia8_pt900		PYTHIA8	All	dijet QCD events		SM	Info	URL lini	k
	13	рр	100000.0	qcd_pythia8_pt2700		PYTHIA8	AII	dijet QCD events		SM	Info	URL lini	k
	14	рр	100000.0	qcd_pythia8_pt8000		PYTHIA8	All	dijet QCD events		SM	Info	URL lini	k
	15	рр	100000.0	ttbar_mg5		MADGRAPH+HERWIG6	РР	o > t t~ [QCD] (ttbar at N	LO)	Тор	Info	URL lini	k
	16	рр	100000.0	ttbar_pt2500_mg5_lo		MADGRAPH+HERWIG6	РР	o > t t~ (ttbar at LO)		Тор	Info	URL lini	k
	20	рр	100000.0	ttbar_pythia8_pt900		PYTHIA8	g g	g -> t tbar, q qbar -> t tba	r	Тор	Info	URL lin	k
	21	рр	100000.0	ttbar_pythia8_pt300		PYTHIA8	g g	g -> t tbar, q qbar -> t tba	r	Тор	Info	URL lin	k
	22	рр	100000.0	ttbar_pythia8_pt2700		PYTHIA8	g g	g -> t tbar, q qbar -> t tba	r	Тор	Info	URL lini	k
	23	рр	100000.0	ttbar_pythia8_pt8000		PYTHIA8	g g	g -> t tbar, q qbar -> t tba	r	Тор	Info	URL lin	k
	24	рр	100000.0	ttbar_mcfm_100tev		MCFM	ttb	ar production at NLO		Тор	Info	URL lini	k

Data samples & analysis program are public

MC samples for this study

http://atlaswww.hep.anl.gov/hepsim/

MC event samples for Z' / $g_{\kappa\kappa}$ studies:

- qcd_herwigpp_pt2700
- qcd_pythia8_pt2700
- ttbar_pythia8_pt2700
- pythia10tev_wjet2700
- ttbar_pt2500_mg5
- ttbar_pt2500_mg5_lo
- zprime*_pythia8
- kkgluon_ttbar*_pythia8

Includes the description of how to:

- download samples
- build an analysis program
- run fast detector simulation (Delphes)

World's largest public MC sample hosted by HepSim used in this study

Pythia8 dijets. Int. luminosity ~10 ab⁻¹ 0.4 billion pp events at 100 TeV

Kinematic distributions

- Jets reconstructed using antiKT5 (R=0.5) from FastJet
- pT(jet)>2.7 TeV and |eta|<2.5</p>
- The k-factor for dijets is ~10%, but large for tt (~3!)
- The distributions look as expected, with a harder pT spectrum for Z'(10 TeV)

Do we understand tt at large pT?

N. Kidonakis, Phys. Rev. D 82, 114030

- Warning: background estimates are based on NLO..
- but aNNLO corrections can large at large pT(top)

Particle distribution inside jets

 dR – distance in φ and η between any final state particle and jet center for leading jets

- tt jets are broader than jets from light-flavor dijets ("QCD")
- Also broader than tt from Z' (harder momentum spectrum)
- Jet size (R=0.5) is adequate for all processes

- Look at 2 leading jets above pT>2.7 TeV.
 - all decay channels. Semileptonic decays are included
 - add missing ET for lowest-ET jet
- Z' model leads to narrow signal ($\Gamma/M \sim 3\%$)
- $g_{\kappa\kappa}$ is wider ($\Gamma/M \sim 16\%$) and has larger cross section

Not That Obvious:

How to reduce QCD (reducible) and $t\bar{t}$ (irreducible) background for back-to-back jet events?

Heavy particles decaying to tt at a 100 TeV collider. S.Chekanov (ANL)

Signal(Z')/Bkg ~ 0.0007

17

Sensitivity limits (no cuts)

Example: Scale Z' cross section scaled until we see it with 95% confidence

 CL_{b} method with treatment of statistical uncertainties to extract "sensitivity" at 95% CL ("2 σ " discovery)

 \rightarrow 95% CL sensitivity is far away from the predicted cross sections for Z'!

