# **Physics at Linear Colliders**

Frank Simon Max-Planck-Institut für Physik Munich, Germany

The Future of High Energy Physics Hong Kong, January 2015

# The Role of Linear Colliders at the Energy Frontier

- The discovery of the Higgs particle at the LHC is a milestone in particle physics: With it the complete spectrum of particles in the Standard Model is in hand, a theory which could in principle be valid to energies 13 orders of magnitude higher than those probed in present experiments. Yet it has its shortcomings - among them:
  - It does not explain *why* the Higgs field gives mass to all particles
  - It does not provide a particle or particles that could explain dark matter
  - It does not explain the asymmetry between matter and antimatter observed in the Universe





# The Role of Linear Colliders at the Energy Frontier

- The discovery of the Higgs particle at the LHC is a milestone in particle physics: With it the complete spectrum of particles in the Standard Model is in hand, a theory which could in principle be valid to energies 13 orders of magnitude higher than those probed in present experiments. Yet it has its shortcomings - among them:
  - It does not explain *why* the Higgs field gives mass to all particles
  - It does not provide a particle or particles that could explain dark matter
  - It does not explain the asymmetry between matter and antimatter observed in the Universe
- Today, the most pressing issue of particle physics is that of where and how the Standard Model breaks down





# The Role of Linear Colliders at the Energy Frontier

- The discovery of the Higgs particle at the LHC is a milestone in particle physics: With it the complete spectrum of particles in the Standard Model is in hand, a theory which could in principle be valid to energies 13 orders of magnitude higher than those probed in present experiments. Yet it has its shortcomings - among them:
  - It does not explain *why* the Higgs field gives mass to all particles
  - It does not provide a particle or particles that could explain dark matter
  - It does not explain the asymmetry between matter and antimatter observed in the Universe
- Today, the most pressing issue of particle physics is that of where and how the Standard Model breaks down
  - LHC gives access to very high energies, but high-energy e<sup>+</sup>e<sup>-</sup> colliders provide a high degree of complementarity to the LHC (and future p+p colliders):
  - Equal sensitivity to electroweak and strongly interacting particles
  - Background levels are low, allowing the study of all decay modes of heavy particles and precision measurements giving indirect access to high scales





# The Pillars of the Linear Collider Physics Program

- Measurement of the properties of the newly-discovered Higgs boson with very high precision
- Measurement of the properties of the top quark with very high precision
- Searches for and studies of new particles expected in models of physics beyond the SM at the TeV scale





# The Pillars of the Linear Collider Physics Program

- Measurement of the properties of the newly-discovered Higgs boson with very high precision
- Measurement of the properties of the top quark with very high precision
- Searches for and studies of new particles expected in models of physics beyond the SM at the TeV scale

This program defines the energy range:







#### **Overview**

- Linear Colliders
  - ILC & CLIC
  - Experimental Conditions & Detectors
  - Staged Running Scenarios
- Linear Collider Physics
  - Higgs
  - **Top**
  - BSM
- Outlook, Summary





# **Linear Colliders**



*Physics at Linear Colliders* Future of HEP, HongKong, January 2015



- Need high energy and high luminosity
  - synchrotron radiation in circular machines (~ E<sup>4</sup>) sharply limits maximum energy







- Need high energy *and* high luminosity
  - synchrotron radiation in circular machines (~ E<sup>4</sup>) sharply limits maximum energy



• High energy requires high gradients, high luminosity requires low emittance and very small beam size at IP ("nano-beams")





- Need high energy *and* high luminosity
  - synchrotron radiation in circular machines (~ E<sup>4</sup>) sharply limits maximum energy



• High energy requires high gradients, high luminosity requires low emittance and very small beam size at IP ("nano-beams")





Cost [arb.u.]



- Need high energy *and* high luminosity
  - synchrotron radiation in circular machines (~ E<sup>4</sup>) sharply limits maximum energy



• High energy requires high gradients, high luminosity requires low emittance and very small beam size at IP ("nano-beams")





Cost [arb.u.]

