CP VIOLATION TESTS IN HIGGS MEASUREMENTS AT FUTURE COLLIDERS

Felix Yu
Johannes Gutenberg University, Mainz

Roni Harnik, Adam Martin, Takemichi Okui, Reinard Primulando, FY

Hong Kong U. of Science and Technology, Institute for Advanced Study
The Future of High Energy Physics, January 21, 2015
Motivating CPV tests

• Sakharov’s three conditions for baryogenesis motivate searches for new sources of CP violation
 – Need B violation
 – Need C and CP violation
 – Need interactions to happen out of thermal equilibrium

• Our picture of baryogenesis is currently incomplete
 – SM EW baryogenesis is insufficient
 – Should probe for new sources of CPV
CP and the Higgs

• A natural place to test for CP violating phases is with Higgs physics
 – scalar-pseudoscalar admixture (*e.g.* scalar potential)
 • naively tested via rate suppression
 – couplings to gauge bosons (*e.g.* bosonic CPV)
 • for example, tested via acoplanarity measurement in
 \(h \rightarrow ZZ^* \rightarrow 4l \)
 – couplings to fermions (*e.g.* fermionic CPV)
 • our work: test via \(h \rightarrow \tau^+ \tau^- \rightarrow (\rho^+\nu) (\rho^-\nu) \rightarrow (\pi^+\pi^0)\nu (\pi^-\pi^0)\nu \)

• [Full UV models to connect any given CP phase to a baryogenesis mechanism is BTSOTW]
Outline

• Brief review of current status of Higgs CP properties
• Motivate new measurement in $\tau^+\tau^-$ decay channel
• Sensitivity studies at colliders
 – Lepton collider prospects
 – First proposal for an LHC measurement
• Summary
Admixture constraints from signal strengths

ATLAS Prelim.

<table>
<thead>
<tr>
<th>H → γγ</th>
<th>μ = 1.17^{+0.27}{-0.27}^{+0.16}{-0.11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H → ZZ* → 4l</td>
<td>μ = 1.44^{+0.40}{-0.33}^{+0.21}{-0.11}</td>
</tr>
<tr>
<td>H → WW* → lvlv</td>
<td>μ = 1.09^{+0.23}{-0.21}^{+0.17}{-0.14}</td>
</tr>
<tr>
<td>W,Z H → b¯b</td>
<td>μ = 0.5^{+0.4}{-0.4}^{+0.2}{-0.2}</td>
</tr>
<tr>
<td>H → ττ</td>
<td>μ = 1.4^{+0.4}{-0.4}^{+0.3}{-0.3}</td>
</tr>
</tbody>
</table>

- "atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/HIGGS/"; CMS [1412.8662]
- Separate channels cannot be combined without assumptions!
Testing CPV in Higgs decays to (electroweak) gauge bosons

- Using Higgs EFT, assuming spin-0, write dimension-6 operators for scalar coupling to dibosons
- Perform simultaneous fit to coefficients of non-SM coupling structures based on differential distribution

\[
L(HVV) \sim a_1 \frac{m_Z^2}{2} H Z^\mu Z_\mu + \frac{1}{(\Lambda_1)^2} m_Z^2 H Z_\mu \square Z^\mu - \frac{1}{2} a_2 H Z^{\mu \nu} Z_{\mu \nu} - \frac{1}{2} a_3 H Z^{\mu \nu} \tilde{Z}_{\mu \nu} \\
+ a_1^{WW} \frac{m_W^2}{2} H W^\mu W_\mu + \frac{1}{(\Lambda_1^{WW})^2} m_W^2 H W_\mu \square W^\mu - \frac{1}{2} a_2^{WW} H W^{\mu \nu} W_{\mu \nu} - \frac{1}{2} a_3^{WW} H W^{\mu \nu} \tilde{W}_{\mu \nu} \\
+ \frac{1}{(\Lambda_1^{Z \gamma})^2} m_Z^2 H Z_\mu \partial_\nu F^{\mu \nu} - a_2^{Z \gamma} H F^{\mu \nu} Z_{\mu \nu} - a_3^{Z \gamma} H F^{\mu \nu} \tilde{Z}_{\mu \nu} - \frac{1}{2} a_2^{\gamma \gamma} H F^{\mu \nu} F_{\mu \nu} - \frac{1}{2} a_3^{\gamma \gamma} H F^{\mu \nu} \tilde{F}_{\mu \nu},
\]

