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Periodic functions

Let us consider a non-constant meromorphic function f of a complex variable z.

A period ω of the function f is a constant such that for all z:

f (z+ω) = f (z)

The set of all periods of f forms a lattice, which is either

• trivial (i.e. the lattice consists of ω = 0 only),

• a simple lattice, Λ = {nω | n ∈ Z},

• a double lattice, Λ = {n1ω1+n2ω2 | n1,n2 ∈ Z}.



Examples of periodic functions

• Singly periodic function: Exponential function

exp(z) .

exp(z) is periodic with peridod ω = 2πi.

• Doubly periodic function: Weierstrass’s ℘-function

℘(z) =
1

z2
+ ∑

ω∈Λ\{0}

(

1

(z+ω)2
− 1

ω2

)

, Λ = {n1ω1+n2ω2|n1,n2 ∈ Z} ,

Im(ω2/ω1) 6= 0.

℘(z) is periodic with periods ω1 and ω2.



Inverse functions

The corresponding inverse functions are in general multivalued functions.

• For the exponential function x = exp(z) the inverse function is the logarithm

z = ln(x) .

• For Weierstrass’s elliptic function x =℘(z) the inverse function is an elliptic integral

z =

∞∫

x

dt
√

4t3−g2t −g3

, g2 = 60 ∑
ω∈Λ\{0}

1

ω4
, g3 = 140 ∑

ω∈Λ\{0}

1

ω6
.



Periods as integrals over algebraic functions

In both examples the periods can be expressed as integrals involving only algebraic

functions.

• Period of the exponential function:

2πi = 2i

1∫

−1

dt√
1− t2

.

• Periods of Weierstrass’s ℘-function: Assume that g2 and g3 are two given algebraic

numbers. Then

ω1 = 2

t2∫

t1

dt
√

4t3−g2t −g3

, ω2 = 2

t2∫

t3

dt
√

4t3−g2t −g3

,

where t1, t2 and t3 are the roots of the cubic equation 4t3−g2t −g3 = 0.



Numerical periods

Kontsevich and Zagier suggested the following generalisation:

A numerical period is a complex number whose real and imaginary parts are values

of absolutely convergent integrals of rational functions with rational coefficients, over

domains in Rn given by polynomial inequalities with rational coefficients.

Remarks:

• One can replace “rational” with “algebraic”.

• The set of all periods is countable.

• Example: ln2 is a numerical period.

ln2 =

2∫

1

dt

t
.



Feynman integrals

A Feynman graph with m external lines, n internal lines and l loops corresponds (up to

prefactors) in D space-time dimensions to the Feynman integral

IG =

(
µ2
)n−lD/2

Γ(n− lD/2)

∫ l

∏
r=1

dDkr

iπ
D
2

n

∏
j=1

1

(−q2
j +m2

j)

The momenta flowing through the internal lines can be expressed through the

independent loop momenta k1, ..., kl and the external momenta p1, ..., pm as

qi =
l

∑
j=1

λi jk j +
m

∑
j=1

σi j p j, λi j,σi j ∈ {−1,0,1}.



Feynman parametrisation

The Feynman trick:

n

∏
j=1

1

Pj

= Γ(n)
∫

x j≥0

dnx δ(1−
n

∑
j=1

x j)
1

(
n

∑
j=1

x jPj

)n

We use this formula with Pj =−q2
j +m2

j.

We can write

n

∑
j=1

x j(−q2
j +m2

j) = −
l

∑
r=1

l

∑
s=1

krMrsks+
l

∑
r=1

2kr ·Qr + J,

where M is a l × l matrix with scalar entries and Q is a l-vector with momenta vectors

as entries.



Feynman integrals

After Feynman parametrisation the integrals over the loop momenta k1, ..., kl can be

done:

IG =
∫

x j≥0

dnx δ(1−
n

∑
i=1

xi)
Un−(l+1)D/2

F n−lD/2
, U = det(M),

F = det(M)
(
J +QM−1Q

)
/µ2.

The functions U and F are called the first and second graph polynomial.

U is positive definite inside the integration region and positive semi-definite on the

boundary.

