HBEPR* What is the right number of detectors?

Bill Murray TFC-RAL / University of Warwick bill murray@cern.ch 22nd January 2015

Prejudice & scaling laws
 Hoping to spark discussion

* Huge Big electron-poistron ring

Add a detector?

Add two detectors?

Add four detectors?

Scaling of luminosity with n_{Det}

- TLEP estimate L≈(4/N_{IP})^{0.4}. This comes from assumption you are beam-beam limited
 i o 1 74 1 32 1 12 1 for 1 2 3 and 4 detectors
- i.e. 1.74, 1.32, 1.12, 1 for 1, 2, 3 and 4 detectors
- For a total lumi 1.74, 2.66, 3.36 and 4.
- Jianming:
 - "All the physics can be summarized by this table"
 - (referring to the rates of ZH and vvH production)

Accelerators gone by

Petra	Jade, Tasso, Pluto & Mark J	23
PeP	5 large detectors	
Tristran	Topaz, Venus & AMY	
LEP	ALEPH, DELPHI, L3, OPAL	
Tevatron	CDF & D0	
PeP-II	Babar	
KEK-B	Belle	

- By historical standards, 2 detectors on an 50km+ ring would seem minimalistic
- But detectors grow in ambition and cost

So why would you not have lots?

Cost

- I think this is the normal reason people shy away.
- It is what I want to understand

Complication

- Yes, there is complication.
- But we have already been told to leave long straight sections for the future proton machine

Example detector?

- ILC detectors have been optimised for e+e- physics for decades
- They must be great
- Lets take them as a baseline

Cost of SiD

(From SiD DBD)

	uBreed anne eost	agreed error margin
	(US-\$)	(US-\$)
Tungsten for HCAL	105/kg	45/kg
Tungsten for ECAL	180/kg	75/ kg
Steel for Yoke	1000/t	300/1
Stainless Steel for HCAL	4500/t	1000/1
Silicon Detector	$6 /\mathrm{cm}^2$	$2 /\mathrm{cm}^2$

agreed unit cost

agreed error margin

- M&S 315 M\$
- Contingency 127 M\$
- Labor 748 M\$
- My total: 1190M\$
- My guess is people have number like this in their heads

SiD cost breadown

- Tungsten+Si ECAL, 20+10 layers
- 5 T solenoid
 - Inner radius 259cm
 - 50% of radius tracker, 50% ECAL+HCAL
- Could we get away with less?

CEPC detector

- First try is a modified SiD
- HCAL still inside coil
- ECAL resolution still poor
- Coil reduced to 3.5T
 - Radius 3m, length 8m
 - TPC goes to 1.8m
- Great jet resolution!

Table 2. Key characteristic/performance of a conceptual CEPC detector.

Geometry acceptance	TPC (97%), FTD (99.5%)
Tracking efficiency	$\sim 100\%$ within geometry acceptance
Tracking performance	$\Delta(1/p_T) \sim 2 \times 10^{-5} \ (1/\text{GeV})$
ECAL intrinsic energy resolution	$16\%/\sqrt{E} \oplus 1\%$ (GeV)
HCAL intrinsic energy resolution	$60\%/\sqrt{E} \oplus 1\%$ (GeV)
Jet energy resolution	3-4%
Impact parameter resolution	$5~\mu{ m m}$

W.Murray 12

How to save money?

- The magnet coil was O(10%) of SiD in one item
 - What do we need?
- The finely segmented ECAL (& HCAL) are 40%
 - Is this an appropriate solution?

A strawman scenario

- 100km circular e⁺e⁻ collider
 - As used in Ludo's slides
- Maximum energy 400 GeV
 - Lower than such a machine claims
 - Perhaps realizable in 80km tunnel
- Z peak, 91 GeV, luminosity: 2 10³⁶cm⁻²s⁻¹
- WW peak, 160 GeV luminosity: 1.2 10³⁵cm⁻²s⁻¹
- ZH peak, 240 GeV, luminosity: 6 10³⁴cm⁻²s⁻¹
- tt peak, 350 GeV, luminosity: 1.7 10³⁶cm⁻²s⁻¹
 - This will turn out not to be a detector cost driver

HWW measurement

Necessary for width measurement

- Semileptonic modes so far.
- Maybe the semi-hadronic modes need the resolution?

Science & Technology Facilities Council Rutherford Appleton Laboratory

Recoil mass

- Combined precision is $\Delta\sigma/\sigma\sim 0.5\%$
 - Hadronic channels weight best
 - FWHM~35GeV
- Electrons 40% worse than muons despite 3x worse resolution
 - Protected by low background

Invisible Width

- Can we see the Higgs invisible decay?
- Yes!
 - Do the recoil mass measurement
 - Veto on other objects in the detector
- There will be background from e.g. $ZZ \rightarrow IVV$
 - So mass resolution useful

TLEP H measurements

TLEP improves all coupling (except Hγγ)
 Couplings not dependent on hadronic resolution

 e.g. ZH → ZZZ uses a four lepton final state

 Do need excellent glue/charm/b tagging

Higgs Mass measurement

- The 5.5MeV error from the CEPC measurement is dominated by the muon measurement
- The electron measurement scarcely contributes
- This is because the missing mass measurement has a good knowledge of E_{beam} and then the Higgs peak is given by the missing mass
 - The width is given by the e/μ momentum error
- If we degrade the BL² we will lose in m_H
- That would be a shame....but m_H is already better known than needed ~ 300 MeV
- So here is a physics loss from tracking precision, but a small one

Key Physics

- Z pole
 - Z mass
 - FB asymmetries, cross-section etc.
 - Rare decays, e.g. Z → e-mu
- WW threshold
 - WW mass
- HZ peak
 - H Br's: gluons, charm
 - Invisible higgs Br
- tt threshold
 - Top mass
 - Check for light neutralinos etc.