- Can also test spin-2
Testing CPV in Higgs decays to (electroweak) gauge bosons

- For ZZ*, measure acoplanarity angle Φ (angle between Z_1 and Z_2 decay planes)
- Golden channel
 - everything measureable, can reconstruct the Higgs rest frame and appropriate decay planes
Testing CPV in $h \rightarrow ZZ^*$ — ATLAS

• ATLAS performs likelihood test between pure scalar and pure pseudoscalar hypotheses

0^- excluded in favor of 0^+ hypothesis at 97.8% C.L.
Testing CPV in $h \rightarrow ZZ^*$ – CMS

\[f(J^P) = \frac{\sigma_J}{\sigma_0 + \sigma_J} \]

\[D_{JP} = \frac{P_{J-}}{P_{J-} + P_{JP}} = \left[1 + \frac{P_{J-}(m_{Z_1}, m_{Z_2}, \bar{\Omega}(m_{4\ell}))}{P_{J-}(m_{Z_1}, m_{Z_2}, \bar{\Omega}(m_{4\ell}))} \right] \]
Electroweak diboson results

• Thus far, measurements consistent with SM

• $f_{a_3} = 1$ excluded at 99.98% CL

$f_{a_3} < 0.43 (0.40)$ at a 95% CL for the positive (negative) phase
Testing “fermionic” CPV

- The BSM source of a CPV phase in SM Yukawa couplings is distinct from possible phases in the scalar potential or pseudoscalar couplings to gauge bosons
 - Motivates CPV tests in fermionic couplings even if bosonic CPV coupling tests give null results
 - For example, new fermions which mix with SM fermions could introduce explicit phases in the Yukawa sector
Testing “fermionic” CPV with Higgs

• The tau decay channel for the Higgs is the most promising system for direct measurement of fermionic CPV couplings
 – Top coupling only probed via loops or ttH (tH) production
 – Bottom quark polarizations generally washed out by QCD
 – Tau channel suffer from lost information via neutrinos (at hadron colliders), but still have an appreciable rate

<table>
<thead>
<tr>
<th>$M_H = 126$ GeV</th>
<th>SM Br</th>
</tr>
</thead>
<tbody>
<tr>
<td>bb</td>
<td>56.1%</td>
</tr>
<tr>
<td>WW*</td>
<td>23.1%</td>
</tr>
<tr>
<td>gg</td>
<td>8.48%</td>
</tr>
<tr>
<td>$\tau\tau$</td>
<td>6.16%</td>
</tr>
<tr>
<td>ZZ*</td>
<td>2.89%</td>
</tr>
<tr>
<td>cc</td>
<td>2.83%</td>
</tr>
<tr>
<td>$\gamma\gamma$</td>
<td>0.228%</td>
</tr>
<tr>
<td>$Z\gamma$</td>
<td>0.162%</td>
</tr>
<tr>
<td>$\mu\mu$</td>
<td>0.0214%</td>
</tr>
</tbody>
</table>
The $h \rightarrow \tau^+ \tau^-$ experimental status

- Both experiments have evidence and are actively searching in all τ decay modes

CMS [1401.5041], ATLAS-CONF-2014-061
A Tau Yukawa CPV phase

- From an effective field theory perspective, can readily generate a tau Yukawa phase via the addition of a dimension 6 operator

\[
\mathcal{L}_{\text{eff}} \supset - \left(\alpha + \beta \frac{H^\dagger H}{\Lambda^2} \right) H\ell^\dagger_{3L} \tau_R + \text{c.c.}
\]

- α and β are generally complex
- After inserting Higgs vevs, use the τ_R redefinition to get

\[
\alpha + \beta \frac{v^2}{\Lambda^2} = y_{\tau}^{\text{SM}} > 0,
\]

- Then, the Higgs coupling to taus is

\[
y_{\tau}^{\text{SM}} + 2\beta \frac{v^2}{\Lambda^2}
\]

Also see, e.g. Kearney, Pierce, Weiner [1207.7062]
A Tau Yukawa CPV phase

- The new phase can thus be captured by considering the Lagrangian

\[
L_{\text{pheno}} \supset -m_\tau \bar{\tau} \tau - \frac{y_\tau}{\sqrt{2}} h \bar{\tau}(\cos \Delta + i\gamma_5 \sin \Delta)\tau
\]

\[
= -m_\tau \bar{\tau} \tau - \frac{y_\tau}{\sqrt{2}} h (\tau^\dagger_L (\cos \Delta + i \sin \Delta) \tau_R
\]

\[
+ \text{c.c.},
\]

