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Motivation
• Goal: New mathematical structures in QFT.

• Ideal test objects: on-shell scattering amplitudes.

• Standard approach

1. Integrand of the amplitude.

2. Integrated expression.

3. Cross sections,. . .

• New formulation of QFT → most visible in the integrand.

• N = 4 SYM : harmonic oscillator of 21th century.



Overview
• Amplitudes in planar N = 4 SYM

I New structures and symmetries, dual formulation.
I Logarithmic singularities.

• Amplitudes in full N = 4 SYM
I No symmetries, no dual formulation,. . .
I Evidence for 4pt: logarithmic singularities.

Conjecture: [Arkani-Hamed, Bourjaily, Cachazo, JT]
Four point amplitudes in N = 4 SYM have only logarithmic
singularities and no poles at infinity.

• In the planar sector: it implies dual conformal invariance.
[Bern, Herrmann, Litsey, Stankowicz, JT]
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Planar N = 4 SYM

• Unitary methods successful: high loop results, BDS,. . .
[Bern, Dixon, Kosower, Roiban, Carrasco, Johansson, Smirnov,. . .]

• Recursion relations
[Britto, Cachazo, Feng, Witten; Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, JT]

• Amplitudes at strong coupling
[Alday, Maldacena]

• Dual conformal symmetry
[Drummond, Henn, Korchemsky, Smirnov, Sokatchev; Alday, Maldacena]

• Yangian symmetry
[Drummond, Henn, Plefka]



Planar N = 4 SYM

• Amplitudes/super-Wilson loops correspondence
[Caron-Huot; Mason, Skinner]

• Gamma cusp to all orders
[Beisert, Eden, Staudacher]

• OPE and flux-tube S-matrix
[Basso, Sever, Vieira]

• Integrals, symbols, polylogs
[Henn, Smirnov2,. . .; Golden, Goncharov, Paulos, Spradlin, Volovich]

• Hexagon bootstrap
[Dixon, Drummond, Duhr, Henn, von Hippel, Pennington]

• Many more. . . .



Dual formulation
[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT]

• On-shell physics
I Feynman diagrams: off-shell physics.
I Unitary methods: on-shell data.
I On-shell diagrams: on-shell objects.

• On-shell diagrams in planar N = 4 SYM
I Cells in Positive Grassmannian G+(k, n).
I Logarithmic form

Ω0 =

∫
dx1
x1

. . .
dxd
xd

δ(C(xi)Zj)



Dual formulation
[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT]

• BCFW recursion relation
I Sum of on-shell diagrams.
I Yangian invariant term-by-term.

The Analytic S-Matrix, Redux
Two Roads to the Grassmannian

Grassmannian Polytopes, Leading Singularities, and All That

Colour & Kinematics: the Vernacular of the S-Matrix
Leading Singularities: Fusing Trees into Loops
Tree-Level Recursion: Making the Impossible, Possible

Tree Amplitudes as Leading Singularities
The BCFW-recursion relations can be re-cast as a statement about

leading singularities in the following way: (the ‘BCF’ recursion-relations)

27th April, 2012 Harvard String Theory Seminar Quantum Field Theory and Grassmannian Geometry

• Amplituhedron [Arkani-Hamed, JT]
I Gluing on-shell diagrams together.
I Geometric definition of the amplitude:

I Defined by the set of inequalities.
I Form with logarithmic singularities.

• Crucial property: Logarithmic singularities.
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Logarithmic singularities

• Definition: Differential form Ω ∼ dx
x Ω̃ near x = 0.

