Energy-energy correlations: from QCD to $\mathcal{N}=4$ SYM and back

Gregory Korchemsky

IPhT, Saclay

In collaboration with
Andrei Belitsky, Stefan Hohenegger, Emeri Sokatchev, Alexander Zhiboedov
arXiv:1409.2502, 1311.6800, 1309.1424, 1309.0769

IAS Focused Program of Scattering Amplitudes in Hong Kong

Why we like $\mathcal{N}=4$ SYM

\checkmark Supersymmetric cousin of QCD (extended spectrum of on-shell states)
\checkmark Maximally supersymmetric, conformal four-dimensional gauge theory
\checkmark Is believed to be integrable, in the planar limit at least
\checkmark Remarkable progress in computing scattering amplitudes and correlation functions
\checkmark Use $\mathcal{N}=4$ SYM for developing new approaches to computing physical observables in QCD

This talk:

Compute energy-energy correlations in $\mathcal{N}=4$ SYM at weak and at strong coupling

$e^{+} e^{-}$annihilation in QCD

\checkmark PETRA (1978-1986) and LEP (1989-2010)

\checkmark A virtual photon or Z^{0}-boson decay into quarks and gluons that undergo a hadronization process into hadrons
\checkmark Final states can be described using the class of infrared finite observables (event shapes): energy-energy correlations (EEC), thrust, heavy mass, ...
\checkmark Can be computed in perturbative QCD, hadronisation corrections are 'small' at high energy

Energy-energy correlations

\checkmark Function of the angle $0 \leq \chi \leq \pi$ between detected particles
[Basham,Brown,Ellis,Love]
$\operatorname{EEC}(\chi)=\left\langle\frac{1}{\Delta \chi} \sum_{a, b} \frac{E_{a} E_{b}}{Q^{2}} \theta\left(\Delta \chi-\left|\cos \theta_{a b}-\cos \chi\right|\right)\right\rangle$ events

Total energy $\sum_{a} E_{a}=Q$
\checkmark Conventional ('amplitude') approach

$$
\operatorname{EEC}(\chi)=\frac{1}{\sigma_{\mathrm{tot}}} \sum_{a, b} \int d \sigma_{a+b+X} \frac{E_{a} E_{b}}{Q^{2}} \delta\left(\cos \theta_{a b}-\cos \chi\right)
$$

\checkmark Weak coupling expansion in QCD

$$
\operatorname{EEC}(\chi)=a_{\mathrm{S}} A(\chi)+a_{\mathrm{S}}^{2} B(\chi)+O\left(a_{\mathrm{S}}^{3}\right)
$$

\checkmark Current status (1978 - today):
x Very precise experimental data
x Poor analytical control, $B(\chi)$ is known numerically
\checkmark Final goal: develop more efficient method to computing EEC

$e^{+} e^{-}$annihilation in $\mathcal{N}=4 \mathbf{S Y M}$

\checkmark Define EEC in $\mathcal{N}=4$ SYM and evaluate it at weak/strong coupling

\checkmark From QCD to $\mathcal{N}=4$ SYM: introduce an analog of the electromagnetic current
x (protected) half-BPS operator built from complex scalar field

$$
O_{\mathbf{2 0 ^ { \prime }}}(x)=\operatorname{tr}[\Phi \Phi]
$$

x To lowest order in the coupling, $O_{\mathbf{2 0}}{ }^{\prime}(x)$ produces a pair of scalars out of the vacuum
\times For arbitrary coupling, the state $O_{20^{\prime}}(x)|0\rangle$ can be decomposed into an infinite sum over on-shell states with an arbitrary number of scalars (s), gauginos (λ) and gauge fields (g)

$$
\int d^{4} x \mathrm{e}^{i q x} O_{\mathbf{2 0 ^ { \prime }}}(x)|0\rangle=|s s\rangle+|s s g\rangle+|s \lambda \lambda\rangle+\ldots
$$

EEC in $\mathcal{N}=4$ SYM

\checkmark Conventional approach

$$
\operatorname{EEC}(\chi)=\frac{1}{\sigma_{\mathrm{tot}}} \sum_{a, b, X} \int \mathrm{dLIPS}\left|\mathcal{A}_{a+b+X}\right|^{2} \frac{E_{a} E_{b}}{Q^{2}} \delta\left(\cos \chi-\cos \theta_{a b}\right)
$$