 \rightarrow Some sensitivity to $g_{\kappa\kappa}$ near M=10 TeV, S/B~0.001 \rightarrow to small for realistic observation! Note:

- $\rightarrow g_{_{K\!K}}$ cross sections are at LO
- \rightarrow assume 1.3 correction for Z'

ightarrow But NLO corrections can be large! ightarrow

Jun Gao, Chong Sheng Li, Bo Hua Li, Hua Xing Zhu, and C.-P. Yuan, **Phys. Rev. D 82, 014020**

Discriminating variables

- Use jet substructure signatures (SSC-SR-1217 TDR 1992 p 3-26)
- Tremendous recent progress in advancing such approach
- Most basic variables used in this study:
 - Jet mass
 - T_{32} and T_{21} (N-subjettiness jet characteristics)
 - Jet shapes (eccentricity)
 - $\sqrt{d_{12}}$ splitting scale
 - R^{eff} effective jet radius (weighted with energy radial distance to jet center)
 - b-tagging assuming ~70 efficiency
 - high-pT muons

Heavy particles decaying to tt at a 100 TeV collider. S.Chekanov (ANL)

J.Thaler, K. Van Tilburg, JHEP 1103:015, 2011

S.C., J.Proudfoot, Phys. Rev. D81 (2010) 114038

J. M. Butterworth, B. E. Cox, and J. R. Forshaw, Phys. Rev. D65 (2002) 96014

Jet mass & effective jet radius

Example of possible cuts:

- Look at jet mass of a leading in pT jet. M(jet)>140 GeV rejects:
 - boosted W/Z(+jets)
 - low mass QCD events below the Sudakov mass peak
- Effective jet radius is larger for top-initiated jets

 $R_{eff} = \sum R_i E / E_i$

Substructure variables

J.Thaler and K. Van Tilburg, JHEP 1103 (2011) 015

 $145 \text{ GeV} < m_i < 205 \text{ GeV}$

Top jets

QCD jets

0.06

0.05

0.04 0.03

- T_{N} -subjettiness measure of the degree to which a jet can be considered as being composed of N-subjets
- $T_{32} = T_3 / T_2$ and $T_{21} = T_2 / T_1$
- T_{32} >0.75 reduces QCD and boosted W/Z
- T 21<0.3 reduces W/Z
- T 21>0.8 reduces QCD background

80.0

0.07

ල ^{0.06}

0.05 0.04

0.03

65 GeV < m, < 95 GeV

Wjets

QCD iets

Discriminating variables (lead. jet)

- $\sqrt{d_{12}}$ **50 GeV** reduces QCD,W/Z, some $t\bar{t}$

ATLAS Collaboration, JHEP, 1205, 128 (2012)

Correlation between variables:

- ~10% for $\tau_{_{32}}^{},\,\tau_{_{21}}^{},\,mass$
- ~30% correlation between d_{12} mass, ECC

Discriminating variables (lead. jet) PYTHIA8 \rightarrow **HERWIG++**

b-tagging and muon pT

- Match antiKT5 jet with a quark using dR(eta-phi)<0.1
- Assume efficiencies and fake rates:
 - 70% efficiency for b-tagging
 - 10 % fake rate for c-quarks
 - 1% fake rate for light quarks
- b-tagging assumes $p_T^{b} / p_T > 0.2$

Muon p_{T}

- Can we use muons to reject background?
- We can, but too low statistics for 10 ab^{-1} assuming $p_{\tau} > 1-2$ TeV

What is rejection vs efficiency anyway for all selection variables?

Rejection vs efficiency

- Jet-mass rejection is not attractive option compared to N-subjetiness
 - For the same 50% efficiency T_{32} has a factor of x3 better rejection than jet mass
- N-subjetiness performs better than a cut on muon

S/B ratio after b-tag and jet-shape (JS) requirements

Cuts applied for 1st jet:

$$\begin{array}{|c|c|c|c|c|c|c|} \hline \text{No cuts} & \text{JS} & b\text{-tag} & b\text{-tag+JS} & b\text{-tag+JS+}\mu \\ \hline 0.0007 & 0.0025 & 0.013 & 0.025 & 0.12 \\ \hline \end{array}$$

Cuts applied for 1st and 2nd jet:

No cuts	JS2	b-tag	b-tag+JS1	b-tag+JS2	b -tag+JS1+ μ
0.0007	0.007	0.16	0.19	0.21	0.36

We can achieve S/B ~ 20-30% using double-b tag + jet shape cuts

Masses of jets after selection cuts

White histogram: all processes (dijet, top, W/Z)

Heavy particles decaying to tt at a 100 TeV collider. S.Chekanov (ANL)

- Consider 2-jet events with pT>2.8 TeV
- "Tag" any jet with the cuts:
 - b-tagging
 - τ₃₂<0.7 and 0.3<τ₂₁<0.8</p>
 - √d₁₂> 50 GeV
- Observe a bump in jet mass due to top without using cuts on the opposite jet

100 fb⁻¹ should be enough to observe super-boosted single top quarks in fully inclusive channel t+X ! (can be tt, single top and exotic decays!)