Ω =
dx

x
= dlog x vs Ω =

dx

x2

I Multiple poles hidden in the cut structure

Ω =
dx dy

xy(x+ y)
Resx=0Ω =

dy

y2

• Dlog form: Ω = dlog f1 dlog f2 . . . dlogfm

Ω =
dx dy (x− y)

xy(x+ y)
= dlog

x

(x+ y)
dlog

y

(x+ y)
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Singularities of loop integrals

I Example: box integral

1

2 3

4

I =
d4` st

`2(`+ k1)2(`+ k1 + k2)2(`− k4)2

I Examples of integrals with non-logarithmic singularities:

I =
d4`

(`2)2(`+ k1)2(`+ k1 + k2)2
, I =

d4`

`2(`+ k1)2(`+ k2)2(`+ k3)2

I At higher loops: multiple poles
→ Special numerator needed to cancel them.



Poles at infinity

• We consider loop integrals.

• Type of singularities: logarithmic.

• Restriction on positions of singularities:

No poles for `→∞.

• Dual conformal symmetry
I No infinity twistor → no poles at infinity.
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Poles at infinity

• Example: triangle integral

1

2

3

4
I =

d4` s

`2(`+ k1)2(`+ k1 + k2)2

I Triple cut: `2 = (`+ k1)
2 = (`+ k1 + k2)

2 = 0

I Solution: `− k1 = αλ1λ̃2

I Residue on this cut: I =
dα

α

I Pole for α→∞ which implies `→∞.
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Planar amplitudes

• Dual formulation using on-shell diagrams:

I No poles at infinity.

I Logarithmic singularities in the Grassmannian space.

I NkMHV for k = 0, 1, 2: logarithmic singularities in
momentum space.

I Logarithmic singularities ∼ polylogs.

I Non-logarithmic singularities in 10pt
N3MHV 2-loop: elliptic functions
[Caron-Huot, Larsen]

Figure 6. The integral I(2,2,1,2,2,1), the simplest example of an integral with more than three
particles at all vertices, and whose heptacut Jacobian J(z) accordingly has branch cuts that cannot
be removed by any reparametrization z → ϕ(z). As argued in the main text, this is presumably
related to the appearance of functions in the analytic expression for I(2,2,1,2,2,1) which cannot be
expressed in terms of generalized polylogarithms.

illustrated in figure 7. In particular, there is a single class of kinematical solutions to the
heptacut constraints (2.3)-(2.9) in this case.

For an elliptic curve there are two natural cycles over which the z integration in
eq. (3.22) can be performed, generalizing the notion of a residue – namely, its topologi-
cal cycles Γ1 and Γ2, respectively shown in red and blue in figure 7. In terms of the z
variable, these are cycles which enclose a pair of branch points. Integrations over such cy-
cles produce so-called complete elliptic integrals of the first kind K(t) where the argument t
is some cross-ratio of the four roots of the radicand Q(z). As they arise when performing the
loop integration on a compact T8 contour, the integration cycles Γ1 and Γ2 define leading
singularity cycles of the double-box integral.

As illustrated in figure 7, the number of poles at which one of the loop momenta be-
comes infinite is 8. This can easily be explained as follows. The fact that S1S2 6= 0 implies
that α3 ∼ z and α4 ∼ 1

z , allowing for two distinct points on each sheet of the elliptic curve
at which the left loop momentum `1 becomes infinite; these points are denoted as ∞L,i in
the figure. Moreover, since each of the sheets can equivalently be parametrized in terms of
β3 or β4, the fact that S4S5 6= 0 implies that β3 ∼ z and β4 ∼ 1

z , allowing for two distinct
points on each sheet at which the right loop momentum `2 becomes infinite; these points
are denoted as ∞R,i. Thus, there are in total 8 poles on the elliptic curve.

The residues of these 8 poles are not all independent, however. For instance, their sum
is zero since it corresponds to a contractible cycle, as can be seen from figure 7. If all the
infinity poles were only simple poles, which would be the case if all numerator insertions in
the double-box integral were at most linear in each of the loop momenta `1, `2, there would
exist a second, less obvious relation5. However, the large-momentum behavior of theories

5This relation is easier to describe when the elliptic curve is viewed as the complex plane modulo the
doubly-periodic identification z ' z + 1, z ' z + τ . While the first relation mentioned in the main text
arises from integrating a form ω(z) along the boundary of a fundamental domain, the second relation arises

– 16 –
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Non-planar amplitudes

• Amplitudes in complete N = 4 SYM

I Still have: maximal supersymmetry, UV finiteness.