F depends on the masses m2
i and the momenta (pi1 + ...+ pir)

2. In the euclidean

region F is also positive definite inside the integration region and positive semi-definite

on the boundary.



Feynman integrals and periods

Laurent expansion in ε = (4−D)/2:

IG =
∞

∑
j=−2l

c jε
j.

Question: What can be said about the coefficients c j ?

Theorem: For rational input data in the euclidean region the coefficients c j of the

Laurent expansion are numerical periods.

(Bogner, S.W., ’07)

Next question: Which periods ?



One-loop amplitudes

All one-loop amplitudes can be expressed as a sum of algebraic functions of the spinor

products and masses times two transcendental functions, whose arguments are again

algebraic functions of the spinor products and the masses.

The two transcendental functions are the logarithm and the dilogarithm:

Li1(x) = − ln(1− x) =
∞

∑
n=1

xn

n

Li2(x) =
∞

∑
n=1

xn

n2



Generalisations of the logarithm

Beyond one-loop, at least the following generalisations occur:

Polylogarithms:

Lim(x) =
∞

∑
n=1

xn

nm

Multiple polylogarithms (Goncharov 1998):

Lim1,m2,...,mk
(x1,x2, ...,xk) =

∞

∑
n1>n2>...>nk>0

x
n1
1

n
m1
1

· x
n2
2

n
m2
2

· ... · x
nk
k

n
mk
k

This is a nested sum:

...
n j−1−1

∑
n j=1

x
n j

j

n j
m j

n j−1

∑
n j+1=1

...



Iterated integrals

Define the functions G by

G(z1, ...,zk;y) =

y∫

0

dt1

t1− z1

t1∫

0

dt2

t2− z2

...

tk−1∫

0

dtk

tk− zk

.

Scaling relation:

G(z1, ...,zk;y) = G(xz1, ...,xzk;xy)

Short hand notation:

Gm1,...,mk
(z1, ...,zk;y) = G(0, ...,0

︸ ︷︷ ︸
m1−1

,z1, ...,zk−1,0...,0︸ ︷︷ ︸
mk−1

,zk;y)

Conversion to multiple polylogarithms:

Lim1,...,mk
(x1, ...,xk) = (−1)kGm1,...,mk

(
1

x1

,
1

x1x2

, ...,
1

x1...xk

;1

)

.



Differential equations for Feynman integrals

If it is not feasible to compute the integral directly:

Pick one variable t from the set s jk and m2
i .

1. Find a differential equation for the Feynman integral.

r

∑
j=0

p j(t)
d j

dt j
IG(t) = ∑

i

qi(t)IGi
(t)

Inhomogeneous term on the rhs consists of simpler integrals IGi
.

p j(t), qi(t) polynomials in t.

2. Solve the differential equation.

Kotikov; Remiddi, Gehrmann; Laporta; Argeri, Mastrolia, S. Müller-Stach, S.W., R. Zayadeh; Henn; ...



Differential equations: The case of multiple polylogarithms

Suppose the differential operator factorises into linear factors:

r

∑
j=0

p j(t)
d j

dt j
=

(

ar(t)
d

dt
+br(t)

)

...

(

a2(t)
d

dt
+b2(t)

)(

a1(t)
d

dt
+b1(t)

)

Iterated first-order differential equation.

Denote homogeneous solution of the j-th factor by

ψ j(t) = exp



−
t∫

0

ds
b j(s)

a j(s)



 .

Full solution given by iterated integrals

IG(t) = C1ψ1(t)+C2ψ1(t)

t∫

0

dt1
ψ2(t1)

a1(t1)ψ1(t1)
+C3ψ1(t)

t∫

0

dt1
ψ2(t1)

a1(t1)ψ1(t1)

t1∫

0

dt2
ψ3(t2)

a2(t2)ψ2(t2)
+ ...

Multiple polylogarithms are of this form.



Differential equations: Beyond linear factors

Suppose the differential operator

r

∑
j=0

p j(t)
d j

dt j

does not factor into linear factors.

The next more complicate case:

The differential operator contains one irreducible second-order differential operator

a j(t)
d2

dt2
+b j(t)

d

dt
+ c j(t)



An example from mathematics: Elliptic integral

The differential operator of the second-order differential equation

[

t
(
1− t2

) d2

dt2
+
(
1−3t2

) d

dt
− t

]

f (t) = 0

is irreducible.