See the 14 TeV case: B. Auerbach, S. C., N. Kidonakis arxiv.org:1301.5810 ANL-HEP-13-05. Snowmass

Dijet mass after selection $(Z' \rightarrow t\bar{t})$

Events / GeV

Dijet mass after selection $(g_{kk} \rightarrow t\bar{t})$

double b-tag case

- Consider 2-jet events with pT>2.8 TeV
- Apply selection (for any jet):
 - M>140 GeV
 - b-tagging
 - τ_{32}^{32} < 0.7 and 0.3< τ_{21}^{32} < 0.8
 - $-\sqrt{d_{12}} > 50 \text{ GeV}$

Heavy particles decaying to tt at a 100 TeV collider. S.Chekanov (ANL)

30

Sensitivity limits using single-jet tagging

- 95% CL sensitivity reach for 10 ab⁻¹:
 - M~10 TeV for Z'
 - M~17 TeV for g_{KK}
- σ x Br = 5 (10) fb for Z' (g_{KK})
- S/B ~ 3-5% (small!)

Sensitivity limits using double-jet tagging

95% CL sensitivity reach for 10 ab⁻¹:

- M~13 TeV for Z'
- M~20 TeV for g_{KK}
- σ x Br = 2 (4) fb for Z' (g_{KK})
- S/B ~ 20%

Extrapolating the results to a higher luminosity

Using L=10 ab⁻¹:

mass		$\sigma \times Br$ (fb)						
(TeV)	$Z^{0\prime}$ (th.)	$Z^{0\prime}$ (exp.)	g_{KK} (th.)	g_{KK} (exp.)				
8	18.46	7.00	262.3	20.2				
10	7.03	3.97						
12	3.02	2.54	45.4	7.7				
14	1.44	1.75						
16	0.73	1.27	12.2	4.7				
18	0.39	1.10						
20	0.21	0.98	4.2	4.1				

• Use this data to extrapolate to a higher luminosities:

- Single jet tag:
 - Sensitivity reach will increase to 12 TeV (30 ab⁻¹) or 16 TeV (150 ab⁻¹)
- Double jet tag:
 - Sensitivity reach will increase to 16 TeV (30 ab⁻¹) or 19 TeV (150 ab⁻¹)

Sensitivity to tt using lower int. luminosity: 0.1 ab⁻¹

Sensitivity to tt using lower int. luminosity: 1 ab⁻¹

- 1 ab^{-1} is barely enough to reach 12 TeV for $g_{\kappa\kappa}$

Detector requirements

High-efficient b-tagging with small fake rate for light-flavor jets

- 70% efficiency & 1% fake rate for jets with 2.7<pT<10 TeV assumed in this study
- High-granular calorimeter
- Good jet energy resolution

Example: Z'(10 TeV) \rightarrow tt \rightarrow 2 antiKT05 jets (pT> 3 TeV)

Snowmass-like CAL geometry 'ATLAS'-like

Note: this study uses a fast simulation.

We ignore effects from Molière radius when considering transverse profile of showers!

x4 smaller CAL cells

Calorimeter segmentation

• ATLAS:

- HCAL (TileCal) has 64 modules in φ and η=0.1 in the central region
- ECAL has x4 better segmentation
- HCAL ~2m away from IP
- x2 better segmentation for a detector that has x2 larger distance from IP requires same technology as for ATLAS LArg and Tile calorimeter
- Increasing segmentation by x4 or x6 may require different technology!
- Can be studies using HepSim MC event samples + Delphes fast simulation

38

Thanks to A. M. Henriques Correia for discussion

T₂₁. Finer HCAL & ECAL cells. Delphes fast simulation

- pT(jet)>3 TeV
- Assume x2 and x4 finer granularity of both ECAL and HCAL
- x2 (x4) granularity leads to 36% (67%) improvement in resolution

T₃₂. Finer HCAL & ECAL cells. Delphes fast simulation

- pT(jet)>3 TeV
- Assume x2 and x4 finer granularity of both ECAL and HCAL
- x2 (x4) granularity leads to 20% (40%) improvement in resolution

Jet mass. Finer HCAL & ECAL cells

- Assume x2 and x4 finer granularity of both ECAL and HCAL
- x2 (x4) granularity leads to 44% (48%) improvement in resolution

41

Summary

- Sensitivity limits on $X \rightarrow t\bar{t}$ calculated in the mass range 8-20 TeV
 - Fully boosted regime (top decays products are not resolved, dijet topology)
 - Technique: b-tagging, substructure variables & jet shapes.
- Double-tag scenario: sensitivity reach for Z' (g_{κκ}) masses is 13 (20) TeV
- 95% CL for σ x Br = 2 (4) fb for Z' (g_{KK}), with S/B ~ 20%
- Interplay between detector design and backg. rejection methods
- Requirements for a future experiment:
 - efficient b-tagging (largest bkg. separation)
 - high-granular calorimeter to use jet substructure techniques for R~0.5 jets
 - > 10 ab⁻¹ of int. luminosity
- More details in arXiv:1412.5951