I But: no DCI, no Yangian, no amplitudes/Wilson loop

• On-shell diagrams well defined

I Even richer mathematical structure.
[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, JT]

I Logarithmic singularities, no poles at infinity.
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Non-planar amplitudes

• No dual formulation for amplitudes yet.

• Suppose we can find it!

• Natural conjecture:

Amplitudes in complete N = 4 SYM have logarithmic singulari-
ties and no poles at infinity.

I This is in the Grassmannian space.
I In momentum space conservative conjecture: four point.

• No 1/N expansion, property of the full theory.
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Non-planar amplitudes

• How to test the conjecture?

I Analyze data up to 5-loops.
[Bern, Carrasco, Dixon, Johansson, Kosower, Roiban]

I Find the new basis with these two properties manifest.

I Expand the amplitude in this basis.

• Conservative strategy: scalar integrals.

I Denominator given by the diagram.

I Fix the numerator: cancels bad singularities.
5

6

1

2

3 4
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Non-planar amplitudes

• Existence of such numerators not guaranteed.

I Possible cancellations between diagrams.

• New expansion vs. reference

I No unique integrand: no algebraic proof.

I Match on cuts.

• Explicitly constructed and checked up to 3-loops.

• Few more checks at higher loops.
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One-loop amplitude

• One-loop amplitude: sum over permutations of box

1

2 3

4

=
d4` st

`2(`+ k1)2(`+ k1 + k2)2(`− k4)2

• Same structure as the planar amplitude.

• Dlog form for box

dlog
`2

(`− `∗)2 dlog
(`+ k1)

2

(`− `∗)2 dlog
(`+ k1 + k2)

2

(`− `∗)2 dlog
(`− k4)2
(`− `∗)2
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Two-loop amplitude

• Planar double-box

2

Transcendentality and UV-Finiteness

The existence of dlog-forms for loop amplitudes is
closely related to both uniform (maximal) transcenden-
tality and UV-finiteness. When integrals are not loga-
rithmic, we should not be surprised that they are not of
uniform transcendentality. This can be seen in the case of
the bubble integral at one-loop, and also for the standard
representation of the two-loop four-particle amplitude in
N =4 which we review below (before we improve it).

One-loop amplitudes for maximally supersymmetric
Yang-Mills and gravity have been known for quite some
time (see e.g. [14–16]), and can be represented entirely in
terms of box integrals. Because of this, both theories are
manifestly logarithmic and free of singularities at infin-
ity. For less supersymmetric theories, triangle and bub-
ble integrals generally contribute at one-loop, which can
be viewed as indications that such theories have worse
UV behavior and can violate maximal transcendentality.
(The presence of non-logarithmic singularities in N < 4
SYM is also indicated by the form of on-shell functions
in these theories, [8].)

The existence of a dlog-form of loop amplitudes would
be a strong indication of the good UV behavior of N =8
SUGRA—a subject of very active research in recent years
(see e.g. [17, 18]). Although an on-shell representation of
loop amplitudes in N =8 SUGRA does not yet exist, we
expect that it would help to make this fact manifest. But
until such tools become available, the best we can do is
to explicitly test whether or not N =8 SUGRA has these
features at the integrand level.

Logarithmic Forms vs. Locality

From the on-shell representation of amplitudes in pla-
nar N = 4 SYM, we know that all its singularities are
logarithmic. And yet even in this case, it is impossible to
make this fact manifest using local integrals at sufficiently
high loop order. For example, starting at eight-loops the
four-particle amplitude can include terms such as,

(5)

which is fully DCI (in fact, finite) and yet is not loga-
rithmic due to the presence of the elliptic sub-integral
(see ref. [19]). Such non-logarithmic integrands become
ubiquitous at sufficiently high-loop order, and are very
likely necessary for any local integral representation of
the amplitude. (Interestingly, because the integral (5)
is free of any local divergences, its coefficient cannot be
fixed using the method described in ref. [20].)

