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Motivation

e Goal: New mathematical structures in QFT.
o |deal test objects: on-shell scattering amplitudes.

e Standard approach
1. Integrand of the amplitude.
2. Integrated expression.

3. Cross sections,. ..

e New formulation of QFT — most visible in the integrand.

e N =4 SYM : harmonic oscillator of 21" century.



Overview
e Amplitudes in planar N' =4 SYM

» New structures and symmetries, dual formulation.

» Logarithmic singularities.

e Amplitudes in full ' =4 SYM
» No symmetries, no dual formulation,...

» Evidence for 4pt: logarithmic singularities.



Overview
e Amplitudes in planar N' =4 SYM

» New structures and symmetries, dual formulation.

» Logarithmic singularities.

e Amplitudes in full ' =4 SYM
» No symmetries, no dual formulation,...

» Evidence for 4pt: logarithmic singularities.

Conjecture: [Arkani-Hamed, Bourjaily, Cachazo, JT]
Four point amplitudes in N' =4 SYM have only logarithmic
singularities and no poles at infinity.

e In the planar sector: it implies dual conformal invariance.
[Bern, Herrmann, Litsey, Stankowicz, JT]



Planar N = 4 SYM

e Unitary methods successful: high loop results, BDS,...

[Bern, Dixon, Kosower, Roiban, Carrasco, Johansson, Smirnov,...]

e Recursion relations
[Britto, Cachazo, Feng, Witten; Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, JT]

e Amplitudes at strong coupling
[Alday, Maldacena]

e Dual conformal symmetry

[Drummond, Henn, Korchemsky, Smirnov, Sokatchev; Alday, Maldacena]

e Yangian symmetry
[Drummond, Henn, Plefka]



Planar N = 4 SYM

e Amplitudes/super-Wilson loops correspondence

[Caron-Huot; Mason, Skinner]

e Gamma cusp to all orders
[Beisert, Eden, Staudacher]

e OPE and flux-tube S-matrix

[Basso, Sever, Vieira]

e Integrals, symbols, polylogs

[Henn, Smirnov?,...; Golden, Goncharov, Paulos, Spradlin, Volovich]

e Hexagon bootstrap

[Dixon, Drummond, Duhr, Henn, von Hippel, Pennington]

e Many more....



Dual formulation
[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT]
e On-shell physics
» Feynman diagrams: off-shell physics.
» Unitary methods: on-shell data.

» On-shell diagrams: on-shell objects.
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e On-shell diagrams in planar N' =4 SYM

> Cells in Positive Grassmannian G (k,n).

» Logarithmic form d d
x x
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Dual formulation
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e BCFW recursion relation
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> Yangian invariant term-by-term.




Dual formulation
[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT]

e BCFW recursion relation
» Sum of on-shell diagrams.

» Yangian invariant term-by-term.

e Amplituhedron [Arkani-Hamed, JT]
> Gluing on-shell diagrams together.

» Geometric definition of the amplitude:

» Defined by the set of inequalities.
» Form with logarithmic singularities.

e Crucial property: Logarithmic singularities.




Logarithmic singularities

e Definition: Differential form Q ~ ‘i—xﬁ near x = 0.
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Logarithmic singularities

e Definition: Differential form Q ~ ‘i—xﬁ near x = 0.

Q:d—x:dlogl‘ VS Q:d—f
x x
» Multiple poles hidden in the cut structure
dx d d
- vy Res,—of) = —‘g
zy(z +y) y
e Dlog form: 2 = dlog f1 dlog f> ... dlogfn
0= w = dlog dlog y
zy(z +y) (z+y) (z+y)



Singularities of loop integrals

» Example: box integral

2 3

d*0 st
C04 k1)2(0+ k1 + k2)2(0 — ky)?

» Examples of integrals with non-logarithmic singularities:

I d*¢ I dAe
(220 k)2(0 4 Ky + Eo)2) 20+ k)2(0 4 Ko)2(€ + k3)2

> At higher loops: multiple poles
— Special numerator needed to cancel them.



Poles at infinity
e We consider loop integrals.
e Type of singularities: logarithmic.
e Restriction on positions of singularities:

No poles for { — oo.



Poles at infinity
e We consider loop integrals.
e Type of singularities: logarithmic.
e Restriction on positions of singularities:

No poles for { — oo.

e Dual conformal symmetry

» No infinity twistor — no poles at infinity.



Poles at infinity

e Example: triangle integral

2

3 d* s

I:
i C0+ K120+ Ky + ko)?