- $\Delta = 0$ is SM (CP-even)
- $\Delta = \pi/2$ is pure CP-odd (and CP conserving)
- $\Delta = \pm\pi/4$ is maximally CP-violating
- Δ is currently unconstrained

- We will assume the y_τ magnitude is SM strength
A CPV Observable

- We already lose information from missing neutrinos
 - Leptonic decays, though clean, lose even more information
- Need an intermediate vector (not scalar) in the tau decay: focus on the ρ vector meson
 - $\text{Br}(\tau^+ \rightarrow \rho^+ \nu) \approx 26\%$
 - $\text{Br}(\rho^+ \rightarrow \pi^+ \pi^0) \approx 100\%$

PDG
Extracting the phase in Higgs decays

• Tau Yukawa CPV is imprinted on the tau polarizations relative to each other
 – Tau polarizations then get imprinted on the ν and ρ, ρ polarization is imparted to the πs

• Simplest observable (appropriate for LHC) is $\rho^+\rho^-$ acoplanarity angle

• New, better observable (appropriate for e^+e^- collider) is Θ

\[
\begin{align*}
h & \longrightarrow \tau^-\tau^+ \\
& \quad \longrightarrow \rho^-\nu_\tau \rho^+\bar{\nu}_\tau \\
& \quad \longrightarrow \pi^-\pi^0 \nu_\tau \pi^+\pi^0 \bar{\nu}_\tau.
\end{align*}
\]
Matrix element calculation

• Will trace how the CP phase Δ appears in the squared matrix element by treating the Higgs decay as a sequence of on-shell 2-body decays

$$\mathcal{M}_{h\rightarrow \tau\tau} \propto \sum_{s,s'} \chi_{s,s'} \bar{u}_\tau^s \left(\cos \Delta + i \gamma_5 \sin \Delta \right) v_{\tau'}^{s'}$$

$$\mathcal{M}_{\tau\rightarrow \rho \nu} \propto (\varepsilon^*_\rho^-)_\mu \bar{u}_\nu \gamma^\mu P_L u_\tau^-$$

$$\mathcal{M}_{\rho\rightarrow \pi\pi} \propto \varepsilon_\rho^- \cdot (p_{\pi^-} - p_{\pi^0})$$

• Together, gives

$$\mathcal{M}_{\text{full}} \propto \bar{u}_\nu \left(p_{\pi^-} - p_{\pi^0^-} \right) P_L \left(p_{\tau^-} + m_\tau \right) \times \left(\cos \Delta + i \gamma_5 \sin \Delta \right) \times \left(-p_{\tau^+} + m_\tau \right) \left(p_{\pi^+} - p_{\pi^0^+} \right) P_L v_\nu^+$$
The Theta Variable*

\[\Theta = \text{sgn} \left[\vec{\nu}_{\tau^+} \cdot (\vec{E}_- \times \vec{E}_+) \right] \arccos \left[\frac{\vec{E}_+ \cdot \vec{E}_-}{|\vec{E}_+||\vec{E}_-|} \right] \]

\[P_\Delta, s = -2e^{i(2\Delta - \Theta)} \left| \vec{E}_+ \right| \left| \vec{E}_- \right| \]

- In the Higgs rest frame, the “electric” components are

\[\vec{E}_\pm = \frac{m_h}{2} \left[(y_\pm - r) \vec{p}_\pi^\pm|_0 - (y_\pm + r) \vec{p}_{\pi^0\pm}|_0 \right]^\perp \]

- If neutrinos were measured, we would have complete information to reconstruct tau momentum, tau and Higgs rest frames

\[|_0 = \text{tau rest frame} \]

*See backup or [1308.1094] for details
Ideal situation

Note MC Z background is flat
Ideal – compare to $\rho^+\rho^- \text{ acoplanarity}$*

Truth level Θ and truth level ϕ^* for $\Delta = 0$

Θ amplitude is larger than ϕ^* amplitude by 50%

*Bower, Pierzchala, Was, Worek [hep-ph/0204292]
Worek [hep-ph/0305082]
Lepton collider possibilities

• We obviously cannot directly measure neutrino momenta

• At a lepton collider, have enough constraints to solve algebraically for neutrino momenta
 – Have two neutrino momenta solution sets
 • Both solutions give correct Higgs mass
 • Weight each solution by half an event
 • Necessarily require visible Z decay
Lepton collider – reconstructed