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [21]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:

A2-loop
4,N =

KN
4

∑

σ∈S4

∫ [
C

(P )
σ,NI(P )

σ +C
(NP )
σ,N I(NP )

σ

]
δ4|2N

(
λ·q
)
(6)

where σ is a permutation of the external legs and
δ4|2N (λ·q) encodes super-momentum conservation with

q≡(λ̃, η̃); the factors KN are the permutation-invariants,

K4 ≡
[3 4][4 1]

〈1 2〉〈2 3〉 and K8 ≡
(

[3 4][4 1]

〈1 2〉〈2 3〉

)2

; (7)

the integration measures I(P )
σ , I(NP )

σ correspond to,

I(P )
1,2,3,4 ≡ (p1 + p2)2 × (8)

and

I(NP )
1,2,3,4 ≡ (p1 + p2)2 × (9)

for σ = {1, 2, 3, 4}; and the coefficients C
(P ),(NP )
{1,2,3,4},N are

the color-factors constructed out of structure constants
fabc’s according to the diagrams above for N = 4, and
are both equal to (p1 + p2)2 for N =8.

While the representation (6) is correct, it obscures the
fact that the amplitude is ultimately logarithmic, max-
imally transcendental, and free of any poles at infinity.

This is because the non-planar integral’s measure, I(NP )
σ ,

is not itself logarithmic. We will show this below by suc-
cessively taking residues until a double-pole is encoun-
tered; but it is also evidenced by the fact that its eval-
uation (using e.g. dimensional regularization) is not of
uniform transcendentality, [22]. These unpleasantries are
of course cancelled in combination, but we would like to
find an alternate representation of (6) which makes man-
ifest the fact that the final amplitude is logarithmic and
free of poles at infinity. This we will do below. But first,
let us show that the planar double-box integrand can be
put into dlog-form, and then describe how the non-planar
integrands can be modified in a way which makes them
manifestly logarithmic term-by-term.

I written in the dlog form

stI(P )
1234 = dlogα1 dlogα2 dlogα3 . . . dlogα8

α1≡`21/(`1 `∗1)
2, α5≡`22/(`2 `∗2)

2,
α2≡(`1 p2)

2/(`1 `∗1)
2, α6≡(`1+`2)

2/(`2 `∗2)
2,

α3≡(`1 p1 p2)
2/(`1 `∗1)

2, α7≡(`2 p3)
2/(`2 `∗2)

2,
α4≡(`1+p3)

2/(`1 `∗1)
2, α8≡(`2 p3 p4)

2/(`2 `∗2)
2,
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• Non-planar double box
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Transcendentality and UV-Finiteness

The existence of dlog-forms for loop amplitudes is
closely related to both uniform (maximal) transcenden-
tality and UV-finiteness. When integrals are not loga-
rithmic, we should not be surprised that they are not of
uniform transcendentality. This can be seen in the case of
the bubble integral at one-loop, and also for the standard
representation of the two-loop four-particle amplitude in
N =4 which we review below (before we improve it).

One-loop amplitudes for maximally supersymmetric
Yang-Mills and gravity have been known for quite some
time (see e.g. [14–16]), and can be represented entirely in
terms of box integrals. Because of this, both theories are
manifestly logarithmic and free of singularities at infin-
ity. For less supersymmetric theories, triangle and bub-
ble integrals generally contribute at one-loop, which can
be viewed as indications that such theories have worse
UV behavior and can violate maximal transcendentality.
(The presence of non-logarithmic singularities in N < 4
SYM is also indicated by the form of on-shell functions
in these theories, [8].)