*Physics at Linear Colliders* Future of HEP, HongKong, January 2015



#### Linear Colliders - The Line-Up: ILC



- The International Linear Collider: a 30 - 50 km long linear tunnel
  - e<sup>+</sup>e<sup>-</sup> collisions up to 500 GeV / 1 TeV for Higgs, Top, BSM
  - Superconducting acceleration structures, ~ 30 MV/m
  - Technologically far advanced: Technical design report completed in 2012, ILC technology is being used for XFEL construction at DESY
  - Japan as potential host Possible site north of Sendai (Kitakami)

#### Current time line

• Construction starting in 2018, physics 2027





#### Linear Colliders - The Line-Up: CLIC



- The Compact Linear Collider: A 50 km long linear tunnel as one of CERNs future options
  - e<sup>+</sup>e<sup>-</sup> collisions up to 3 TeV for Higgs, Top, BSM
  - Two-Beam acceleration, 100 MV/m
  - Main technological issues demonstrated, Conceptual Design report published in 2012

#### Current time line

- Technical Design by 2018
- Construction could start in 2025, physics by 2035





# Experimental Conditions at Linear Colliders

 High luminosity requires very strong focussing - leads to the emission of Beamstrahlung









# **Experimental Conditions at Linear Colliders**

High luminosity requires very strong focussing - leads to the emission of  $\bullet$ Beamstrahlung Щр/0.02 Np

 Photons result in mini-jet production at LC energies:



1000 2000 3000 0  $\sqrt{s'}$  [GeV] → hadronic background, depending on energy
 and luminosity per BX (higher at ILC than at CLIC) up to a few events per BX

0.015

0.01

0.005

77% > 0.99 √s @ 350 GeV

35% > 0.99 √s @ 3 TeV

CLIC, 3 TeV





Cl

# **Experimental Conditions at Linear Colliders**

 High luminosity requires very strong focussing - leads to the emission of Beamstrahlung







#### **Detectors at Linear Colliders**



- General purpose detectors (ILD, SiD at ILC, CLIC detector concept derived from those, currently being optimised)
  - almost hermetic coverage
  - precise vertexing & tracking
  - highly granular calorimeters for Particle Flow event reconstruction





#### **Detectors at Linear Colliders**



- General purpose detectors (ILD, SiD at ILC, CLIC detector concept derived from those, currently being optimised)
  - almost hermetic coverage
  - precise vertexing & tracking
  - highly granular calorimeters for Particle Flow event reconstruction

Main additional CLIC features:

- ns-level time stamping in most sub detectors in particular in the calorimeters to reject background
- deeper calorimeters for higher energies





#### **Running Scenarios: Staged Programs**

- Linear Colliders lend themselves to a staged implementation
  - Start with a shorter, lower energy collider, extend in several steps to full energy
  - NB: Details on staged implementation depend on acceleration technology, physics goals, funding considerations, ...





# Running Scenarios: Staged Prog

- Linear Colliders lend themselves to a staged implem E
  - Start with a shorter, lower energy collider, extend

NB: Details on staged implementation depend on a physics goals, funding considerations, ...



#### Illustration for CLIC



3 stages: 350 GeV, 1.4 TeV, 3 TeV each with its own significant physics program





# Physics Highlights at Linear Colliders



*Physics at Linear Colliders* Future of HEP, HongKong, January 2015



## Before we begin: A Word about the Studies

- Most of the projections shown in the following slides are based on full detector simulations
  - realistic detector models
  - full reconstruction code, including tracking and particle flow algorithm
  - full set of signal and background processes, including beam-induced backgrounds
- Based on ILC TDR / DBD, CLIC CDR studies as well as ongoing studies and updates
- Quite a few of the assumptions on detector performance are proven with prototypes
  - Highly granular calorimeters, validation of two-particle separation with PFA
  - TPC with MPGD readout
  - Vertex detectors, including potential for very low material







# The LC Physics Landscape

... a combination of certainty and speculation:

- Excellent physics program guaranteed:
  - Higgs physics mass, couplings, potential, ...
  - Top physics properties (mass, width,...), top as a probe for New Physics
  - Precision physics electroweak measurements, QCD, …







# The LC Physics Landscape

... a combination of certainty and speculation:

- Excellent physics program guaranteed:
  - Higgs physics mass, couplings, potential, ...
  - Top physics properties (mass, width,...), top as a probe for New Physics
  - Precision physics electroweak measurements, QCD, …

- Discovery potential for New Physics
  - Direct production of new particles -Mass reach up to √s/2 for (almost) all particles
    - Spectroscopy of New Physics
  - Indirect (model-dependent) search for New Physics extending far beyond  $\sqrt{s}$







# A Closer Look at Higgs Production



- Several different Higgs production mechanisms
  - Access to various Higgs properties
  - Different energy to access different processes from 250 GeV to 1 TeV and beyond