\checkmark The amplitude of creation of the final state $\mid a, b, X=$ everything \rangle

\checkmark Matrix elements $\left(s_{i j}=\left(p_{i}+p_{j}\right)^{2}\right.$ with $\left.p_{i}^{2}=0\right)$

$$
\begin{aligned}
& \left.\left|\mathcal{A}_{s s}\right|^{2}=\left|\left\langle s\left(p_{1}\right) s\left(p_{2}\right)\right| O_{\mathbf{2 0 ^ { \prime }}}\right| 0\right\rangle\left.\right|^{2}=\frac{2}{s_{12}}\left[1+a F_{\mathrm{virt}}\left(q^{2}\right)\right] \\
& \left.\left|\mathcal{A}_{s s g}\right|^{2}=\left|\left\langle s\left(p_{1}\right) s\left(p_{2}\right) g\left(p_{3}\right)\right| O_{\mathbf{2 0 ^ { \prime }}}\right| 0\right\rangle\left.\right|^{2}=a \frac{s_{12}}{s_{13} s_{23}} \\
& \left.\left|\mathcal{A}_{s \lambda \lambda}\right|^{2}=\left|\left\langle\lambda\left(p_{1}\right) \lambda\left(p_{2}\right) s\left(p_{3}\right)\right| O_{\mathbf{2 0 ^ { \prime }}}\right| 0\right\rangle\left.\right|^{2}=a \frac{2}{s_{12}}
\end{aligned}
$$

't Hooft coupling $a=g_{\mathrm{YM}}^{2} N /\left(4 \pi^{2}\right)$

EEC from amplitudes I

\checkmark The total cross section

$$
\begin{aligned}
\sigma_{\mathrm{tot}}(q) & =\int \mathrm{dLIPS}_{2}\left|\mathcal{A}_{s s}\right|^{2}+\int \mathrm{dLIPS}_{3}\left(\left|\mathcal{A}_{s s g}\right|^{2}+\left|\mathcal{A}_{s \lambda \lambda}\right|^{2}\right)+O\left(a^{2}\right) \\
& =\frac{N^{2}-1}{16 \pi}\left[1+a F_{\mathrm{virt}}\left(q^{2}\right)\right]+a \int \mathrm{dLIPS}_{3} \frac{s_{12}^{2}+2 s_{13} s_{23}}{s_{12} s_{13} s_{23}}+O\left(a^{2}\right)=\frac{N^{2}-1}{16 \pi}+0 \cdot a+O\left(a^{2}\right)
\end{aligned}
$$

\checkmark Energy-energy correlations
$\mathrm{EEC}=\left[\int \mathrm{dLIPS}_{2} w\left(p_{1}, p_{2}\right)\left|\mathcal{A}_{s s}\right|^{2}+\int \mathrm{dLIPS}_{3} w\left(p_{1}, p_{2}, p_{3}\right)\left(\left|\mathcal{A}_{s s g}\right|^{2}+\left|\mathcal{A}_{s \lambda \lambda}\right|^{2}\right)+O\left(a^{2}\right)\right] / \sigma_{\mathrm{tot}}$
Weight factors for EEC

$$
w\left(p_{1}, p_{2}, \ldots\right)=\sum_{a, b} \frac{E_{a} E_{b}}{q^{2}} \delta\left(\cos \theta_{a b}-\cos \chi\right)
$$

\checkmark One-loop calculation (unprotected quantity)
[Zhiboedov],[Engelund,Roiban]

$$
\mathrm{EEC}_{\mathcal{N}=4}=\frac{a}{4 z^{2}(1-z)} \ln \frac{1}{1-z}+O\left(a^{2}\right)
$$

IR finite, positive definite function of $z=(1-\cos \chi) / 2, \quad 0<z<1$
\checkmark Two-loop correction is hard to compute ($\sim 10^{2}$ diagrams)