The existence of a dlog-form of loop amplitudes would
be a strong indication of the good UV behavior of N =8
SUGRA—a subject of very active research in recent years
(see e.g. [17, 18]). Although an on-shell representation of
loop amplitudes in N =8 SUGRA does not yet exist, we
expect that it would help to make this fact manifest. But
until such tools become available, the best we can do is
to explicitly test whether or not N =8 SUGRA has these
features at the integrand level.

Logarithmic Forms vs. Locality

From the on-shell representation of amplitudes in pla-
nar N = 4 SYM, we know that all its singularities are
logarithmic. And yet even in this case, it is impossible to
make this fact manifest using local integrals at sufficiently
high loop order. For example, starting at eight-loops the
four-particle amplitude can include terms such as,

(5)

which is fully DCI (in fact, finite) and yet is not loga-
rithmic due to the presence of the elliptic sub-integral
(see ref. [19]). Such non-logarithmic integrands become
ubiquitous at sufficiently high-loop order, and are very
likely necessary for any local integral representation of
the amplitude. (Interestingly, because the integral (5)
is free of any local divergences, its coefficient cannot be
fixed using the method described in ref. [20].)

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [21]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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δ4|2N (λ·q) encodes super-momentum conservation with

q≡(λ̃, η̃); the factors KN are the permutation-invariants,

K4 ≡
[3 4][4 1]

〈1 2〉〈2 3〉 and K8 ≡
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I(NP )
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for σ = {1, 2, 3, 4}; and the coefficients C
(P ),(NP )
{1,2,3,4},N are

the color-factors constructed out of structure constants
fabc’s according to the diagrams above for N = 4, and
are both equal to (p1 + p2)2 for N =8.

While the representation (6) is correct, it obscures the
fact that the amplitude is ultimately logarithmic, max-
imally transcendental, and free of any poles at infinity.

This is because the non-planar integral’s measure, I(NP )
σ ,

is not itself logarithmic. We will show this below by suc-
cessively taking residues until a double-pole is encoun-
tered; but it is also evidenced by the fact that its eval-
uation (using e.g. dimensional regularization) is not of
uniform transcendentality, [22]. These unpleasantries are
of course cancelled in combination, but we would like to
find an alternate representation of (6) which makes man-
ifest the fact that the final amplitude is logarithmic and
free of poles at infinity. This we will do below. But first,
let us show that the planar double-box integrand can be
put into dlog-form, and then describe how the non-planar
integrands can be modified in a way which makes them
manifestly logarithmic term-by-term.

• Generate a double pole

I Quadruple cut on `2.
I Triple cut on `1 = xp2.

Res I =
dx

(x+ 1)x2tu

• Numerator: Nold = (p1 + p2)
2 → Nnew = (`1 + p3)

2 + (`1 + p4)
2

I On the cut: Nnew = (xp2 + p3)
2 + (xp2 + p4)

2 = −xs
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Two-loop amplitude

• More double poles: Nnew cancels all of them.

• Also conditions on the absence of the pole at infinity.
I Everything resolved by Nnew.

• Expand the amplitude in a new basis: YES.

• New result looks differently.
I Difference cancels due to color Jacobi identity.

fabef cde + facefdbe + fadef bce = 0
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Three-loop amplitude
• Nine diagrams in the basis.
[Bern, Carrasco, Dixon, Johansson, Kosower, Roiban, 2007]
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FIG. 6: Cubic four-point graphs entering the four-point three-loop amplitudes.

B. Three loops

At three loops, the integrand of the N = 4 sYM four-point amplitude begins to have

dependence on the loop-momentum in its numerator, as well as (non-planar) terms that

cannot be detected in the maximal cuts. For this reason, the three-loop N = 8 supergravity

amplitude, in its initial two forms [12, 13], was not given by simply squaring the N = 4 sYM

results — except for a subset of the graphs that could be inferred using only two-particle

cuts. More recently, three of the present authors rearranged the three-loop N = 4 sYM

amplitude so as to make manifest its color-kinematic duality [56]. In this form the N = 8

supergravity amplitude can once again be found by a simple squaring procedure. Here we

will give the amplitudes in the form found in ref. [13], which requires only the nine cubic

graphs shown in Fig. 6. (Three more cubic graphs, containing three-point subdiagrams,

enter the solution in ref. [56].)