Can we save money on coil?

What Solenoid do we need?

What it the outermost component inside it?

- Gem: the muon system
- L3: The muon system
- OPAL: the tracker
- ALEPH: the ECAL
- ATLAS: the tracker
- CMS: the ECAL
- The desire for a large radius goes with the urge for perfect calorimetry
 - Placing the calorimeter inside the solenoid means that a thick material layer in front is avoided.
 - Note that the CMS HCAL position allows a second muons measurement in the return yoke

LEP performances

	ALEPH	DELPHI	L3	OPAL
Magnetic field	1.5T	1.2T	0.5T	0.435T
Magnet radius	2.5m	2.6m	5.75m	1.9m
qq efficiency	99.1%	94.8%	99.3%	99.5%
qq background	0.7%	0.5%	0.3%	0.3%
ee efficiency	97.4%	97.0%	98.0%	99.0%
ee background	1.0%	1.1%	1.1%	0.3%
μμ efficiency	98.2%	95.0%	92.8%	97.9%
µµ background	0.2%	1.2%	1.5%	1.0%
ττ efficiency	92.1%	72.0%	70.9%	86.2%
ττ background	1.7%	3.1%	2.3%	2.7%
$\sigma_{_{mZ}}$, MeV	3.1	2.8	3.0	3.0
σ^{0}_{had} [nb]	0.057	0.069	0.054	0.055
A _{FB} ^{0,e}	0.0034	0.0049	0.0058	0.0045
$A_{FB}^{0,\mu}$	0.0024	0.0025	0.0033	0.0023
$A_{FB}^{0,\tau}$	0.0028	0.0037	0.0047	0.0030
Science & Technology Facilities Council		W.Murray 23		THE UNIVERSITY OF

Scaling laws for solenoids

- Green and Lorant:
 - Estimating the cost of Large Superconducting thin Solenoid magnets - 1993
 - C(M\$)=0.4 (BV)^{0.635}

Compare with CMS solenoid:

- B=4T, V=340m³
- C=55M\$
- Green and Lorant estimate 39M\$ 10 years earlier looks good
- Or ALEPH coil:
 - B=1.5T, V=154m³
 - C=14M\$
 - G & L gives 12.7M\$ not bad...

Costeirs a function of BV, but tracking performance is BL²

Unfortunately, in practice V~L³

Tracking requirements

- We wish to measure a sagita, the deflection of the track from straight
- We know this: $\sigma \frac{(p_T)}{p_T} = \sqrt{3/2} \sigma_x \frac{8p_T}{0.3BL^2}$
 - The product B.L² should be maximised
- But the magnet cost is BV, BL³.
- So there is a push to large B small size solenoids
 - Hence CMS is the Compact Muon Solenoid.
- But Green has another scaling law: $t=B^2R/2\mu_0\sigma$
 - t is the coil thickness
 - Where σ is the stress in the windings and $\mu_{_0}$ the permeability of air.
- So if the calorimetry is outside the coil there is a price for increasing field.

WARWICK

Hadronic W from Z separation

- Sorting out W from Z hadronically is a frequently-stated goal of the calorimeter
 - Irrelevant for Z physics & WW threshold scan
 - What about HZ and tt scan?

• HZ

- Some 10⁶ HZ expected
- Hadronic decay modes important
- But...W/Z separation hadronically is not key to any measurement I see.
 - Kinematic fits help resolution a lot
 - Imposing E_{beam} and maybe m_{H} , m_{Z}
 - That is a lot of constraints.
- tt
 - Signature is distinct bb plus 4 jets or lepton(s)
 - I don't see the need to reconstruct it well for m(top)

Stability

If we are going to measure 10¹² Z we need is stability.
 Drifts of 0.1 per mille will need careful watching

Here we see ATLAS luminosity monitors drifting 2% in 2012
 While the energy in the LAr rock solid

Science & Technology Facilities Council Rutherford Appleton Laboratory W.Murray 27

Radiation: minimum

- Assume we have 10¹² Z⁰.
- Each giving some 20 charged particles,
- Impact on a sphere 16mm radius with a short beamspot
 - Area of $4\pi/3r^2 = 11cm^2$
- Some 24 charged particles per (hadronic) Z
 - Two photon rate high, multiplicity lower. Factor ~2 difference?
- 2-4 10¹² ionising particles per cm².
 - LHC detectors already designed for 10¹⁵/cm²
 - Physics rate is not a problem
- Need to worry about machine backgrounds of course!

WARWICK

Proposal

- Push all the calorimetry outside the coil
 - Drops radius by 40%, volume by factor 5
 - Coil 1/5 previous price
 - But still gives all the tracking you wanted
- Abandon the finely-segmented ECAL
 - Go for robust, reliable solution
 - LAr has a lot to recommend it
 - But a crystal (or lead glass) calorimeter could be good too.
 - You can reduce this cost hugely.
- Spend your money on an excellent vertex detector
 - Plus some high resolution tracking at mid and high radius.
- But an excellent Lumi monitor
 - You can use the Tunsten+silicon there if you have enthusiasts

The luminosity: radiation impact

 The cross-section is maximum at Z peak, so is the luminosity

W.Murray 30

Science & Technology Facilities Council

Rutherford Appleton Laboratory

Conclusion/Prejudice

- Multiple detectors keeps physicists happy
- It need not be expensive.
- Make sure you get the detector you need, not the one someone wants to sell you.
- I may be barking up the wrong tree
 - But its a very expensive one.
 - We should do proper simulation of cheaper detectors.