EEC from amplitudes II

\checkmark Conventional approach

$$
\operatorname{EEC}(\chi)=\frac{1}{\sigma_{\mathrm{tot}}} \sum_{a, b, X} \int \mathrm{dLIPS}\left|\mathcal{A}_{a+b+X}\right|^{2} \frac{E_{a} E_{b}}{Q^{2}} \delta\left(\cos \chi-\cos \theta_{a b}\right)
$$

The amplitude of creation of the final state $\mid a, b, X=$ everything \rangle

$$
\mathcal{A}_{a+b+X}=\int d^{4} x \mathrm{e}^{i q x}\langle a, b, X| O_{\mathbf{2 0}}{ }^{\prime}(x)|0\rangle
$$

\checkmark Main disadvantages:
x presence of infrared divergences in transition amplitudes \mathcal{A}_{a+b+X}
\boldsymbol{x} integration over the Lorentz invariant phase space of the final states d LIPS
x necessity for summation over all final states \sum_{X}
x no analytical results beyond one loop
\checkmark New approach: EEC can be computed from correlation functions of energy flow operators

EEC from correlation functions

\checkmark Total cross section from the optical theorem

$$
\begin{aligned}
\sigma_{\mathrm{tot}}(q) & =\sum_{X}(2 \pi)^{4} \delta^{(4)}\left(q-p_{X}\right)\left|\mathcal{A}_{O_{\mathbf{2 0}}{ }^{\prime} \rightarrow X}\right|^{2} \\
& =\int d^{4} x \mathrm{e}^{i q x} \sum_{X}\langle 0| O^{\dagger}(0)|X\rangle \mathrm{e}^{-i x p_{X}}\langle X| O(0)|0\rangle \\
& =\int d^{4} x \mathrm{e}^{i q x}\langle 0| O^{\dagger}(x) O(0)|0\rangle=\frac{1}{16 \pi}\left(N^{2}-1\right) \theta\left(q^{0}\right) \theta\left(q^{2}\right)
\end{aligned}
$$

Wightman correlation function, protected for 1/2-BPS operators
\checkmark Generalization to EEC

$$
\mathrm{EEC} \sim \sum_{X}\langle 0| O^{\dagger}(x)|X\rangle w(X)\langle X| O(0)|0\rangle=\langle 0| O^{\dagger}(x) \mathcal{E}\left(\vec{n}_{1}\right) \mathcal{E}\left(\vec{n}_{2}\right) O(0)|0\rangle
$$

Energy flow operator

$$
\mathcal{E}(\vec{n})|X\rangle=\sum_{a} E_{a} \delta^{(2)}\left(\Omega_{\vec{p}_{a}}-\Omega_{\vec{n}}\right)|X\rangle
$$

\checkmark Relation to the energy-momentum tensor in $\mathcal{N}=4 \mathrm{SYM}$
[Sveshnikov,Tkachov],[GK,Oderda,Sterman]

$$
\mathcal{E}(\vec{n})=\int_{0}^{\infty} d t \lim _{r \rightarrow \infty} r^{2} \vec{n}^{i} T_{0 i}(t, r \vec{n})
$$

EEC from correlation functions II

\checkmark Energy flow correlations [GК,Sterman],[Belitsky,GK,Sterman],[Hofman,Maldacena]

$$
\left\langle\mathcal{E}\left(\vec{n}_{1}\right) \mathcal{E}\left(\vec{n}_{2}\right)\right\rangle_{q}=\sigma_{\text {tot }}^{-1} \int d^{4} x \mathrm{e}^{i q x}\langle 0| O^{\dagger}(x) \mathcal{E}\left(\vec{n}_{1}\right) \mathcal{E}\left(\vec{n}_{2}\right) O(0)|0\rangle
$$

Energy flow in the direction of \vec{n}_{1} and \vec{n}_{2}
\checkmark Average over the orientations \vec{n}_{1} and \vec{n}_{2} with the relative angle χ kept fixed

$$
\mathrm{EEC}=\int d \Omega_{1} d \Omega_{2} \delta\left(\vec{n}_{1} \cdot \vec{n}_{2}-\cos \chi\right)\left\langle\mathcal{E}\left(\vec{n}_{1}\right) \mathcal{E}\left(\vec{n}_{2}\right)\right\rangle_{q} / q^{2}
$$

