Walter Burke Institute for Theoretical Physics

On the Singularity Structure of Maximally Supersymmetric Scattering Amplitudes

Jaroslav Trnka
Caltech

N. Arkani-Hamed, J. Bourjaily, F. Cachazo, JT, 1410.0354
Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz, JT, to appear

Motivation

- Goal: New mathematical structures in QFT.
- Ideal test objects: on-shell scattering amplitudes.
- Standard approach

1. Integrand of the amplitude.
2. Integrated expression.
3. Cross sections,...

- New formulation of QFT \rightarrow most visible in the integrand.
- $\mathcal{N}=4$ SYM : harmonic oscillator of $21^{\text {th }}$ century.

Overview

- Amplitudes in planar $\mathcal{N}=4$ SYM
- New structures and symmetries, dual formulation.
- Logarithmic singularities.
- Amplitudes in full $\mathcal{N}=4$ SYM
- No symmetries, no dual formulation,...
- Evidence for 4pt: logarithmic singularities.

Overview

- Amplitudes in planar $\mathcal{N}=4$ SYM
- New structures and symmetries, dual formulation.
- Logarithmic singularities.
- Amplitudes in full $\mathcal{N}=4 \mathrm{SYM}$
- No symmetries, no dual formulation,...
- Evidence for 4pt: logarithmic singularities.

Conjecture: [Arkani-Hamed, Bourjaily, Cachazo, JT]
Four point amplitudes in $\mathcal{N}=4$ SYM have only logarithmic singularities and no poles at infinity.

- In the planar sector: it implies dual conformal invariance.
[Bern, Herrmann, Litsey, Stankowicz, JT]

Planar $\mathcal{N}=4$ SYM

- Unitary methods successful: high loop results, BDS,...
[Bern, Dixon, Kosower, Roiban, Carrasco, Johansson, Smirnov,...]
- Recursion relations
[Britto, Cachazo, Feng, Witten; Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, JT]
- Amplitudes at strong coupling [Alday, Maldacena]
- Dual conformal symmetry
[Drummond, Henn, Korchemsky, Smirnov, Sokatchev; Alday, Maldacena]
- Yangian symmetry
[Drummond, Henn, Plefka]

Planar $\mathcal{N}=4$ SYM

- Amplitudes/super-Wilson loops correspondence [Caron-Huot; Mason, Skinner]
- Gamma cusp to all orders
[Beisert, Eden, Staudacher]
- OPE and flux-tube S-matrix
[Basso, Sever, Vieira]
- Integrals, symbols, polylogs
[Henn, Smirnov ${ }^{2}$,...; Golden, Goncharov, Paulos, Spradlin, Volovich]
- Hexagon bootstrap
[Dixon, Drummond, Duhr, Henn, von Hippel, Pennington]
- Many more....

Dual formulation

[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT]

- On-shell physics
- Feynman diagrams: off-shell physics.
- Unitary methods: on-shell data.
- On-shell diagrams: on-shell objects.

- On-shell diagrams in planar $\mathcal{N}=4$ SYM
- Cells in Positive Grassmannian $G_{+}(k, n)$.
- Logarithmic form

$$
\Omega_{0}=\int \frac{d x_{1}}{x_{1}} \ldots \frac{d x_{d}}{x_{d}} \delta\left(C\left(x_{i}\right) Z_{j}\right)
$$

Dual formulation

[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT]

- BCFW recursion relation
- Sum of on-shell diagrams.
- Yangian invariant term-by-term.

Dual formulation

[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT]

- BCFW recursion relation
- Sum of on-shell diagrams.
- Yangian invariant term-by-term.

- Amplituhedron [Arkani-Hamed, JT]
- Gluing on-shell diagrams together.
- Geometric definition of the amplitude:
- Defined by the set of inequalities.
- Form with logarithmic singularities.
- Crucial property: Logarithmic singularities.