The solutions of the differential equation are K(t) and K(
√

1− t2), where K(t) is the

complete elliptic integral of the first kind:

K(t) =

1∫

0

dx
√

(1− x2)(1− t2x2)
.



An example from physics: The two-loop sunrise integral

S
(

p2,m2
1,m

2
2,m

2
3

)
= p

m1

m2

m3

• Two-loop contribution to the self-energy of massive particles.

• Sub-topology for more complicated diagrams.



The two-loop sunrise integral: Prior art

Integration-by-parts identities allow to derive a coupled system of 4 first-order

differential equations for S and S1, S2, S3, where

Si =
∂

∂m2
i

S

(Caffo, Czyz, Laporta, Remiddi, 1998).

This system reduces to a single second-order differential equation in the case of equal

masses m1 = m2 = m3

(Broadhurst, Fleischer, Tarasov, 1993).

Dimensional recurrence relations relate integrals in D = 4 dimensions and D = 2

dimensions

(Tarasov, 1996, Baikov, 1997, Lee, 2010).

Analytic result in the equal mass case known up to quadrature, result involves elliptic

integrals

(Laporta, Remiddi, 2004).



The two-loop sunrise integral in two dimensions

The two-loop sunrise integral with non-zero masses in two-dimensions (t = p2):

S (t) = p

m1

m2

m3

=
∫

σ

ω

F
,

x1

x2

x3

σ

ω = x1dx2∧dx3+ x2dx3 ∧dx1+ x3dx1∧dx2,

F = −x1x2x3t +
(
x1m2

1 + x2m2
2+ x3m2

3

)
(x1x2 + x2x3+ x3x1)

Algebraic geometry studies the zero sets of polynomials.

In this case look at the set F = 0.



The two-loop sunrise integral

From the point of view of algebraic geometry there are two objects of interest:

• the domain of integration σ,

• the zero set X of F = 0.

X and σ intersect at three points:

x1

x2

x3

σ

X



The elliptic curve

Algebraic variety X defined by the polynomial in the denominator:

−x1x2x3t +
(
x1m2

1+ x2m2
2+ x3m2

3

)
(x1x2+ x2x3 + x3x1) = 0.

This defines (together with a choice of a rational point as origin) an elliptic curve.

Change of coordinates → Weierstrass normal form

y2z−4x3+g2(t)xz2+g3(t)z
3 = 0.

In the chart z = 1 this reduces to

y2 −4x3+g2(t)x+g3(t) = 0.

The curve varies with t. y2 = 4x3−28x+24



Abstract periods

Input:

• X a smooth algebraic variety of dimension n defined over Q,

• D ⊂ X a divisor with normal crossings (i.e. a subvariety of dimension n−1, which

looks locally like a union of coordinate hyperplanes),

• ω an algebraic differential form on X of degree n,

• σ a singular n-chain on the complex manifold X(C) with boundary on the divisor

D(C).

To each quadruple (X ,D,ω,σ) associate the period

P(X ,D,ω,σ) =
∫

σ

ω.



The motive

P: Blow-up of P2 in the three points, where X intersects σ.

Y : Strict transform of the zero set X of F = 0.

B: Total transform of {x1x2x3 = 0}.

Mixed Hodge structure:

H2 (P\Y,B\B∩Y )

(S. Bloch, H. Esnault, D. Kreimer, 2006)

We need to analyse H2(P\Y,B\B∩Y ).
We can show that essential information is given by H1(X).

(S. Müller-Stach, S.W., R. Zayadeh, 2011)



The second-order differential equation

In the Weierstrass normal form H1(X) is generated by

η =
dx

y
and η̇ =

d

dt
η.

η̈ = d2

dt2η must be a linear combination of η and η̇:

p0(t)η̈+ p1(t)η̇+ p2(t)η = 0.

Differential equation:

[

p0(t)
d2

dt2
+ p1(t)

d

dt
+ p2(t)

]

S (t) = p3(t)

p0, p1, p2 and p3 are polynomials in t.



Periods of an elliptic curve

In the Weierstrass normal form, factorise the cubic polynomial in x:

y2 = 4(x− e1)(x− e2)(x− e3) .