Both the N = 4 sYM and N = 8 supergravity amplitudes are described by giving the

loop-momentum numerator polynomials N (p) for these graphs. In addition, the N = 4 sYM

graphs are multiplied by the corresponding color structure, as in Fig. 5.

17

• All except (a) double poles: new numerators.

• Check completed: Amplitude expanded in new basis!

→ Talk by Enrico Herrmann
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Higher loops

• Partial checks

I New basis for some diagrams.

I Match the reference on maximal cuts. 5

6

7

8

1

2

3

4

• All checks show that the conjecture is correct.



Back to planar sector

• In planar sector

I Both properties manifest in the basis of on-shell diagrams.

• What about scalar integrals?

I Do not consider DCI.

I Follow only our two conditions.
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loop-momentum numerator polynomials N (p) for these graphs. In addition, the N = 4 sYM

graphs are multiplied by the corresponding color structure, as in Fig. 5.

17

• Result:

I In all cases we reproduce DCI numerators.

I We get even stronger restrictions!
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Beyond DCI

• Extra condition beyond DCI [Drummond, Korchemsky, Sokatchev]

I Starting at 4-loops some DCI integrals not well-defined.

I All dual loop momenta x5, x6, . . . go to external point.

ρ2 = x235 + x236 + · · · → 0

I If the integral behaves like

I ∼
∫
dρ

ρ
IR divergence even off-shell

I Zero coefficient in the amplitude.
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Beyond DCI

• Equivalent to the presence of certain type of multiple poles!

• There are more rules of this type

I Dual loop variables null separated from each other.

ρ2 = x256 + x257 + · · · → 0

I Null separated from two points

ρ2 = x225 + x235 + x226 + x236 + · · · → 0

• We have data up to 7-loops.
[Bern, Carrasco, Dixon, Johansson, Kosower, Smirnov; Bourjaily, DiRe, Shaikh,

Spradlin, Volovich; Eden, Heslop, Korchemsky, Sokatchev]

• These rules explain zeroes in 4-loop and 5-loop expansions.
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Beyond DCI

• Many more types of multiple poles.

• Requirement: All of them must be absent.

I Explains many zeroes of DCI integrals at 6-loops and 7-loops.

I Gives correct relative coefficients at 5-loops.

→ Talk by Enrico Herrmann

• Cancellation of multiple poles at higher loops.

I Possible in each diagram?

I Between different diagrams?
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Beyond DCI

• Multiple poles from [Drummond, Korchemsky, Sokatchev]

I Real momenta on the solutions for these cuts.

I Problem: they are in the domain of integration.

• Other multiple poles in integrals:

I Momenta are complex → outside integration domain.

I Integral well-defined but non-uniform transcendentality.

• Conjecture for N = 4 SYM: no multiple poles at all.



Beyond DCI

• Multiple poles from [Drummond, Korchemsky, Sokatchev]

I Real momenta on the solutions for these cuts.

I Problem: they are in the domain of integration.

• Other multiple poles in integrals:

I Momenta are complex → outside integration domain.

I Integral well-defined but non-uniform transcendentality.

• Conjecture for N = 4 SYM: no multiple poles at all.



Beyond DCI

• Planar and non-planar integrals:

I Fixed by the same rules.

• In planar sector:

I Integrals with log singularities: automatically DCI.

• It suggests the existence of the non-planar analogue of DCI!



Beyond DCI

• Planar and non-planar integrals:

I Fixed by the same rules.

• In planar sector:

I Integrals with log singularities: automatically DCI.

• It suggests the existence of the non-planar analogue of DCI!



Beyond DCI

• Planar sector: logarithmic singularities and no poles at infinity

I =
∑

j

αj(dlog . . . dlog)j

• Two things can go wrong
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• Explicit checks up to 3-loops.
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