Truth level Θ and reconstructed Θ at the ILC for $\Delta = 0$

Normalized yield

Reconstructed amplitude degraded by 30%
Lepton collider – reconstructed

Reconstructed Θ at the ILC

- $\Delta = 0$
- $\Delta = \pi/4$
- $\Delta = \pi/2$
Lepton collider possibilities

• For $\sqrt{s} = 250$ GeV ILC, polarized beams, Zh production is about 0.30 pb

• With unpolarized beams (FCC-ee or CEPC), cross section is about 30% less

• ILC signal yield (using SM $\text{Br}(h \rightarrow \tau^+\tau^-)$ and restricting to visible Z decays) is 990 events with 1 ab$^{-1}$ luminosity

<table>
<thead>
<tr>
<th>$\sigma_{e^+e^-\rightarrow hZ}$</th>
<th>0.30 pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Br}(h \rightarrow \tau^+\tau^-)$</td>
<td>6.1%</td>
</tr>
<tr>
<td>$\text{Br}(\tau^- \rightarrow \pi^-\pi^0\nu)$</td>
<td>26%</td>
</tr>
<tr>
<td>$\text{Br}(Z \rightarrow \text{visibles})$</td>
<td>80%</td>
</tr>
<tr>
<td>N_{events}</td>
<td>990</td>
</tr>
</tbody>
</table>
Lepton collider possibilities

• For $\sqrt{s} = 250$ GeV ILC, polarized beams, Zh production is about 0.30 pb

 – ILC signal yield (using SM $\text{Br}(h \rightarrow \tau\tau)$ and restricting to visible Z decays) is 990 events with 1 ab$^{-1}$

 – Construct binned likelihood using a sinusoidal fit to signal, determine sensitivity by variation of test Δ

With 1 ab$^{-1}$ of ILC $\sqrt{s}=250$ GeV, expect 1σ discrimination of 4.4° (compared* to 6° using ϕ^* [albeit included backgrounds and detector effects])

*Desch, Imhof, Was, Worek [hep-ph/0307331]
Luminosity scaling (without systematics)

Lepton collider, Z to $\nu\nu$ removed, 1σ and 2σ lines intersecting LLR

2σ

(17 degrees) $\Delta = 0.10$

$\Delta = 0.08$

$\Delta = 0.06$

$\Delta = 0.05$

$\Delta = 0.04$

$\Delta = 0.03$

$\Delta = 0.02$ (2.3 degrees)

CEPC or FCC-ee lum. is 30% smaller
Lepton Collider Prospects

- Systematics will affect high luminosity estimates
- Expect some minor sensitivity losses from detector resolution

<table>
<thead>
<tr>
<th>ILC (1 ab⁻¹)</th>
<th>CEPC (ab⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{e^+e^-\rightarrow hZ}$</td>
<td>0.30 pb</td>
</tr>
<tr>
<td>$\text{Br}(h \rightarrow \tau^+\tau^-)$</td>
<td>6.1%</td>
</tr>
<tr>
<td>$\text{Br}(\tau^- \rightarrow \pi^-\pi^0\nu)$</td>
<td>26%</td>
</tr>
<tr>
<td>$\text{Br}(Z \rightarrow \text{visibles})$</td>
<td>80%</td>
</tr>
<tr>
<td>N_{events}</td>
<td>990</td>
</tr>
<tr>
<td>Accuracy</td>
<td>4.4°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CEPC1</th>
<th>CEPC5</th>
<th>CEPC10</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5°</td>
<td>2.5°</td>
<td>1.7°</td>
</tr>
</tbody>
</table>
LHC prospects

• Consider $h+j$ events ("boosted" $\tau_{\text{had}} \tau_{\text{had}}$ sample)

• At the LHC, need to approximate neutrino momenta
 - Have (8-2-2-2=) 2 unknown four-momentum components
 - Will use collinear approximation for neutrino momenta
 • In this approximation, Θ is identical to pp acoplanarity angle
 • Other approximations considered tended to wash out or distort the sinusoidal shape of the Θ distribution
 - First proposal to measure Δ at the LHC with prompt tau decays and kinematics
Collinear amplitude is about 25% of the truth \(\Theta \) amplitude.
LHC14 simulation details

