

中國科學院為能物昭湖完施 Institute of High Energy Physics Chinese Academy of Sciences

Vertex and silicon tracking system of CEPC detector

Qun Ouyang (IHEP)

On behalf of the CEPC Vertex detector sub-group

Workshop on the Future of High Energy Physics

January 21, 2015

<u>Outline</u>

- Detector requirements
- Detector concept
- Performance optimization
- Technology options
- Critical R&D
- Summary / Conclusions

Backgrounds in inner tracking region

The NIEL (Non-Ionising Energy Loss) distribution introduced by the particles originating from the beam-beam interactions.

R [mm]

The averaged hit density $\sim 0.2/cm^2/BX$ \rightarrow detector occupancy <0.5%for the <u>innermost</u> <u>vertex detector layer</u>.

Detector requirements

Efficient tagging of heavy quarks

 $\sigma_{1/p_T} = 2 \times 10^{-5} \oplus 1 \times 10^{-3} / (p_T \sin \theta)$

 $\sigma_{r\phi} = 5 \mu m \oplus \frac{10}{p(GeV) \sin^{3/2} \theta} \mu m$

B=3.5T

- momentum resolution
- impact parameter resolution

Vertex detector specifications:

- σ_{SP} near the IP: ≤3 μm
 - \rightarrow small pixels 16×16µm² or below, digital readout
- material budget: ≤ 0.15%X ₀/layer
 - \rightarrow low power circuits, air cooling
- pixel occupancy: ≤ 0.5 %
- radiation tolerance: lonizing dose ≤100 kRad/ year Non-ionizing fluence ≤10¹¹n_{eq}/ (cm² year)
- first layer located at a radius: ~1.6 cm

Silicon tracker specifications:

- σ_{SP} : $\leq 7 \ \mu m \rightarrow small pitch (50 \ \mu m)$
- material budget: ≤ 0.65%X ₀/layer

Detector concept ILD-like but different forward region design

Vertex detector :

- 3 double-sided pixel layers
- σ_{SP} =2.8 µm, inner most layer
- readout time <20 µs

Vertex detector parameters

	R (mm)	z (mm)	$ \cos \theta $	$\sigma_{ m SP}~(\mu{ m m})$	Readout time (µs)
Layer 1	16	62.5	0.97	2.8	20
Layer 2	18	62.5	0.96	2.8	20
Layer 3	37	125.0	0.96	4	20
Layer 4	39	125.0	0.95	4	20
Layer 5	58	125.0	0.91	4	20
Layer 6	60	125.0	0.90	4	20

January 21, 2015

IAS-HKUST, Workshop on Future of High Energy Physics

Detector concept (Cont.)

Si-tracker : SET and ETD not shown

- Silicon Internal Tracker (SIT) 2 inner layers Si strip detectors
- Forward Tracking Detector (FTD) 5 disks (2 with pixels/3 with Si strip sensor) on each side (7 disks for ILD) due to the smaller L*
- Silicon External Tracker (SET) 1 outer layer Si strip detector
- End-cap Tracking Detector (ETD) 1 end-cap Si strip detector

Performance optimization

LDT: fast simulation using the Kalman Fitter

Baseline design performance

Resolutions of the transverse impact parameter for single muons

Single point resolution

Transverse impact parameter resolution as a function of the polar angle for different values of the single point resolution of the pixel sensors

Performance optimization (Cont.)

Configurations of the forward layout for L*=1.5m

The performance loss can be recovered with extended coverage of the pixel detector layers, either by prolonging first two VTX barrel layers or extending the first FTD disk down to r=22mm

Performance loss in the low polar angle region (impact parameter resolution of tracks) with reduced number of FTD disks

IAS-HKUST, Workshop on Future of High Energy Physics

Technology options

Many technologies from ILC/CLIC could be referred to. BUT, unlike the ILD, the CEPC detector will operate in continuous mode.