1
> Triple cut: 2= ((+ k)2 = +k + k)2 =0

» Solution: £ — k; = al s



Poles at infinity

e Example: triangle integral

2

3 7 d* s

i C0+ K120+ Ky + ko)?

» Triple cut: (2= (0 +k1)?> = ({+ k1 + k)2 =0
> Solution: £ — ki = aAi Ay
» Residue on this cut: I = dﬁ
o
» Pole for a — oo which implies ¢ — oc.



Planar amplitudes

e Dual formulation using on-shell diagrams:
» No poles at infinity.
» Logarithmic singularities in the Grassmannian space.

» NF¥MHYV for k = 0,1, 2: logarithmic singularities in
momentum space.



Planar amplitudes

e Dual formulation using on-shell diagrams:

>

No poles at infinity.
Logarithmic singularities in the Grassmannian space.
N¥MHV for k = 0,1, 2: logarithmic singularities in

momentum space.

Logarithmic singularities ~ polylogs.

Non-logarithmic singularities in 10pt
N3MHV 2-loop: elliptic functions

[Caron-Huot, Larsen]
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e Amplitudes in complete N’ = 4 SYM
» Still have: maximal supersymmetry, UV finiteness.

» But: no DCI, no Yangian, no amplitudes/Wilson loop



Non-planar amplitudes

e Amplitudes in complete N’ = 4 SYM
» Still have: maximal supersymmetry, UV finiteness.

» But: no DCI, no Yangian, no amplitudes/Wilson loop

e On-shell diagrams well defined
1

4

» Even richer mathematical structure.
[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, JT]

> Logarithmic singularities, no poles at infinity.



Non-planar amplitudes

e No dual formulation for amplitudes yet.
e Suppose we can find it!

e Natural conjecture:



Non-planar amplitudes

e No dual formulation for amplitudes yet.
e Suppose we can find it!

e Natural conjecture:

Amplitudes in complete N' = 4 SYM have logarithmic singulari-
ties and no poles at infinity.

» This is in the Grassmannian space.

> In momentum space conservative conjecture: four point.

e No 1/N expansion, property of the full theory.



Non-planar amplitudes

e How to test the conjecture?

> Analyze data up to 5-loops.

[Bern, Carrasco, Dixon, Johansson, Kosower, Roiban]
» Find the new basis with these two properties manifest.

» Expand the amplitude in this basis.



Non-planar amplitudes

e How to test the conjecture?

> Analyze data up to 5-loops.

[Bern, Carrasco, Dixon, Johansson, Kosower, Roiban]
» Find the new basis with these two properties manifest.

» Expand the amplitude in this basis.

e Conservative strategy: scalar integrals.
» Denominator given by the diagram.

» Fix the numerator: cancels bad singularities.



Non-planar amplitudes

e Existence of such numerators not guaranteed.
» Possible cancellations between diagrams.

e New expansion vs. reference
» No unique integrand: no algebraic proof.

» Match on cuts.



Non-planar amplitudes

e Existence of such numerators not guaranteed.
» Possible cancellations between diagrams.

e New expansion vs. reference
» No unique integrand: no algebraic proof.
> Match on cuts.

e Explicitly constructed and checked up to 3-loops.

e Few more checks at higher loops.



One-loop amplitude

e One-loop amplitude: sum over permutations of box

2 3

d*e st
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e Same structure as the planar amplitude.



One-loop amplitude

e One-loop amplitude: sum over permutations of box

2 3

d*e st
52(5 + kl)Q(f + k1 + kz)Q(f — k4)2

e Same structure as the planar amplitude.

e Dlog form for box

72 0+ k)2 0+ Ky + ka)?
dlog ——5 dlog@dlog( i) dlog

(e _ g*)? (ﬁ _ g*)Q (f _ g*)Q (g: g*)?



Two-loop amplitude

e Planar double-box 2

P
Il(,2?3,4 = (p1+p2)° x

b

b




Two-loop amplitude

e Planar double-box 2 3
l1 12

P
Il(,2?3,4 = (p1+p2)° x

» written in the dlog form
stlfgél = dlog a; dlog oo dlog s . .. dlog ag

ar =03 /(L—0)?, 045553/(52 )%,
ar= (b —p2)?/(L1—£7)?, ag=(L1+L2)% /(L= 103)?,
a3 =(lLi—p1—p2)*/(L—67)?, 0475(42—173)2/(52—4*) ;
as=(li+p3)’/(—67),  as=(lo—ps—pa)?/(la—13)?