• Use MadGraph5 for h+j and Z+j events at LHC14
 – Mimic cuts for 1-jet, hadronic taus Higgs search category
 – Impose preselection of $p_T(j) > 140$ GeV, $|\eta(j)| < 2.5$
 – Normalize to MCFM NLO $\sigma(h+j)=2.0$ pb, $\sigma(Z+j)=420$ pb
 – No pileup or detector simulation, aside from tau-tagging efficiencies
 • Pileup degrades primary vertex determination for charged pion tracks and adds ECAL deposits that reduce neutral pion resolution
 • Tracking and detector resolution will clearly smear the Θ distribution
Yields for 3 ab$^{-1}$ LHC

• Signal region:

 \[
 \text{MET} > 40 \text{ GeV}, \ p_T(\rho) > 45 \text{ GeV}, \ |\eta(\rho)| < 2.1, \ m_{\text{coll}} > 120 \text{ GeV}
 \]

 – Inject an additional 10% contribution to (flat) Zj background to account for QCD multijets

\[
\begin{array}{|c|c|c|}
\hline
 & h j & Z j \\
\hline
\text{Inclusive } \sigma & 2.0 \text{ pb} & 420 \text{ pb} \\
\text{Br}(\tau^+\tau^- \text{ decay}) & 6.1\% & 3.4\% \\
\text{Br}(\tau^- \rightarrow \pi^-\pi^0\nu) & 26\% & 26\% \\
\text{Cut efficiency} & 18\% & 0.24\% \\
\hline
\text{N}_{\text{events}} & 1100 & 1800 \\
\hline
\end{array}
\]

N_{events} for 3 ab$^{-1}$ with τ-tagging 50% efficiency
Yields for 3 ab$^{-1}$ LHC

- Consider τ tagging efficiency benchmarks of 50% and 70%, use likelihood analysis testing different Δ

<table>
<thead>
<tr>
<th>τ_t efficiency</th>
<th>50%</th>
<th>70%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3σ</td>
<td>$L = 550$ fb$^{-1}$</td>
<td>$L = 300$ fb$^{-1}$</td>
</tr>
<tr>
<td>5σ</td>
<td>$L = 1500$ fb$^{-1}$</td>
<td>$L = 700$ fb$^{-1}$</td>
</tr>
<tr>
<td>Accuracy ($L = 3$ ab$^{-1}$)</td>
<td>11.5°</td>
<td>8.0°</td>
</tr>
</tbody>
</table>

- Discriminating pure scalar vs. pure pseudoscalar at 3σ requires 550 (300) fb$^{-1}$ with 50% (70%) τ tagging efficiency
- For 5σ, require 1500 (700) fb$^{-1}$ with 50% (70%) τ tagging efficiency

- Again, detector effects and pileup are neglected
Luminosity scaling (without systematics)

\[-2 \log(L/L_{\Delta=0}) \]

LHC, \(\tau \text{ eff.}=70\% \), \(1\sigma \) and \(2\sigma \) lines intersecting LLR

\[\Delta = 0.30 \]
(17 degrees)

\[\Delta = 0.20 \]

\[\Delta = 0.16 \]
(8 degrees)

\[\Delta = 0.14 \]

\[\Delta = 0.12 \]

\[\Delta = 0.08 \]
(4.6 degrees)
Improving the measurement of the tau Yukawa CP phase

• Consider including MET information for LHC analyses
 – e.g. MELA-type likelihood incorporating signal hypotheses with different Δ
• Consider other tau decay modes or add decay vertex information
• Improve tau tagging efficiency
• Dedicated di-tau hadronic trigger
• Consider VBF production, Zh production
 – For VBF, 3 ab$^{-1}$, expect 52k $\pi^+\pi^0\nu\pi^-\pi^0\nu$ total events (no cuts)
 • S/B is about 0.4 from ATLAS 8 TeV BDT analysis
Incorporate detector effects

- Amplitude of Theta distribution diluted by about half
Summary

• New CP phases are motivated from general baryogenesis arguments
• Many physics studies are needed to motivate the physics case of future machines
• Have a new suite of measurements to perform in Higgs physics
 – Fermionic CP phases play a special role
 – Look forward to implementing this analysis in future Higgs studies
 – Can also consider prospects at FCC-hh and SPPC