Logarithmic singularities

- Definition: Differential form $\Omega \sim \frac{d x}{x} \widetilde{\Omega}$ near $x=0$.

$$
\Omega=\frac{d x}{x}=\mathrm{d} \log x \quad \text { vs } \quad \Omega=\frac{d x}{x^{2}}
$$

- Multiple poles hidden in the cut structure

$$
\Omega=\frac{d x d y}{x y(x+y)} \quad \operatorname{Res}_{x=0} \Omega=\frac{d y}{y^{2}}
$$

Logarithmic singularities

- Definition: Differential form $\Omega \sim \frac{d x}{x} \widetilde{\Omega}$ near $x=0$.

$$
\Omega=\frac{d x}{x}=\operatorname{dlog} x \quad \text { vs } \quad \Omega=\frac{d x}{x^{2}}
$$

- Multiple poles hidden in the cut structure

$$
\Omega=\frac{d x d y}{x y(x+y)} \quad \operatorname{Res}_{x=0} \Omega=\frac{d y}{y^{2}}
$$

- Dlog form: $\Omega=\operatorname{dlog} f_{1} \operatorname{dlog} f_{2} \ldots \operatorname{dlog} f_{m}$

$$
\Omega=\frac{d x d y(x-y)}{x y(x+y)}=\mathrm{d} \log \frac{x}{(x+y)} \mathrm{d} \log \frac{y}{(x+y)}
$$

Singularities of loop integrals

- Example: box integral

$$
I=\frac{d^{4} \ell s t}{\ell^{2}\left(\ell+k_{1}\right)^{2}\left(\ell+k_{1}+k_{2}\right)^{2}\left(\ell-k_{4}\right)^{2}}
$$

- Examples of integrals with non-logarithmic singularities:

$$
I=\frac{d^{4} \ell}{\left(\ell^{2}\right)^{2}\left(\ell+k_{1}\right)^{2}\left(\ell+k_{1}+k_{2}\right)^{2}}, \quad I=\frac{d^{4} \ell}{\ell^{2}\left(\ell+k_{1}\right)^{2}\left(\ell+k_{2}\right)^{2}\left(\ell+k_{3}\right)^{2}}
$$

- At higher loops: multiple poles
\rightarrow Special numerator needed to cancel them.

Poles at infinity

- We consider loop integrals.
- Type of singularities: logarithmic.
- Restriction on positions of singularities:

No poles for $\ell \rightarrow \infty$.

Poles at infinity

- We consider loop integrals.
- Type of singularities: logarithmic.
- Restriction on positions of singularities:

No poles for $\ell \rightarrow \infty$.

- Dual conformal symmetry
- No infinity twistor \rightarrow no poles at infinity.

Poles at infinity

- Example: triangle integral

$$
I=\frac{d^{4} \ell s}{\ell^{2}\left(\ell+k_{1}\right)^{2}\left(\ell+k_{1}+k_{2}\right)^{2}}
$$

- Triple cut: $\ell^{2}=\left(\ell+k_{1}\right)^{2}=\left(\ell+k_{1}+k_{2}\right)^{2}=0$
- Solution: $\ell-k_{1}=\alpha \lambda_{1} \widetilde{\lambda_{2}}$

Poles at infinity

- Example: triangle integral

$$
I=\frac{d^{4} \ell s}{\ell^{2}\left(\ell+k_{1}\right)^{2}\left(\ell+k_{1}+k_{2}\right)^{2}}
$$

- Triple cut: $\ell^{2}=\left(\ell+k_{1}\right)^{2}=\left(\ell+k_{1}+k_{2}\right)^{2}=0$
- Solution: $\ell-k_{1}=\alpha \lambda_{1} \widetilde{\lambda_{2}}$
- Residue on this cut:

$$
I=\frac{d \alpha}{\alpha}
$$

- Pole for $\alpha \rightarrow \infty$ which implies $\ell \rightarrow \infty$.

Planar amplitudes

- Dual formulation using on-shell diagrams:
- No poles at infinity.
- Logarithmic singularities in the Grassmannian space.
- $\mathrm{N}^{k} \mathrm{MHV}$ for $k=0,1,2$: logarithmic singularities in momentum space.