#### **Precision Measurements at Linear Colliders**

- A flagship measurement: Model-independent Higgs couplings What it means: Measure the coupling of the Higgs to bosons and fermions free from model assumptions (e.g. how it decays)
  - Requires: The "tagging" of Higgs production without observing the particle directly
    - Not possible at hadron colliders





## **Precision Measurements at Linear Colliders**

- A flagship measurement: Model-independent Higgs couplings What it means: Measure the coupling of the Higgs to bosons and fermions free from model assumptions (e.g. how it decays)
  - Requires: The "tagging" of Higgs production without observing the particle directly
    - Not possible at hadron colliders

#### The strategy in e<sup>+</sup>e<sup>-</sup> collisions:



measure only the Z boson

from the known e<sup>+</sup>e<sup>-</sup> center-of-mass energy, calculate the "recoil mass":

$$m_{rec}^2 = s + m_Z^2 - 2E_Z\sqrt{s}$$

Exploits: known initial state in e+e-

Requires: Identification of Z independent of decay mode of H (or any other particle)

→ Best results for Z -> µµ, but (almost) model-independent measurements also possible
 in Z -> qq





#### **Model-Independent Measurement of H Production**



What this provides: Total ZH cross section, and with coupling of H to Z





#### **Model-Independent Measurement of H Production**



What this provides: Total ZH cross section, and with coupling of H to Z

- In addition: Reconstruction of specific final states provides access to couplings to fermions and bosons via Higgs decay
  - Makes use of "clean" e<sup>+</sup>e<sup>-</sup> environment also allows the reconstruction of final states which are not accessible at hadron colliders: cc, gg





# **Getting the Global Picture: All Couplings**

• The measurements we are making are:

 $\sigma$  x BR (for specific Higgs decays)  $\sigma$  (for model-independent recoil mass analysis)

Both are sensitive to the Higgs couplings to the producing particles and to the final state:

 $\sigma_{
m recoil} \propto g_{
m HZZ}^2$  (NB: final state not considered!)









# **Getting the Global Picture: All Couplings**

• The measurements we are making are:

 $\sigma$  x BR (for specific Higgs decays)  $\sigma$  (for model-independent recoil mass analysis)

Both are sensitive to the Higgs couplings to the producing particles and to the final state:

 $\sigma_{
m recoil} \propto g_{
m HZZ}^2$  (NB: final state not considered!)









# **Global Fits: Putting it all together**

 In the end you don't learn too much from a single measurement - a combination of all results gives a full picture of the couplings of the Higgs, and allows to detect deviations from the SM expectations, potentially pointing at a non-standard Higgs sector

The "simple" approach: Construct a  $\chi^2$  with all measurements,

perform a global minimization



 $\Delta F_i$ : uncertainty of measurement ( $\sigma$  or  $\sigma x BR$ )

As usual the devil is in the details: need to account for correlations between measurements, find a consistent way of quantifying and treating theoretical uncertainties when comparing to the SM, ...





# **Higgs: The Global Picture**

- Fully model-independent measurements of most couplings at the sub-1% to 2% level
- Deviations from the SM can be detected on the per mille level in some cases (model-dependent approach, comparable to LHC)







# **Higgs: The Global Picture**

- Fully model-independent measurements of most couplings at the sub-1% to 2% level
- Deviations from the SM can be detected on the per mille level in some cases (model-dependent approach, comparable to LHC)
- Illustration for CLIC:
  - Model-independent analysis limited by HZ recoil measurement
  - High energy data (with higher luminosity) results in substantially improved statistics







# **Higgs: The Global Picture**

- Fully model-independent measurements of most couplings at the sub-1% to 2% level
- Deviations from the SM can be detected on the per mille level in some cases (model-dependent approach, comparable to LHC)
- Illustration for CLIC:
  - Model-independent analysis limited by HZ recoil measurement
  - High energy data (with higher luminosity) results in substantially improved statistics



 Limit by ZH recoil removed for modeldependent fit (assuming no non-SM decays)





# **Direct Measurement of the Top Yukawa Coupling**

 Direct measurement of the top Yukawa coupling possible at energies of ~ 500 GeV and above



 Going a bit above threshold has substantial benefits: At ILC, the change from 500 GeV to 550 GeV results in > x2 improvement (14% -> 6% for 500 fb<sup>-1</sup>)



- Close to threshold, QCD effects lead to an enhancement of the cross section
  - Maximum around 800 GeV, somewhat higher energies compensated by higher luminosity







## The Ultimate Challenge: Self-coupling

- At present e<sup>+</sup>e<sup>-</sup> colliders seem to be the only possibility for a significant measurement of the self-coupling of the Higgs
  - Provides a direct probe for the Higgs potential: Highly interesting and important!