<table>
<thead>
<tr>
<th>Colliders</th>
<th>LHC</th>
<th>HL-LHC</th>
<th>ILC (1 ab(^{-1}))</th>
<th>CEPC1</th>
<th>CEPC5</th>
<th>CEPC10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>25°</td>
<td>8.0°</td>
<td>4.4°</td>
<td>5.5°</td>
<td>2.5°</td>
<td>1.7°</td>
</tr>
</tbody>
</table>
$\mathcal{L}_{\text{tree}} = \mathcal{L}_{\text{SM} - y_t}$

\[
+ |D\Phi|^2 - m_\Phi^2 |\Phi|^2 - \lambda_\Phi |\Phi|^4
- (y H \ell_{3L}^\dagger \tau_R + y' \Phi \ell_{3L}^\dagger \tau_R + \lambda'(\Phi^\dagger H)|H|^2 + \text{c.c.}),
\]

$\mathcal{L}_{\text{dim-6}} = \frac{|\lambda'|^2}{m_\Phi^2} |H|^6 + \left(\frac{\lambda' y'}{m_\Phi^2} |H|^2 H \ell_{3L}^\dagger \tau_R + \text{c.c.}\right)$.
Matrix element calculation assumptions

\[M_{\text{full}} \propto \bar{u}_\nu - \left(\rho_{\pi^-} - \rho_{\pi^0-} \right) P_L \left(\rho_{\tau^-} + m_\tau \right) \times \left(\cos \Delta + i \gamma_5 \sin \Delta \right) \times \left(-\rho_{\tau^+} + m_\tau \right) \left(\rho_{\pi^+} - \rho_{\pi^0+} \right) P_L v_\nu^+ \]

- Neglect \(\pi^0 \) exchange (spatially separated; the \(\tau \)'s are boosted and back-to-back in the Higgs rest frame)
- All intermediate particles assumed on-shell
- Neglect \(\pi^\pm - \pi^0 \) mass difference
- Obtain

\[M_{\text{full}} \propto \bar{u}_\nu - \left(e^{i\Delta} \rho_{\tau^-} - e^{-i\Delta} \rho_{\tau^+} \right) q_+ + P_L v_\nu^+ \]

with

\[q_\pm \equiv p_{\pi^\pm} - p_{\pi^0\pm} \]

- Recall \(\rho_\pm \) polarization is generally aligned with \(q_\pm \)
Calculating the Theta Variable

• Introduce the variable with coefficients

\[k_{\pm}^{\mu} \equiv y_{\pm} q_{\pm}^{\mu} + r p_{\nu \pm}^{\mu} \]

\[y_{\pm} \equiv \frac{2q_{\pm} \cdot p_{\tau \pm}}{m_{\tau}^2 + m_{\rho}^2} = \frac{q_{\pm} \cdot p_{\tau \pm}}{p_{\rho \pm} \cdot p_{\tau \pm}}, \]

\[r \equiv \frac{m_{\rho}^2 - 4m_{\pi}^2}{m_{\tau}^2 + m_{\rho}^2} \approx 0.14. \]

• We then write the squared matrix element as

\[|M|^2 \propto P_{\Delta, s} + P_{\Delta, \bar{s}} + P_{\Delta, s} + P_{\Delta, s}^* \]

where the most interesting piece is

\[P_{\Delta, s} \equiv -e^{2i\Delta} \left[(k_- \cdot p_{\tau +})(k_+ \cdot p_{\tau -}) - (p_{\tau -} \cdot p_{\tau +})(k_- \cdot k_+) \right. \]

\[\left. - i\epsilon_{\mu \nu \rho \sigma} k_\mu^\nu p_{\tau -}^\rho k_+^\sigma p_{\tau +}^\sigma \right]. \]
Calculating the Theta Variable

\[P_{\Delta, s} \equiv -e^{2i\Delta} \left[(k_- \cdot p_{\tau+})(k_+ \cdot p_{\tau-}) - (p_{\tau-} \cdot p_{\tau+})(k_- \cdot k_+) \right. \]

\[\left. - i\varepsilon_{\mu\nu\rho\sigma} k_\mu^\rho p_{\tau-}^\nu - k_+^\rho p_{\tau+}^\sigma \right]. \] (26)

- We can define an antisymmetric 2nd-rank tensor

\[F_{\pm}^{\mu\nu} \equiv k_\pm^\mu p_{\tau\pm}^\nu - k_\pm^\nu p_{\tau\pm}^\mu = -F_{\pm}^{\nu\mu} \]

\[P_{\Delta, s} = e^{2i\Delta} \left(\frac{1}{2} F_{-\mu\nu} F_{\tau+}^{\mu\nu} + \frac{i}{4} \varepsilon_{\mu\nu\rho\sigma} F_{-\mu\nu} F_{\tau+}^{\rho\sigma} \right) \]