Planar amplitudes

- Dual formulation using on-shell diagrams:
- No poles at infinity.
- Logarithmic singularities in the Grassmannian space.
- $\mathrm{N}^{k} \mathrm{MHV}$ for $k=0,1,2$: logarithmic singularities in momentum space.
- Logarithmic singularities \sim polylogs.
- Non-logarithmic singularities in 10 pt $\mathrm{N}^{3} \mathrm{MHV}$ 2-loop: elliptic functions
[Caron-Huot, Larsen]

Non-planar amplitudes

- Amplitudes in complete $\mathcal{N}=4$ SYM
- Still have: maximal supersymmetry, UV finiteness.
- But: no DCI, no Yangian, no amplitudes/Wilson loop

Non-planar amplitudes

- Amplitudes in complete $\mathcal{N}=4$ SYM
- Still have: maximal supersymmetry, UV finiteness.
- But: no DCI, no Yangian, no amplitudes/Wilson loop
- On-shell diagrams well defined

- Even richer mathematical structure. [Arkani-Hamed, Bourjaily, Cachazo, Postnikov, JT]
- Logarithmic singularities, no poles at infinity.

Non-planar amplitudes

- No dual formulation for amplitudes yet.
- Suppose we can find it!
- Natural conjecture:

Non-planar amplitudes

- No dual formulation for amplitudes yet.
- Suppose we can find it!
- Natural conjecture:

Amplitudes in complete $\mathcal{N}=4$ SYM have logarithmic singularities and no poles at infinity.

- This is in the Grassmannian space.
- In momentum space conservative conjecture: four point.
- No $1 / N$ expansion, property of the full theory.

Non-planar amplitudes

- How to test the conjecture?
- Analyze data up to 5-loops.
[Bern, Carrasco, Dixon, Johansson, Kosower, Roiban]
- Find the new basis with these two properties manifest.
- Expand the amplitude in this basis.

Non-planar amplitudes

- How to test the conjecture?
- Analyze data up to 5-loops.
[Bern, Carrasco, Dixon, Johansson, Kosower, Roiban]
- Find the new basis with these two properties manifest.
- Expand the amplitude in this basis.
- Conservative strategy: scalar integrals.
- Denominator given by the diagram.
- Fix the numerator: cancels bad singularities.

Non-planar amplitudes

- Existence of such numerators not guaranteed.
- Possible cancellations between diagrams.
- New expansion vs. reference
- No unique integrand: no algebraic proof.
- Match on cuts.

Non-planar amplitudes

- Existence of such numerators not guaranteed.
- Possible cancellations between diagrams.
- New expansion vs. reference
- No unique integrand: no algebraic proof.
- Match on cuts.
- Explicitly constructed and checked up to 3-loops.
- Few more checks at higher loops.

One-loop amplitude

- One-loop amplitude: sum over permutations of box

$$
=\frac{d^{4} \ell s t}{\ell^{2}\left(\ell+k_{1}\right)^{2}\left(\ell+k_{1}+k_{2}\right)^{2}\left(\ell-k_{4}\right)^{2}}
$$

- Same structure as the planar amplitude.

One-loop amplitude

- One-loop amplitude: sum over permutations of box

$$
=\frac{d^{4} \ell s t}{\ell^{2}\left(\ell+k_{1}\right)^{2}\left(\ell+k_{1}+k_{2}\right)^{2}\left(\ell-k_{4}\right)^{2}}
$$

- Same structure as the planar amplitude.
- Dlog form for box
$\operatorname{dlog} \frac{\ell^{2}}{\left(\ell-\ell^{*}\right)^{2}} \operatorname{dlog} \frac{\left(\ell+k_{1}\right)^{2}}{\left(\ell-\ell^{*}\right)^{2}} d \log \frac{\left(\ell+k_{1}+k_{2}\right)^{2}}{\left(\ell-\ell^{*}\right)^{2}} \operatorname{dlog} \frac{\left(\ell-k_{4}\right)^{2}}{\left(\ell-\ell^{*}\right)^{2}}$