\checkmark Multi-fold integral of Wightman 4pt function
$\left.\mathrm{EEC} \sim \underbrace{\int d^{4} x \mathrm{e}^{i q x}}_{\text {Fourier }} \underbrace{\int_{0}^{\infty} d t_{1} d t_{2} \lim _{r_{i} \rightarrow \infty} r_{1}^{2} r_{2}^{2}}_{\text {Detector limit }} \underbrace{\langle 0| O^{\dagger}(x) T_{0 \vec{n}_{1}}\left(x_{1}\right) T_{0 \vec{n}_{2}}\left(x_{2}\right) O(0)|0\rangle}_{\text {Wightman corr. function }}\right|_{x_{i}}=\left(t, r \vec{n}_{i}\right)$
\times Compute corr.function $\left\langle O^{\dagger}(x) T\left(x_{1}\right) T\left(x_{2}\right) O(0)\right\rangle$ in Euclid
x Continue to Minkowski with Wightman prescription
x Take detector limit + perform Fourier

Correlation functions in $\mathcal{N}=4 \mathbf{S Y M}$

\checkmark Quantum corrections to various correlation functions are determined by the same scalar function

$$
\begin{aligned}
\left\langle O\left(x_{1}\right) O\left(x_{2}\right) O\left(x_{3}\right) O\left(x_{4}\right)\right\rangle_{E} & =\frac{1}{x_{12}^{2} x_{23}^{2} x_{34}^{2} x_{41}^{2}} \Phi(u, v ; a) \\
\left\langle O\left(x_{1}\right) T\left(x_{2}\right) T\left(x_{3}\right) O\left(x_{4}\right)\right\rangle_{E} & =\frac{1}{\left(x_{12}^{2} x_{23}^{2} x_{34}^{2}\right)^{2}} P\left(\partial_{u}, \partial_{v}\right) \Phi(u, v ; a)
\end{aligned}
$$

Conformal ratios

$$
u=x_{12}^{2} x_{34}^{2} /\left(x_{13}^{2} x_{24}^{2}\right), \quad v=x_{23}^{2} x_{41}^{2} /\left(x_{13}^{2} x_{24}^{2}\right)
$$

\checkmark Universal function in $\mathcal{N}=4$ SYM at weak coupling

$$
\begin{aligned}
\Phi(u, v)= & a \Phi^{(1)}(u, v)+a^{2}\left(\frac{1}{2}(1+u+v)\left[\Phi^{(1)}(u, v)\right]^{2}\right. \\
& \left.+2\left[\Phi^{(2)}(u, v)+\frac{1}{u} \Phi^{(2)}(v / u, 1 / u)+\frac{1}{v} \Phi^{(2)}(1 / v, u / v)\right]\right)+O\left(a^{3}\right)
\end{aligned}
$$

$\Phi^{(1)}(u, v)$ 'box' integral, $\Phi^{(2)}(u, v)$ 'double' box integral
$\checkmark \mathcal{N}=4$ superconf. symmetry allows us to determine $\Phi_{\text {weak }}(u, v)$ to six loops [Eden,Heslop,GK,Sokatchev]
\checkmark AdS/CFT correspondences predicts $\Phi(u, v)$ at strong coupling

From Euclid to Minkowski

\checkmark Brute force method: compute anew using Schwinger-Keldysh technique (too hard)
\checkmark Better method: analytically continue correlation functions from Euclid to Minkowski+Wightman
\checkmark Warm-up example: free scalar propagator $D_{\text {Euclid }}(x)=\langle\phi(x) \phi(0)\rangle \sim 1 / x^{2}$

$$
\begin{aligned}
\langle 0| \phi(x) \phi(0)|0\rangle & =\sum_{n}\langle 0| \phi(x)|n\rangle\langle n| \phi(0)|0\rangle \\
& =\sum_{E_{n}>0} \mathrm{e}^{-i E_{n}\left(x^{0}-i 0\right)+i \vec{p} \vec{x}}\langle 0| \phi(0)|n\rangle\langle n| \phi(0)|0\rangle \sim \frac{1}{\left(x^{0}-i 0\right)^{2}-\vec{x}^{2}}
\end{aligned}
$$