<u>Pixel sensor</u>: power consumption < 50mW/cm² , if air cooling used, readout time < 20 μs

- HR-CMOS sensor with novel readout structure ALPIDE for the ALICE ITS Upgrade
 - relatively matured technology
 - <50 mW/cm² expected
 - Capable of readout every $\sim 4\mu s$
- SOI sensor with similar readout structure
 - Fully depleted HR substrate, potential of 15μm pixel size design
 - Full CMOS circuit
- **DEPFET**: possible application for inner most vertex layer
 - small material budget, low power consumption in sensitive area

Silicon microstrip sensor: p⁺-on-n technology, or pixelated strip sensors based on CMOS technologies

Critical R&D

• Sensors with low power consumption and high readout speed

In-pixel discriminator In-matrix sparsification Similar to the ALPIDE sensor for the ALICE ITS Upgrade

- Starting design with HR-CMOS process
- Exploring possibility with SOI process, especially small pixel size
- Light weight mechanical design and cooling
 - 0.05%(0.1%) material budget without/with cabling
 - Air cooling technology with acceptable vibration due to air flow
- Thinning pixel sensor down to 50μm
- Slim-edged silicon microstrip sensors
- Low noise and low power consumption front-end electronics for silicon microstrip

Critical R&D: HR-CMOS pixel sensor

Standard Epitaxial Layer

- Standard CMOS OPTO Process: epilayer resistivity ~10 Ω*cm
- Charge collection: thermal diffusion
- Collection time: O(100 ns)

Quadruple well process (deep P-well): 0.18 µm

High resistivity, Epitaxial Layer

- Higher resistivity >1 kΩ*cm & thicker (~40 μm) epi-layer
- Charge collection: drift/thermal diffusion
- Collection time faster, less recombination → radiation tolerant
- Depletion depth depends on bias

ALICE ITS upgrade: 2 sensors R&D using the TowerJazz CIS 0.18 µm process

- Synchronous Readout R&D
- Synchronous Readout R&D
- Asynchronous Readout R&D

Courtesy of Christine Hu-Guo, IPHC-Strasbourg

Critical R&D: HR-CMOS pixel sensor (Cont.)

First Step: sensor diode optimization (charge collection efficiency/time) with TCAD simulation and *to be verified with sensor characterization*

First submission expected in June 2015

- Pixel sizes of 32 × 32 um² (A1-16) and 16 × 16 um² (B1-16), with different configurations (set of parameters) of sensor diode, 2/3T structure, read out with rolling shutter
- A17-24 verification of in-pixel electronics (analogue only), e.g. current comparator, discriminator ...
 6.144 mm

IAS-HKUST, Workshop on Future of High Energy Physics

12

Critical R&D: Readout Scheme Based on SOI technology

- Fully CMOS pixel circuit
 - Low power and compact layout
- Large mask size and regular MPW run
 - 35mm * 25mm
 - Twice/year since 2009
- Detector-oriented process
 - HR wafer, BPW, Double SOI…
- Signal charge increased by a factor of 4
 - 4000e⁻ vs 1000e⁻

	SOI	HR-CMOS
Process	0.2μm CMOS	0.18μm CMOS
Mask Size	35mm*25mm	32mm*25mm
Sensitive	50µm bulk	15μm epitaxial
Depletion	Fully	Partially
Charge Collection	Drift	Diffusion
Signal Charge	~4000e ⁻	~1000e ⁻

- Pixel size ~16um
 - To achieve $3\mu m$ point resolution
- In pixel discriminator
 - Reduce the driven current in case of column discriminator
- Develop in-pixel circuit for minimum layout area with a profitable 4 times larger signal charge.

IAS-HKUST, Workshop on Future of High Energy Physics

Summary/Conclusions

- Baseline design for pre-CDR
- An ILD-like vertex and Si-tracker layout, with modifications in forward region
- Layout optimization studies using fast simulation
- Critical R&D underway
- New participation welcomed

Thanks for your attention!