Two-loop amplitude

- Planar double-box

Two-loop amplitude

- Planar double-box

- written in the dlog form

$$
\begin{aligned}
& \operatorname{stI}_{1234}^{(P)}=\mathrm{d} \log \alpha_{1} \mathrm{~d} \log \alpha_{2} \mathrm{~d} \log \alpha_{3} \ldots \mathrm{~d} \log \alpha_{8} \\
& \alpha_{1} \equiv \ell_{1}^{2} /\left(\ell_{1}-\ell_{1}^{*}\right)^{2}, \\
& \alpha_{2} \equiv\left(\ell_{1}-p_{2}\right)^{2} /\left(\ell_{1}-\ell_{1}^{*}\right)^{2} \text {, } \\
& \alpha_{6} \equiv\left(\ell_{1}+\ell_{2}\right)^{2} /\left(\ell_{2}-\ell_{2}^{*}\right)^{2} \text {, } \\
& \alpha_{3} \equiv\left(\ell_{1}-p_{1}-p_{2}\right)^{2} /\left(\ell_{1}-\ell_{1}^{*}\right)^{2} \text {, } \\
& \alpha_{7} \equiv\left(\ell_{2}-p_{3}\right)^{2} /\left(\ell_{2}-\ell_{2}^{*}\right)^{2} \text {, } \\
& \alpha_{4} \equiv\left(\ell_{1}+p_{3}\right)^{2} /\left(\ell_{1}-\ell_{1}^{*}\right)^{2}, \\
& \alpha_{8} \equiv\left(\ell_{2}-p_{3}-p_{4}\right)^{2} /\left(\ell_{2}-\ell_{2}^{*}\right)^{2} \text {, }
\end{aligned}
$$

Two-loop amplitude

- Non-planar double box

Two-loop amplitude

- Non-planar double box

- Generate a double pole
- Quadruple cut on ℓ_{2}.
- Triple cut on $\ell_{1}=x p_{2}$.

$$
\operatorname{Res} \mathcal{I}=\frac{d x}{(x+1) x^{2} t u}
$$

Two-loop amplitude

- Non-planar double box

- Generate a double pole
- Quadruple cut on ℓ_{2}.
- Triple cut on $\ell_{1}=x p_{2}$.

$$
\operatorname{Res} \mathcal{I}=\frac{d x}{(x+1) x^{2} t u}
$$

- Numerator: $N_{\text {old }}=\left(p_{1}+p_{2}\right)^{2} \rightarrow N_{\text {new }}=\left(\ell_{1}+p_{3}\right)^{2}+\left(\ell_{1}+p_{4}\right)^{2}$
- On the cut: $N_{\text {new }}=\left(x p_{2}+p_{3}\right)^{2}+\left(x p_{2}+p_{4}\right)^{2}=-x s$

Two-loop amplitude

- More double poles: $N_{\text {new }}$ cancels all of them.
- Also conditions on the absence of the pole at infinity.
- Everything resolved by $N_{\text {new }}$.

Two-loop amplitude

- More double poles: $N_{\text {new }}$ cancels all of them.
- Also conditions on the absence of the pole at infinity.
- Everything resolved by $N_{\text {new }}$.
- Expand the amplitude in a new basis: YES.
- New result looks differently.
- Difference cancels due to color Jacobi identity.

$$
f^{a b e} f^{c d e}+f^{a c e} f^{d b e}+f^{a d e} f^{b c e}=0
$$

Three-loop amplitude

- Nine diagrams in the basis.
[Bern, Carrasco, Dixon, Johansson, Kosower, Roiban, 2007]

- All except (a) double poles: new numerators.

Three-loop amplitude

- Nine diagrams in the basis.
[Bern, Carrasco, Dixon, Johansson, Kosower, Roiban, 2007]

- All except (a) double poles: new numerators.
- Check completed: Amplitude expanded in new basis!
\rightarrow Talk by Enrico Herrmann

Higher loops

- Partial checks
- New basis for some diagrams.
- Match the reference on maximal cuts.