Two-loop amplitude

e Non-planar double box

NP) _
15,2,3,)4 =

2

\

(p1+p2)® x
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Two-loop amplitude

e Non-planar double box

Z(NP)

1234 =1 +p2)? x

e Generate a double pole

» Quadruple cut on /5.

» Triple cut on {1 = xps.

Uy

dx

ResT = — 0
o (x 4+ 1)x?tu



Two-loop amplitude

e Non-planar double box

2
Nt
Uy
IR = i +p)? x ) 4 3
7
e Generate a double pole
» Quadruple cut on 45. dx
_ P ? ResZT = — "y —
» Triple cut on /1 = zps. (x 4+ 1)x?tu

e Numerator: Nyjg = (p1 +12)? = Npew = (f1 +p3)? + (f1 +psa)?

» On the cut: Nyew = (zp2 + p3)? + (xp2 +pa)? = —xs



Two-loop amplitude

e More double poles: N, cancels all of them.

e Also conditions on the absence of the pole at infinity.

» Everything resolved by N,c.



Two-loop amplitude

e More double poles: N, cancels all of them.

e Also conditions on the absence of the pole at infinity.

» Everything resolved by N,c.

e Expand the amplitude in a new basis: YES.

e New result looks differently.

» Difference cancels due to color Jacobi identity.

fabefcde + facefdbe + fadefbce -0



Three-loop amplitude

e Nine diagrams in the basis.
[Bern, Carrasco, Dixon, Johansson, Kosower, Roiban, 2007]

2 3 2 3 2 s
1 (a) 4 1 (b) 1 1 (c) 4
20 5 3 20 5 3
2 3
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e All except (a) double poles: new numerators.



Three-loop amplitude

e Nine diagrams in the basis.
[Bern, Carrasco, Dixon, Johansson, Kosower, Roiban, 2007]

2 3 2 3 2 3
1 (a) 1 1 (b) 1 1 (c) 4
20 5 3 20 5
2 3
1 (d) 4
[
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25 3 2 u 12 3 2 3
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15
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e All except (a) double poles: new numerators.

e Check completed: Amplitude expanded in new basis!
— Talk by Enrico Herrmann



Higher loops

e Partial checks
» New basis for some diagrams.

» Match the reference on maximal cuts.

e All checks show that the conjecture is correct.



Back to planar sector

e In planar sector

» Both properties manifest in the basis of on-shell diagrams.

e What about scalar integrals?

» Do not consider DCI.

» Follow only our two conditions. 176 4



Back to planar sector

e In planar sector

» Both properties manifest in the basis of on-shell diagrams.

20 s 3
e What about scalar integrals? -
» Do not consider DCI.
» Follow only our two conditions. 176 4

e Result:
> In all cases we reproduce DCI numerators.

» We get even stronger restrictions!



Beyond DCI

e Extra condition beyond DCI [Drummond, Korchemsky, Sokatchev]

» Starting at 4-loops some DCI integrals not well-defined.

» All dual loop momenta x5, zg,... go to external point.

p2:x§5+x§6+---—>0



Beyond DCI

e Extra condition beyond DCI [Drummond, Korchemsky, Sokatchev]

» Starting at 4-loops some DCI integrals not well-defined.

» All dual loop momenta x5, zg,... go to external point.
p2:x§5+x§6+---—>0

> If the integral behaves like

dp

p

I~ IR divergence even off-shell

» Zero coefficient in the amplitude.



Beyond DCI

e Equivalent to the presence of certain type of multiple poles!

e There are more rules of this type
> Dual loop variables null separated from each other.
p2:x§6+x§7+---—>0
> Null separated from two points

P =ad v ad vads v+ —0



Beyond DCI

e Equivalent to the presence of certain type of multiple poles!

e There are more rules of this type

> Dual loop variables null separated from each other.

p2:x§6+$§7+---—>0

> Null separated from two points

P =ad v ad vads v+ —0

e We have data up to 7-loops.
[Bern, Carrasco, Dixon, Johansson, Kosower, Smirnov; Bourjaily, DiRe, Shaikh,

Spradlin, Volovich; Eden, Heslop, Korchemsky, Sokatchev]

e These rules explain zeroes in 4-loop and 5-loop expansions.



Beyond DCI

e Many more types of multiple poles.

e Requirement: All of them must be absent.
» Explains many zeroes of DCI integrals at 6-loops and 7-loops.