Two processes with two-Higgs final states low cross-section separation from background a challenge!

σ<sub>max</sub> at ~ 500 GeV

 $\sigma$  increasing with energy, significant from 1 TeV on

Requires high integrated luminosities in both cases - best prospects at energies of 1(+) TeV, prospects for 10% measurement at CLIC (assuming 80% polarized electrons, 1.5 ab<sup>-1</sup> at 1.4 TeV, 2 ab<sup>-1</sup> at 3 TeV)





# Pinning Down the Top Quark

- As the heaviest SM particle, the Top plays an important role: Strongest coupling to the Higgs field, potential sensitivity to New Physics
  - One example: "The fate of the Universe"



- Top mass, together with Higgs mass, provides information on the stability of the SM vacuum at higher scales
  - Possible validity of the SM up to the Planck scale?
  - Impact on evolution of the early universe





F

# **Pinning Down the Top Quark**

- As the heaviest SM particle, the Top plays an important role: Strongest coupling to the Higgs field, potential sensitivity to New Physics
  - One example: "The fate of the Universe"



- Top mass, together with Higgs mass, provides information on the stability of the SM vacuum at higher scales
  - Possible validity of the SM up to the Planck scale?
  - Impact on evolution of the early universe

Leading uncertainty: Top Mass!





# **Measuring the Top Mass**

- So far the top quark has only been produced at hadron colliders - Standard mass measurement by kinematic reconstruction
  - suffers from large (O GeV) theoretical uncertainties
- e<sup>+</sup>e<sup>-</sup> collisions allow the measurement of top properties with substantially reduced uncertainties -Smaller QCD effects, precise calculations of cross section in threshold region

~ 100 MeV total uncertainty achievable - in a theoretically well-defined mass scheme - dominated by theoretical uncertainties (evaluation ongoing)

~ 1 order of magnitude better than LHC









- Accessible through measurements of: • Total cross-section  $q, \overline{q} = -ie \begin{cases} \gamma_{\mu} \left(F_{1V}^{X}(k^{2}) + \gamma_{5}F_{1A}^{X}(k^{2})\right) + \frac{\sigma_{\mu\nu}}{2m_{t}}(q + \overline{q})^{\mu} \left(iF_{2}^{X}(k^{2}) + \gamma_{5}F_{1A}^{X}(k^{2})\right) \end{cases}$ 
  - Forward-backward Asymmetry A<sub>FB</sub>
  - Helicity Angie A distribution (related to traction of left shipes  $\widetilde{F}_i^X$  and  $\widetilde{F}_i^X$  a

 $F_{1A}^X = -F_{125}^X,$ 

• For each: Two polarizations  $e_{L}^{2} = e_{R}^{2} e_{R}^{2} e_{L}^{2} = E_{L}^{2} e_{R}^{2} e_{L}^{2}$ 

ē

# Using the Top as a Tool to Explore New Physics

 Asymmetry and angle measurements profit from higher energy: Larger signals, clean separation of top and anti-top and reconstruction of flight direction







# Using the Top as a Tool to Explore New Physics

• Asymmetry and angle measurements profit from higher energy: Larger signals, clean separation of top and anti-top and reconstruction of flight direction





- Precise extraction of left- and right-handed coupling of top quarks to the electroweak
  - Illustrated with deviations expected for a few different BSM models





#### **Discovery Potential for New Physics**

The ultimate motivation for a new collider - But entirely based on (more or less well founded) speculations)

 Image: M\_ = 120 GeV





*Physics at Linear Colliders* Future of HEP, HongKong, January 2015



#### **Discovery Potential for New Physics**

• In general: Discovery and exploration of BSM physics



Discovery limit ~  $\sqrt{s}$  / 2 for (almost) any type of particle - particular strength (compared to LHC) in electroweak sector - gauginos, sleptons

- Can fill in holes hadron colliders cannot cover
   (due to trigger requirements, high backgrounds, ...)
- Rich possibility for indirect searches:
  - Precision measurements of SM processes, compared with theoretical calculations, can provide indications for New Physics far beyond the energy scale directly accessible at the collider
  - Profits from the possibility for precision calculations of e<sup>+</sup>e<sup>-</sup> processes
  - Typical example: Z' detection in  $e^+e^- \rightarrow \mu^+\mu^-$  reach to 10s of TeV at CLIC