- All checks show that the conjecture is correct.

Back to planar sector

- In planar sector
- Both properties manifest in the basis of on-shell diagrams.
- What about scalar integrals?
- Do not consider DCI.
- Follow only our two conditions.

Back to planar sector

- In planar sector
- Both properties manifest in the basis of on-shell diagrams.
- What about scalar integrals?
- Do not consider DCI.
- Follow only our two conditions.

- Result:
- In all cases we reproduce DCI numerators.
- We get even stronger restrictions!

Beyond DCl

- Extra condition beyond DCI [Drummond, Korchemsky, Sokatchev]
- Starting at 4-loops some DCI integrals not well-defined.
- All dual loop momenta x_{5}, x_{6}, \ldots go to external point.

$$
\rho^{2}=x_{35}^{2}+x_{36}^{2}+\cdots \rightarrow 0
$$

Beyond DCl

- Extra condition beyond DCI [Drummond, Korchemsky, Sokatchev]
- Starting at 4-loops some DCI integrals not well-defined.
- All dual loop momenta x_{5}, x_{6}, \ldots go to external point.

$$
\rho^{2}=x_{35}^{2}+x_{36}^{2}+\cdots \rightarrow 0
$$

- If the integral behaves like

$$
I \sim \int \frac{d \rho}{\rho} \quad \text { IR divergence even off-shell }
$$

- Zero coefficient in the amplitude.

Beyond DCl

- Equivalent to the presence of certain type of multiple poles!
- There are more rules of this type
- Dual loop variables null separated from each other.

$$
\rho^{2}=x_{56}^{2}+x_{57}^{2}+\cdots \rightarrow 0
$$

- Null separated from two points

$$
\rho^{2}=x_{25}^{2}+x_{35}^{2}+x_{26}^{2}+x_{36}^{2}+\cdots \rightarrow 0
$$

Beyond DCl

- Equivalent to the presence of certain type of multiple poles!
- There are more rules of this type
- Dual loop variables null separated from each other.

$$
\rho^{2}=x_{56}^{2}+x_{57}^{2}+\cdots \rightarrow 0
$$

- Null separated from two points

$$
\rho^{2}=x_{25}^{2}+x_{35}^{2}+x_{26}^{2}+x_{36}^{2}+\cdots \rightarrow 0
$$

- We have data up to 7-loops.
[Bern, Carrasco, Dixon, Johansson, Kosower, Smirnov; Bourjaily, DiRe, Shaikh, Spradlin, Volovich; Eden, Heslop, Korchemsky, Sokatchev]
- These rules explain zeroes in 4-loop and 5-loop expansions.

Beyond DCl

- Many more types of multiple poles.
- Requirement: All of them must be absent.
- Explains many zeroes of DCI integrals at 6-loops and 7-loops.
- Gives correct relative coefficients at 5-loops.
\rightarrow Talk by Enrico Herrmann

Beyond DCI

- Many more types of multiple poles.
- Requirement: All of them must be absent.
- Explains many zeroes of DCI integrals at 6-loops and 7-loops.
- Gives correct relative coefficients at 5-loops.
\rightarrow Talk by Enrico Herrmann
- Cancellation of multiple poles at higher loops.
- Possible in each diagram?
- Between different diagrams?

Beyond DCl

- Multiple poles from [Drummond, Korchemsky, Sokatchev]
- Real momenta on the solutions for these cuts.
- Problem: they are in the domain of integration.

Beyond DCl

- Multiple poles from [Drummond, Korchemsky, Sokatchev]
- Real momenta on the solutions for these cuts.
- Problem: they are in the domain of integration.
- Other multiple poles in integrals:
- Momenta are complex \rightarrow outside integration domain.
- Integral well-defined but non-uniform transcendentality.
- Conjecture for $\mathcal{N}=4$ SYM: no multiple poles at all.