» Gives correct relative coefficients at 5-loops.

— Talk by Enrico Herrmann



Beyond DCI

e Many more types of multiple poles.

e Requirement: All of them must be absent.
» Explains many zeroes of DCI integrals at 6-loops and 7-loops.

» Gives correct relative coefficients at 5-loops.

— Talk by Enrico Herrmann

e Cancellation of multiple poles at higher loops.
» Possible in each diagram?

» Between different diagrams?



Beyond DCI

° Multiple poles from [Drummond, Korchemsky, Sokatchev]

» Real momenta on the solutions for these cuts.

> Problem: they are in the domain of integration.



Beyond DCI

° MuItipIe poles from [Drummond, Korchemsky, Sokatchev]

» Real momenta on the solutions for these cuts.

> Problem: they are in the domain of integration.

e Other multiple poles in integrals:
» Momenta are complex — outside integration domain.

> Integral well-defined but non-uniform transcendentality.

e Conjecture for N' = 4 SYM: no multiple poles at all.



Beyond DCI

e Planar and non-planar integrals:

» Fixed by the same rules.

e In planar sector:

> Integrals with log singularities: automatically DCI.



Beyond DCI

e Planar and non-planar integrals:

» Fixed by the same rules.

e In planar sector:

> Integrals with log singularities: automatically DCI.

e It suggests the existence of the non-planar analogue of DCI!



Beyond DCI
e Planar sector: logarithmic singularities and no poles at infinity

1= Zaj(dlog. ..dlog);
J



Beyond DCI
e Planar sector: logarithmic singularities and no poles at infinity

1= Zaj(dlog. ..dlog);
J

e Two things can go wrong
1. Arguments of dlogs are non-DCl (without poles at infinity).

2. Coefficients «; are non-DCI (mod overall constant).

e Explicit data: None of it happens.



Supergravity
e Extend ideas to other theories:

> Lower supersymmetry: new singularity structure.

» From Yang-Mills to gravity.



Supergravity
e Extend ideas to other theories:

> Lower supersymmetry: new singularity structure.

» From Yang-Mills to gravity.

e Maximal /' =8 SUGRA
» Singularity structure and UV behavior unclear.

» Close relation to N/ =4 SYM via BCJ relations.

[Bern, Carrasco, Johansson]

> Natural idea: explore singularity structure of the integrand.

e At 2-loops logarithmic singularities and no poles at infinity.



Supergravity

e No poles at infinity — UV finiteness.
e For N = 4 SYM: integrand-based derivation of UV finiteness.

o If true for N/ = 8 SYM: trivially UV finite as well.



Supergravity

e No poles at infinity — UV finiteness.
e For N = 4 SYM: integrand-based derivation of UV finiteness.

o If true for N/ = 8 SYM: trivially UV finite as well.

e Explicit checks of poles at infinity
» No poles at 1-loop and 2-loops.

> Logarithmic at 3-loops.

» Non-logarithmic at 4-loops, ....

e Results: Poles at infinity are present.



Supergravity

e This is NOT a proof of UV divergence.
> No poles at infinity — UV finiteness.
» UV finiteness 4 No poles at infinity.

» Simplest example: triangle integral.



Supergravity

e This is NOT a proof of UV divergence.
> No poles at infinity — UV finiteness.
» UV finiteness 4 No poles at infinity.

» Simplest example: triangle integral.

e Possible finiteness of A/ = 8 SUGRA:
» Must depend on detailed structures of poles at infinity.
» More complicated than N' = 4 SYM.

» Cancellations between diagrams — Talk by Scott Davies.



Conclusion

e Amplitudes in complete ' = 4 SYM: singularities of integrand.

e Inspired by properties of on-shell diagrams:

Conjecture: Four point amplitudes in N' =4 SYM have
only logarithmic singularities and no poles at infinity.

e Explicit checks up to 3-loops.
e In planar sector: stronger conditions than DCI.

e N = 8 SUGRA: poles at infinity
— Detailed knowledge needed to study UV behavior.



Conclusion

e Amplitudes in complete ' = 4 SYM: singularities of integrand.

e Inspired by properties of on-shell diagrams:

Conjecture: Four point amplitudes in N' =4 SYM have
only logarithmic singularities and no poles at infinity.

e Explicit checks up to 3-loops.
e In planar sector: stronger conditions than DCI.

e N = 8 SUGRA: poles at infinity
— Detailed knowledge needed to study UV behavior.

Thank you for the attention!