### Brief Example: SUSY at CLIC





*Physics at Linear Colliders* Future of HEP, HongKong, January 2015



### **Brief Example: SUSY at CLIC**





*Physics at Linear Colliders* Future of HEP, HongKong, January 2015



# **Outlook, Summary**



*Physics at Linear Colliders* Future of HEP, HongKong, January 2015



#### **Linear Collider Projects - The Status**

- The ILC and CLIC accelerator studies are organised under the heading of LCC with goals:
  - Strongly support the Japanese initiative to construct a linear collider as a staged project in Japan
  - Prepare CLIC machine and detectors as an option for a future high-energy linear collider at CERN
  - Further improve collaboration between CLIC and ILC machine experts





#### **Linear Collider Projects - The Status**

- The ILC and CLIC accelerator studies are organised under the heading of LCC with goals:
  - Strongly support the Japanese initiative to construct a linear collider as a staged project in Japan
  - Prepare CLIC machine and detectors as an option for a future high-energy linear collider at CERN
  - Further improve collaboration between CLIC and ILC machine experts
- Ongoing evaluation of ILC by committees established by MEXT, in parallel discussions on political levels



expect a conclusion in early 2016





- Linear Colliders cover the full spectrum of e<sup>+</sup>e<sup>-</sup> physics by providing energies from the ZH threshold into the TeV region with polarised beams
  - Precision Higgs measurements
  - Direct measurement of the Top Yukawa coupling and the Higgs selfcoupling
  - Precision measurements of top properties and couplings





- Linear Colliders cover the full spectrum of e<sup>+</sup>e<sup>-</sup> physics by providing energies from the ZH threshold into the TeV region with polarised beams
  - Precision Higgs measurements
  - Direct measurement of the Top Yukawa coupling and the Higgs selfcoupling
  - Precision measurements of top properties and couplings
- Two concepts for such a machine exist
  - ILC basically "shovel ready" under discussion in Japan
  - CLIC in development at CERN, providing the prospects for energies far beyond 1 TeV





- Linear Colliders cover the full spectrum of e<sup>+</sup>e<sup>-</sup> physics by providing energies from the ZH threshold into the TeV region with polarised beams
  - Precision Higgs measurements
  - Direct measurement of the Top Yukawa coupling and the Higgs selfcoupling
  - Precision measurements of top properties and couplings
- Two concepts for such a machine exist
  - ILC basically "shovel ready" under discussion in Japan
  - CLIC in development at CERN, providing the prospects for energies far beyond 1 TeV
- Advanced detector concepts, and detailed, full-simulation physics studies for both





- Linear Colliders cover the full spectrum of e<sup>+</sup>e<sup>-</sup> physics by providing energies from the ZH threshold into the TeV region with polarised beams
  - Precision Higgs measurements
  - Direct measurement of the Top Yukawa coupling and the Higgs selfcoupling
  - Precision measurements of top properties and couplings
- Two concepts for such a machine exist
  - ILC basically "shovel ready" under discussion in Japan
  - CLIC in development at CERN, providing the prospects for energies far beyond 1 TeV
- Advanced detector concepts, and detailed, full-simulation physics studies for both

**ILC** is on the table now - decision expected in the next ~ 2 years **CLIC** provides a credible future option to reach the multi-TeV regime





# Backup



*Physics at Linear Colliders* Future of HEP, HongKong, January 2015



# Higgs Couplings - ILC vs LHC







# Measuring the Total Width

- The total width of a 125 GeV SM Higgs is ~ 4 MeV no chance to measure directly (apart maybe from a µ collider) - use other "tricks"
  - e<sup>+</sup>e<sup>-</sup> offers an (almost) model-independent way (in contrast to techniques at hadron colliders, which always use strong assumptions...):

measure production and decay in the same channel - works for ZZ and WW but: BR(H->ZZ) ~ 2.8%, BR(H->WW) ~ 22.3% => use:

$$\sigma(\mathrm{H}\nu_e\nu_e) \times \mathrm{BR}(\mathrm{H} \to \mathrm{WW}^*) \propto \frac{g_{\mathrm{HWW}}^4}{\Gamma_{\mathrm{tot}}}$$

in itself not model-independent (requires H reconstruction)