Beyond DCl

- Planar and non-planar integrals:
- Fixed by the same rules.
- In planar sector:
- Integrals with log singularities: automatically DCI.

Beyond DCI

- Planar and non-planar integrals:
- Fixed by the same rules.
- In planar sector:
- Integrals with log singularities: automatically DCI.
- It suggests the existence of the non-planar analogue of DCI!

Beyond DCl

- Planar sector: logarithmic singularities and no poles at infinity

$$
I=\sum_{j} \alpha_{j}(\operatorname{dlog} \ldots \mathrm{dlog})_{j}
$$

Beyond DCl

- Planar sector: logarithmic singularities and no poles at infinity

$$
I=\sum_{j} \alpha_{j}(\operatorname{dlog} \ldots \mathrm{~d} \log)_{j}
$$

- Two things can go wrong

1. Arguments of dlogs are non- DCl (without poles at infinity).
2. Coefficients α_{j} are non- DCI (mod overall constant).

- Explicit data: None of it happens.

Supergravity

- Extend ideas to other theories:
- Lower supersymmetry: new singularity structure.
- From Yang-Mills to gravity.

Supergravity

- Extend ideas to other theories:
- Lower supersymmetry: new singularity structure.
- From Yang-Mills to gravity.
- Maximal $\mathcal{N}=8$ SUGRA
- Singularity structure and UV behavior unclear.
- Close relation to $\mathcal{N}=4 \mathrm{SYM}$ via BCJ relations. [Bern, Carrasco, Johansson]
- Natural idea: explore singularity structure of the integrand.
- At 2-loops logarithmic singularities and no poles at infinity.

Supergravity

- No poles at infinity \rightarrow UV finiteness.
- For $\mathcal{N}=4$ SYM: integrand-based derivation of UV finiteness.
- If true for $\mathcal{N}=8$ SYM: trivially UV finite as well.

Supergravity

- No poles at infinity \rightarrow UV finiteness.
- For $\mathcal{N}=4$ SYM: integrand-based derivation of UV finiteness.
- If true for $\mathcal{N}=8$ SYM: trivially UV finite as well.
- Explicit checks of poles at infinity
- No poles at 1-loop and 2-loops.
- Logarithmic at 3-loops.
- Non-logarithmic at 4-loops,

- Results: Poles at infinity are present.

Supergravity

- This is NOT a proof of UV divergence.
- No poles at infinity \rightarrow UV finiteness.
- UV finiteness \rightarrow No poles at infinity.
- Simplest example: triangle integral.

Supergravity

- This is NOT a proof of UV divergence.
- No poles at infinity \rightarrow UV finiteness.
- UV finiteness \rightarrow No poles at infinity.
- Simplest example: triangle integral.
- Possible finiteness of $\mathcal{N}=8$ SUGRA:
- Must depend on detailed structures of poles at infinity.
- More complicated than $\mathcal{N}=4$ SYM.
- Cancellations between diagrams \rightarrow Talk by Scott Davies.

Conclusion

- Amplitudes in complete $\mathcal{N}=4$ SYM: singularities of integrand.
- Inspired by properties of on-shell diagrams:

Conjecture: Four point amplitudes in $\mathcal{N}=4$ SYM have only logarithmic singularities and no poles at infinity.

- Explicit checks up to 3-loops.
- In planar sector: stronger conditions than DCI .
- $\mathcal{N}=8$ SUGRA: poles at infinity
\rightarrow Detailed knowledge needed to study UV behavior.

Conclusion

- Amplitudes in complete $\mathcal{N}=4$ SYM: singularities of integrand.
- Inspired by properties of on-shell diagrams:

Conjecture: Four point amplitudes in $\mathcal{N}=4$ SYM have only logarithmic singularities and no poles at infinity.

- Explicit checks up to 3-loops.
- In planar sector: stronger conditions than DCI.
- $\mathcal{N}=8$ SUGRA: poles at infinity
\rightarrow Detailed knowledge needed to study UV behavior.

Thank you for the attention!