\checkmark How to get Wightman correlation functions ('magic' recipe)
x Go to Mellin space:

$$
\Phi_{\text {Euclid }}=\int_{-\delta-i \infty}^{-\delta+i \infty} \frac{d j_{1} d j_{2}}{(2 \pi i)^{2}} M\left(j_{1}, j_{2} ; a\right) u^{j_{1}} v^{j_{2}}, \quad u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{23}^{2} x_{41}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

\times Substitute $x_{i j}^{2} \rightarrow x_{i j,+}^{2}=x_{i j}^{2}-i 0 \cdot x_{i j}^{0}$

$$
\Phi_{\text {Wightman }}=\int_{-\delta-i \infty}^{-\delta+i \infty} \frac{d j_{1} d j_{2}}{(2 \pi i)^{2}} M\left(j_{1}, j_{2} ; a\right)\left(\frac{x_{12,+}^{2} x_{34,+}^{2}}{x_{13,+}^{2} x_{24,+}^{2}}\right)^{j_{1}}\left(\frac{x_{23,+}^{2} x_{41,+}^{2}}{x_{13,+}^{2} x_{24,+}^{2}}\right)^{j_{2}}
$$

$\checkmark M\left(j_{1}, j_{2} ; a\right)$ is known both at weak and strong coupling in planar $\mathcal{N}=4 \mathrm{SYM}$

All-loop prediction for EEC

Master formula

$$
\operatorname{EEC}(\chi)=\frac{1}{4 z^{2}(1-z)} \int_{-\delta-i \infty}^{-\delta+i \infty} \frac{d j_{1} d j_{2}}{(2 \pi i)^{2}} \underbrace{M\left(j_{1}, j_{2} ; a\right)}_{\text {corr.function }} \underbrace{K\left(j_{1}, j_{2}\right)}_{\text {detector }} \underbrace{\left(\frac{1-z}{z}\right)^{j_{1}+j_{2}}}_{\text {angular dependence }}
$$

The dependence on the angle χ enters through

$$
z=(1-\cos \chi) / 2, \quad 0<z<1
$$

Detector function is independent on the coupling

$$
K\left(j_{1}, j_{2}\right)=\frac{2 \Gamma\left(1-j_{1}-j_{2}\right)}{\Gamma\left(j_{1}+j_{2}\right)\left[\Gamma\left(1-j_{1}\right) \Gamma\left(1-j_{2}\right)\right]^{2}}
$$

The dependence on the coupling constant resides in the Mellin amplitude

$$
\begin{aligned}
& \Phi(u, v ; a)=\int_{-\delta-i \infty}^{-\delta+i \infty} \frac{d j_{1} d j_{2}}{(2 \pi i)^{2}} M\left(j_{1}, j_{2} ; a\right) u^{j_{1}} v^{j_{2}} \\
& M\left(j_{1}, j_{2} ; a\right)=\underbrace{a M^{(1)}\left(j_{1}, j_{2}\right)+a^{2} M^{(2)}\left(j_{1}, j_{2}\right)}_{\text {are known }}+\ldots
\end{aligned}
$$

Warm up exercise

Master formula at one loop

$$
\operatorname{EEC}^{(1-\mathrm{loop})}=\frac{a}{4 z^{2}(1-z)} \int_{-\delta-i \infty}^{-\delta+i \infty} \frac{d j_{1} d j_{2}}{(2 \pi i)^{2}} M^{(1)}\left(j_{1}, j_{2} ; a\right) K\left(j_{1}, j_{2}\right)\left(\frac{1-z}{z}\right)^{j_{1}+j_{2}}
$$

Mellin amplitude

$$
\begin{aligned}
& M^{(1)}\left(j_{1}, j_{2}\right)=-\frac{1}{4}\left[\Gamma\left(-j_{1}\right) \Gamma\left(-j_{2}\right) \Gamma\left(1+j_{1}+j_{2}\right)\right]^{2} \\
& K\left(j_{1}, j_{2}\right)=\frac{2 \Gamma\left(1-j_{1}-j_{2}\right)}{\Gamma\left(j_{1}+j_{2}\right)\left[\Gamma\left(1-j_{1}\right) \Gamma\left(1-j_{2}\right)\right]^{2}}
\end{aligned}
$$