- Or, even better, identify “electric” and “magnetic” components

\[E_\pm^i \equiv F_{\pm}^{i0}, \quad B_\pm^i \equiv -\frac{1}{2} \varepsilon^{ijk} F_{\pm jk} \]

\[P_{\Delta, s} = -e^{2i\Delta} \left[(\vec{E}_- + i\vec{B}_-) \cdot (\vec{E}_+ + i\vec{B}_+) \right] \]
Calculating the Theta Variable

\[F_\pm^{\mu\nu} = k_\pm^\mu p_\tau^{\nu\pm} - k_\pm^\nu p_\tau^{\mu\pm} = -F_\pm^{\nu\mu} \]

• We can calculate

\[\vec{B}_\pm = \vec{p}_\tau^{\pm} \times \vec{k}_\pm = \vec{v}_\tau^{\pm} \times \vec{E}_\pm \]

• Specialize to Higgs rest frame (back-to-back taus)
 – E_+B_+ and E_-B_- planes are parallel
 – Motivate a new acoplanarity between E_+v_+ and E_-v_- planes

\[\Theta = \text{sgn}\left[\vec{v}_{\tau+} \cdot (\vec{E}_- \times \vec{E}_+) \right] \text{Arccos} \left[\frac{\vec{E}_+ \cdot \vec{E}_-}{|\vec{E}_+||\vec{E}_-|} \right] \]

\[P_{\Delta, s} = -2e^{i(2\Delta - \Theta)} |\vec{E}_+||\vec{E}_-| \]
Yields for 3 ab$^{-1}$ LHC

Green = SM signal
Red = pseudoscalar signal
Purple = Cosine fit to SM
Blue = Cosine fit to pseudoscalar

For lower luminosity, the amplitude is the same but the significance of a non-zero phase shift is less.
Tau measurement details

- Method relies on reconstructing neutral and charged pions with good resolution and efficiency

![Graph showing relative yields for different reconstructed decay modes of tau particles.](image-url)
Measuring Higgs to $\tau\tau$

- Use SVFit to reconstruct $m_{\tau\tau}$ (creates likelihood function based on observed kinematics)
 - Anticipating the CP phase measurement, focus on the fully hadronic analysis
Measuring Higgs to $\tau\tau$

- Use SVFit to reconstruct $m_{\tau\tau}$ (creates likelihood function based on observed kinematics)
 - Anticipating the CP phase measurement, focus on the fully hadronic analysis

<table>
<thead>
<tr>
<th>Process</th>
<th>1-Jet</th>
<th>VBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z \rightarrow \tau\tau$</td>
<td>428 ± 90</td>
<td>47 ± 28</td>
</tr>
<tr>
<td>QCD</td>
<td>210 ± 31</td>
<td>61 ± 10</td>
</tr>
<tr>
<td>EWK</td>
<td>41 ± 9</td>
<td>4 ± 1</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>29 ± 6</td>
<td>2 ± 2</td>
</tr>
<tr>
<td>Total Background</td>
<td>709 ± 95</td>
<td>114 ± 30</td>
</tr>
<tr>
<td>$H \rightarrow \tau\tau$</td>
<td>9 ± 4</td>
<td>4 ± 2</td>
</tr>
<tr>
<td>Observed</td>
<td>718</td>
<td>120</td>
</tr>
</tbody>
</table>

Signal Eff.

<table>
<thead>
<tr>
<th>Process</th>
<th>$gg \rightarrow H$</th>
<th>$qq \rightarrow H$</th>
<th>$qq \rightarrow Ht$ or VH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$2.52 \cdot 10^{-4}$</td>
<td>$5.93 \cdot 10^{-4}$</td>
<td>$9.13 \cdot 10^{-4}$</td>
</tr>
<tr>
<td></td>
<td>$4.99 \cdot 10^{-5}$</td>
<td>$1.20 \cdot 10^{-3}$</td>
<td>$3.59 \cdot 10^{-5}$</td>
</tr>
</tbody>
</table>

CMS Preliminary, $\sqrt{s} = 7-8$ TeV, $L = 24.3$ fb$^{-1}$, $H \rightarrow \tau\tau$