# Measuring the Total Width

- The total width of a 125 GeV SM Higgs is ~ 4 MeV no chance to measure directly (apart maybe from a µ collider) - use other "tricks"
  - e<sup>+</sup>e<sup>-</sup> offers an (almost) model-independent way (in contrast to techniques at hadron colliders, which always use strong assumptions...):

measure production and decay in the same channel - works for ZZ and WW but: BR(H->ZZ) ~ 2.8%, BR(H->WW) ~ 22.3% => use:

$$\sigma(\mathrm{H}\nu_e\nu_e) \times \mathrm{BR}(\mathrm{H} \to \mathrm{WW}^*) \propto \frac{g_{\mathrm{HWW}}^4}{\Gamma_{\mathrm{tot}}}$$

in itself not model-independent (requires H reconstruction)

needs 350+ GeV for sizeable WW fusion cross-section

g<sub>Hww</sub> pinned down with modelindependent gHZZ and high-BR H->bb decay















#### **Top Threshold Scan - Sensitivities**



 Effects of some parameters are correlated; dependence on Yukawa coupling rather weak => Needs further study! The cross-section around the threshold is affected by several properties of the top quark and by QCD

- Top mass, width, Yukawa coupling
- Strong coupling constant



Here: Extract mass and  $\alpha_s$ 





# **ILC Cost**

- From ILC TDR
  - Rather solid cost estimate for the 500 GeV machine: ~ 8 Billion USD (500 GeV version of CLIC similar)
  - Biggest component: Main linac, acceleration structures





- The construction cost will be spread over ~ 10 years, and shared across the globe - details to be worked out!
- Many contributions

   expected "in kind":
   production of components
   "at home", installation in ILC



*Physics at Linear Colliders* Future of HEP, HongKong, January 2015 Lab engineering

estimate

32%



Vendor

quote

11%

#### **CLIC Cost and Power Budget**



incremental cost for second stage: ~ 4 MCHF/GeV (=> Initial cost quite high!)



| Staging scenario | $\sqrt{s}$ (TeV) | $\mathscr{L}_{1\%} \left( cm^{-2}s^{-1} \right)$ | $W_{main \ beam} \ (MW)$ | $P_{electric}$ (MW) | Efficiency (%) |
|------------------|------------------|--------------------------------------------------|--------------------------|---------------------|----------------|
| А                | 0.5              | $1.4 \cdot 10^{34}$                              | 9.6                      | 272                 | 3.6            |
|                  | 1.4              | $1.3 \cdot 10^{34}$                              | 12.9                     | 364                 | 3.6            |
|                  | 3.0              | $2.0 \cdot 10^{34}$                              | 27.7                     | 589                 | 4.7            |
| В                | 0.5              | $7.0 \cdot 10^{33}$                              | 4.6                      | 235                 | 2.0            |
|                  | 1.5              | $1.4 \cdot 10^{34}$                              | 13.9                     | 364                 | 3.8            |
|                  | 3.0              | $2.0 \cdot 10^{34}$                              | 27.7                     | 589                 | 4.7            |



*Physics at Linear Colliders* Future of HEP, HongKong, January 2015



38

#### **ILC Detector Cost**



- First estimate of cost (excl. labor) for the some of the more expensive systems already quite detailed (NB: on some items the cost models of ILD and SiD are different)
- ► Clearly reflects the design for PFA: ~ 50% of the total cost is in the calorimeters
- Shows SiD optimization with cost-effectiveness in mind

Studies to evaluate the cost and performance impact of parameter changes are ongoing





# Top as a Tool at High Energy

- The unique feature of CLIC: Collisions up to 3 TeV
- Excellent sensitivity to New Physics: Effects in indirect searches often scale as E<sup>2</sup>/Λ<sup>2</sup> => Benefit of high energy!
  - Well-demonstrated physics potential for ILC at 500 GeV: Measurement of ttbar asymmetries (forward-backward, left-right)
  - Higher energy improves unique assignment of final-state particles to top, anti-top: Even higher purity in top charge ID



Requires reconstruction of top quarks as highly boosted objects: Techniques well established at LHC, Potential benefits from PFA





# ILC (国際リニアコライダー) in Japan?

- Japan has expressed interest to host ILC with the goal of a global project with substantial financial contributions from outside, and the establishment of an "international city"
  - A site recommendation has been made: 北上市 (Kitakami) in Northern Japan







# ILC (国際リニアコライダー) in Japan?

- Japan has expressed interest to host ILC with the goal of a global project with substantial financial contributions from outside, and the establishment of an "international city"
  - A site recommendation has been made: 北上市 (Kitakami) in Northern Japan
- Strong support by local government and population
- Over the next ~ 1.5 years, a review process with committees by the Japanese science ministry MEXT is taking place - physics case and technical issues
- First contacts on government level about international participation have started







#### **Possible ILC Schedule**