\checkmark Change integration variable $j_{1}+j_{2} \rightarrow j_{1}$

$$
\begin{aligned}
\mathrm{EEC}^{(1-\text { loop })} & =-\frac{a}{4 z^{2}(1-z)} \int \frac{d j_{1} d j_{2}}{(2 \pi i)^{2}} \frac{j_{1}^{2}}{2\left(j_{1}-j_{2}\right)^{2} j_{2}^{2}} \frac{\pi}{\sin \left(\pi j_{1}\right)}\left(\frac{1-z}{z}\right)^{j_{1}} \\
& =\frac{a}{4 z^{2}(1-z)} \int \frac{d j_{1}}{2 \pi i} \frac{\pi}{j_{1} \sin \left(\pi j_{1}\right)}\left(\frac{1-z}{z}\right)^{j_{1}} \\
& =\frac{a}{4 z^{2}(1-z)} \sum_{k=-1}^{-\infty} \frac{(-1)^{k}}{k}\left(\frac{1-z}{z}\right)^{k} \\
& =\frac{a}{4 z^{2}(1-z)} \ln \frac{1}{1-z}
\end{aligned}
$$

EEC at two loops

Final result for EEC

$$
\mathrm{EEC}_{\mathcal{N}=4}=\frac{1}{4 z^{2}(1-z)}\left\{a F_{1}(z)+a^{2}\left[(1-z) F_{2}(z)+\frac{1}{4} F_{3}(z)\right]+O\left(a^{3}\right)\right\}, \quad z=\frac{1}{2}(1-\cos \chi)
$$

$F_{w}(z)$ are linear combinations of functions of homogenous weight $w=1,2,3$

$$
\begin{aligned}
F_{1}(z) & =-\ln (1-z) \\
F_{2}(z) & =4 \sqrt{z}\left[\operatorname{Li}_{2}(-\sqrt{z})-\operatorname{Li}_{2}(\sqrt{z})+\frac{1}{2} \ln z \ln \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right] \\
& +(1+z)\left[2 \operatorname{Li}_{2}(z)+\ln ^{2}(1-z)\right]+2 \ln (1-z) \ln \left(\frac{z}{1-z}\right)+z \frac{\pi^{2}}{3}, \\
F_{3}(z) & =(1-z)(1+2 z)\left[\ln ^{2}\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \ln \left(\frac{1-z}{z}\right)-8 \operatorname{Li}_{3}\left(\frac{\sqrt{z}}{\sqrt{z}-1}\right)-8 \operatorname{Li}_{3}\left(\frac{\sqrt{z}}{\sqrt{z}+1}\right)\right] \\
& -4(z-4) \operatorname{Li}_{3}(z)+6\left(3+3 z-4 z^{2}\right) \operatorname{Li}_{3}\left(\frac{z}{z-1}\right)-2 z(1+4 z) \zeta_{3}+2[(3-4 z) z \ln z \\
& \left.+2\left(2 z^{2}-z-2\right) \ln (1-z)\right] \operatorname{Li}_{2}(z)+\frac{1}{3} \ln ^{2}(1-z)\left[4\left(3 z^{2}-2 z-1\right) \ln (1-z)\right. \\
& +3(3-4 z) z \ln z]+\frac{\pi^{2}}{3}\left[2 z^{2} \ln z-\left(2 z^{2}+z-2\right) \ln (1-z)\right]
\end{aligned}
$$

From weak to strong coupling

\checkmark At weak coupling $\mathrm{EEC}_{\mathcal{N}=4}$ has a shape which is remarkably similar to the one in QCD
\checkmark Going from one to two loops, EEC flattens
\checkmark This agrees with strong coupling prediction for EEC in planar $\mathcal{N}=4$ SYM

$$
\mathrm{EEC}_{\mathcal{N}=4} \stackrel{a \rightarrow \infty}{\sim} \frac{1}{2}\left[1+a^{-1}(1-6 z(1-z))+O\left(a^{-3 / 2}\right)\right]
$$