$m_H = 125$ GeV

$\mu \mu$
$e\mu$
$\tau_h \tau_h$
$e\tau_h$
$\mu \tau_h$
$VH \rightarrow \tau\tau + l$

Combined: $\mu = 1.1 \pm 0.4$
ATLAS Update

- Use BDT output to categorize events
ATLAS Update

- Use BDT output to categorize events
• Focus on fully hadronic channel
 – Main backgrounds are still irreducible $Z \rightarrow \tau\tau$ and QCD multijets

<table>
<thead>
<tr>
<th>Process/Category</th>
<th>VBF</th>
<th>Boosted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.85-0.9</td>
<td>0.9-0.95</td>
</tr>
<tr>
<td>BDT score bin edges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ggF</td>
<td>0.39 ± 0.17</td>
<td>0.35 ± 0.16</td>
</tr>
<tr>
<td>VBF</td>
<td>0.57 ± 0.18</td>
<td>0.72 ± 0.22</td>
</tr>
<tr>
<td>WH</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>ZH</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>$Z \rightarrow \tau^+\tau^-$</td>
<td>3.2 ± 0.6</td>
<td>3.4 ± 0.7</td>
</tr>
<tr>
<td>Multijet</td>
<td>3.3 ± 0.6</td>
<td>2.9 ± 0.6</td>
</tr>
<tr>
<td>Others</td>
<td>0.38 ± 0.09</td>
<td>0.49 ± 0.12</td>
</tr>
<tr>
<td>Total Background</td>
<td>6.9 ± 1.3</td>
<td>6.8 ± 1.3</td>
</tr>
<tr>
<td>Total Signal</td>
<td>0.97 ± 0.29</td>
<td>1.09 ± 0.31</td>
</tr>
<tr>
<td>S/B</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td>Data</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
Table 1. Branching fractions of the dominant hadronic decays of the τ lepton and the symbol and mass of any intermediate resonance [9]. The h stands for both π and K, but in this analysis the π mass is assigned to all charged particles. The table is symmetric under charge conjugation.

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Resonance</th>
<th>Mass (MeV/c2)</th>
<th>Branching fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau^- \rightarrow h^- \nu_\tau$</td>
<td>ρ^-</td>
<td>770</td>
<td>11.6%</td>
</tr>
<tr>
<td>$\tau^- \rightarrow h^- \pi^0 \nu_\tau$</td>
<td>a^-_1</td>
<td>1200</td>
<td>26.0%</td>
</tr>
<tr>
<td>$\tau^- \rightarrow h^- \pi^0 \pi^0 \nu_\tau$</td>
<td>a^-_1</td>
<td>1200</td>
<td>9.5%</td>
</tr>
<tr>
<td>$\tau^- \rightarrow h^- h^+ h^- \nu_\tau$</td>
<td>a^-_1</td>
<td>1200</td>
<td>9.8%</td>
</tr>
<tr>
<td>$\tau^- \rightarrow h^- h^+ h^- \pi^0 \nu_\tau$</td>
<td>a^-_1</td>
<td>1200</td>
<td>4.8%</td>
</tr>
</tbody>
</table>
Tau measurement details

Table 4. The MC predicted τ_h misidentification rates and the measured data-to-MC ratios, integrated over the p_T and η phase space typical for the $Z \rightarrow \tau \tau$ analysis.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>QCD</th>
<th>QCDμ</th>
<th>W + jets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MC (%)</td>
<td>Data/MC</td>
<td>MC (%)</td>
</tr>
<tr>
<td>HPS “loose”</td>
<td>1.0</td>
<td>1.00 ± 0.04</td>
<td>1.0</td>
</tr>
<tr>
<td>HPS “medium”</td>
<td>0.4</td>
<td>1.02 ± 0.06</td>
<td>0.4</td>
</tr>
<tr>
<td>HPS “tight”</td>
<td>0.2</td>
<td>0.94 ± 0.09</td>
<td>0.2</td>
</tr>
<tr>
<td>TaNC “loose”</td>
<td>2.1</td>
<td>1.05 ± 0.04</td>
<td>1.9</td>
</tr>
<tr>
<td>TaNC “medium”</td>
<td>1.3</td>
<td>1.05 ± 0.05</td>
<td>0.9</td>
</tr>
<tr>
<td>TaNC “tight”</td>
<td>0.5</td>
<td>0.98 ± 0.07</td>
<td>0.4</td>
</tr>
</tbody>
</table>