Holomorphic one-form is dx
y

, associated periods are

ψ1 (t) = 2

e3∫

e2

dx

y
, ψ2 (t) = 2

e3∫

e1

dx

y
.

These periods are the solutions of the homogeneous differential equation.

L. Adams, Ch. Bogner, S.W., ’13



The full result

• Once the homogeneous solutions are known, variation of the constants yields the

full result up to quadrature:

– Equal mass case: Laporta, Remiddi, ’04

– Unequal mass case: L. Adams, Ch. Bogner, S.W., ’13

• The full result can be expressed in terms of elliptic dilogarithms:

– Equal mass case: Bloch, Vanhove, ’13

– Unequal mass case: L. Adams, Ch. Bogner, S.W., ’14



The elliptic dilogarithm

Recall the definition of the classical polylogarithms:

Lin (x) =
∞

∑
j=1

x j

jn
.

Generalisation, the two sums are coupled through the variable q:

ELin;m (x;y;q) =
∞

∑
j=1

∞

∑
k=1

x j

jn

yk

km
q jk.

Elliptic dilogarithm:

E2;0 (x;y;q) =
1

i

[
1

2
Li2 (x)−

1

2
Li2
(
x−1
)
+ELi2;0 (x;y;q)−ELi2;0

(
x−1;y−1;q

)
]

.

(Slightly) different definitions of elliptic polylogarithms can be found in the literature

Beilinson ’94, Levin ’97, Brown, Levin ’11, Wildeshaus ’97.



Elliptic curves again

The nome q is given by

q = eiπτ with τ =
ψ2

ψ1

= i
K(k′)

K(k)
.

Elliptic curve represented by

x1

x2

x3

X

Algebraic variety

F = 0

x

y

Weierstrass normal form

y2 = 4x3 −g2x−g3

Re z

Im z

Torus

C/Λ

Re w

Im w

Jacobi uniformization

C∗/q2Z



The arguments of the elliptic dilogarithms

Elliptic curve: Cubic curve together with a choice of a rational point as the origin O.

Distinguished points are the points on the intersection of the cubic curve F = 0 with

the domain of integration σ:

P1 = [1 : 0 : 0] , P2 = [0 : 1 : 0] , P3 = [0 : 0 : 1] .

Choose one of these three points as origin and look at the image of the two other

points in the Jacobi uniformization C∗/q2Z of the elliptic curve. Repeat for the two

other choices of the origin. This defines

w1,w2,w3,w
−1
1 ,w−1

2 ,w−1
3 .

In other words: w1,w2,w3,w
−1
1 ,w−1

2 ,w−1
3 are the images of P1, P2, P3 under

Ei −→ WNF −→ C/Λ −→ C∗/q2Z.



The full result in terms of elliptic dilogarithms

The result for the two-loop sunrise integral in two space-time dimensions with arbitrary

masses:

S =
4

[(
t −µ2

1

)(
t −µ2

2

)(
t −µ2

3

)(
t −µ2

4

)]1
4

︸ ︷︷ ︸

algebraic prefactor

K (k)

π

︸ ︷︷ ︸

elliptic integral

3

∑
j=1

E2;0 (w j;−1;−q)

︸ ︷︷ ︸

elliptic dilogarithms

t momentum squared

µ1,µ2,µ3 pseudo-thresholds

µ4 threshold

K(k) complete elliptic integrals of the first kind

k,q modulus and nome

w1,w2,w3 points in the Jacobi uniformization



Conclusions

Question: What is the next level of sophistication beyond multiple polylogarithms for

Feynman integrals?

Answer: Elliptic stuff.

• Algebraic prefactors as before.

• Elliptic integrals generalise the period π.

• Elliptic (multiple) polylogarithms generalise the (multiple) polylogarithms.

• Arguments of the elliptic polylogarithms are points in the Jacobi uniformization of

the elliptic curve.
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International Ph.D. program in fundamental physics:

• Graduate School ’Symmetry Breaking in Fundamental Interactions’

http://www.symmetrybreaking.uni-mainz.de/
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of Matter (PRISMA)’

http://www.prisma.uni-mainz.de/