No jets at strong coupling

End-point asymptotics I

Small angle correlations $\chi \rightarrow 0$ (or $z \sim \chi^{2} \rightarrow 0$): calorimeters measure nearly collinear particles

$$
\mathrm{EEC} \stackrel{z \rightarrow 0}{\sim} \frac{a}{4 z}\left[1+a\left(\ln z-\frac{1}{2} \zeta_{3}+\zeta_{2}-3\right)\right]
$$

\checkmark Corrections are enhanced by $\ln z$, no homogenous transcedentality
\checkmark Resummation of leading log's $a(a \ln z)^{k}$ using the "jet calculus"

$$
\begin{aligned}
\mathrm{EEC} & \stackrel{z \rightarrow 0}{\sim} \frac{a}{4 z} \int_{0}^{1} d x x^{2} D\left(x, Q^{2} / S_{a b}\right) \\
& =\frac{a}{4 z}\left(Q^{2} / S_{a b}\right)^{-\gamma_{T}(3)}=\frac{a}{4} z^{-1+\gamma_{T}(3)}
\end{aligned}
$$

$\gamma_{T}(3)=a+O\left(a^{2}\right)$ - twist-2 time-like anomalous dimension of spin $S=3$
$D\left(x, Q^{2} / S_{a b}\right)$ probability to fragment into a pair of partons with $S_{a b}=2 E_{a} E_{b}(1-\cos \chi) \sim Q^{2} z$
\checkmark Resummation weakens singularity of EEC for $\chi \rightarrow 0$, jets at weak coupling

$$
\int_{0}^{\chi_{0}} d \cos \chi \operatorname{EEC} \sim \frac{a}{\gamma_{T}(3)} \sim 1, \quad\left(\chi_{0} \ll 1\right)
$$

End-point asymptotics II

EEC in the back-to-back kinematics $\chi \rightarrow \pi$ (or $y \equiv 1-z \sim(\pi-\chi)^{2} \rightarrow 0$)

$$
\mathrm{EEC} \stackrel{z \rightarrow 1}{\sim} \frac{1}{4 y}\left\{a \ln (1 / y)-\frac{a^{2}}{2}\left[\ln ^{3}(1 / y)+\frac{\pi^{2}}{2} \ln (1 / y)\right]\right\}
$$

\checkmark Large (Sudakov) corrections $a^{k}(\ln y)^{n}$ come from the emission of soft and collinear particles
\checkmark All order resummation

$$
\mathrm{EEC} \sim \frac{1}{8 y} H(a) \int_{0}^{\infty} d b b J_{0}(b) S\left(b^{2} / y ; a\right)
$$

$J_{0}(b)$ Bessel function; $S\left(b^{2} / y ; a\right)$ the Sudakov form factor (with $b_{0}=2 \mathrm{e}^{-\gamma_{\mathrm{E}}}$)

$$
S=\exp \left[-\frac{1}{2} \Gamma_{\text {cusp }}(a) \ln ^{2}\left(\frac{b^{2}}{y b_{0}^{2}}\right)-\Gamma(a) \ln \left(\frac{b^{2}}{y b_{0}^{2}}\right)\right]
$$

Dependence on the coupling constant is encoded in three functions

$$
\Gamma_{\text {cusp }}(a)=a-\frac{1}{2} \zeta_{2} a^{2}, \quad \Gamma(a)=-\frac{3}{2} \zeta_{3} a^{2}, \quad H(a)=1-\zeta_{2} a
$$

\checkmark Perturbative corrections to $\operatorname{EEC}(z \rightarrow 1)$ have homogeneous transcedentality

$$
\left[\mathrm{EEC}_{\mathrm{QCD}}(z \rightarrow 1)\right]_{\text {maximal transcedentality }}=\mathrm{EEC}_{\mathcal{N}=4}(z \rightarrow 1)
$$

Conclusions and open questions

\checkmark Energy correlations are good/nontrivial physical observables in $\mathcal{N}=4$ SYM
\checkmark Relation to energy-energy correlations in QCD (most complicated part)?
\checkmark All symmetries of $\mathcal{N}=4 \mathrm{SYM}$ are preserved, what is the manifestation of integrability?
\checkmark Interpolation between weak and strong coupling?
\checkmark Other proposals for 'good' observables?

