Logarithmic Singularities of $\mathcal{N}=4$ Super-Yang-Mills Amplitudes

Zvi Bern ${ }^{1}$, Enrico Herrmann², Sean Litsey ${ }^{1}$, James Stankowicz ${ }^{1}$, Jaroslav Trnka²

${ }^{1}$ Department of Physics and Astronomy, UCLA
${ }^{2}$ Walter Burke Institute for Theoretical Physics California Institute of Technology

November 17, 2014

Caltech

Outline

1 Introduction

- Motivation
- General Strategy

2 3-loop basis of Integrals

- Example 1 - Numerator for diagram d)
- Example 2 - Numerator for diagram e)

3 Planar Sector
■ Why back to planar sector?
■ Example 1 - Window Diagram at 5-loops

- Example 2 - Bowtie Diagram at 6-loops

4 Conclusion

Introduction

Arkani-Hamed, Bourjaily, Cachazo and Trnka [axxiv:1410.0354]

To all orders of perturbation theory, scattering amplitudes in $\mathcal{N}=4$ SYM beyond the planar limit have only logarithmic singularities, without any poles at infinity.

General goal:

■ check conjecture at 3 -loops \rightarrow patterns? \checkmark

Introduction

Arkani-Hamed, Bourjaily, Cachazo and Trnka [arxiv:1410.0354]

To all orders of perturbation theory, scattering amplitudes in $\mathcal{N}=4$ SYM beyond the planar limit have only logarithmic singularities, without any poles at infinity.

General goal:

- check conjecture at 3-loops \rightarrow patterns? $\sqrt{ }$

■ logarithmic singularities and no pole at infinity
vs. dual conformal invariance (DCI) in planar amplitudes \checkmark
Drummond, Henn, Smirnov, Sokatchev, Korchemsky,... [arXiv:1306.2799, 0807.1095,...]

Introduction

Arkani-Hamed, Bourjaily, Cachazo and Trnka [arxiv:1410.0354]

To all orders of perturbation theory, scattering amplitudes in $\mathcal{N}=4$ SYM beyond the planar limit have only logarithmic singularities, without any poles at infinity.

General goal:

- check conjecture at 3 -loops \rightarrow patterns? \checkmark

■ logarithmic singularities and no pole at infinity
vs. dual conformal invariance (DCI) in planar amplitudes \checkmark
Drummond, Henn, Smirnov, Sokatchev, Korchemsky,... [arXiv:1306.2799, 0807.1095,...]
■ link to basis of integrals of maximal uniform transcendentality \boldsymbol{X}
e.g. Henn, Smirnov ${ }^{2}$ [arXiv:1306.2799]

Introduction

Arkani-Hamed, Bourjaily, Cachazo and Trnka [arxiv:1410.0354]

To all orders of perturbation theory, scattering amplitudes in $\mathcal{N}=4$ SYM beyond the planar limit have only logarithmic singularities, without any poles at infinity.

General goal:

- check conjecture at 3-loops \rightarrow patterns? \checkmark

■ logarithmic singularities and no pole at infinity vs. dual conformal invariance (DCI) in planar amplitudes \checkmark

Drummond, Henn, Smirnov, Sokatchev, Korchemsky,... [arXiv:1306.2799, 0807.1095,...]
■ link to basis of integrals of maximal uniform transcendentality \boldsymbol{X}
e.g. Henn, Smirnov ${ }^{2}$ [arXiv:1306.2799]

■ relation to singularity structure of gravity amplitudes via BCJ \boldsymbol{x}
Bern, Carrasco, Johansson [arXiv:0805.3993]

General Strategy

non-planar amplitude $\rightarrow \nexists$ unique integrand \Rightarrow expand amplitude in integral basis

1 define set \mathcal{S} of parent diagrams in cubic graph representation (no triangle or bubble subdiagrams)

${ }^{1} P_{\alpha(x)}\left(\ell_{i}, p_{j}\right)$ are Feynman propagators

General Strategy

non-planar amplitude $\rightarrow \nexists$ unique integrand \Rightarrow expand amplitude in integral basis

1 define set \mathcal{S} of parent diagrams in cubic graph representation (no triangle or bubble subdiagrams)
2 find basis of numerators $N_{k}^{(x)}$, s.t. each individual diagram $x \in \mathcal{S}$ has logarithmic singularities and no
 poles at infinity \rightarrow I try to explain this on examples.
${ }^{1} P_{\alpha(x)}\left(\ell_{i}, p_{j}\right)$ are Feynman propagators

General Strategy

non-planar amplitude $\rightarrow \nexists$ unique integrand \Rightarrow expand amplitude in integral basis

1 define set \mathcal{S} of parent diagrams in cubic graph representation (no triangle or bubble subdiagrams)
2 find basis of numerators $N_{k}^{(x)}$, s.t. each individual diagram $x \in \mathcal{S}$ has logarithmic singularities and no
 poles at infinity \rightarrow I try to explain this on examples.
\Rightarrow Basis of integrals ${ }^{1}$:

$$
\int d \mathcal{I}^{(x)} \equiv \int \prod_{i=1}^{L} \frac{d^{D} \ell_{i}}{(2 \pi)^{D}} \frac{s t A_{4}^{\text {tree }} \sum_{k} a_{k}^{(x)} N_{k}^{(x)}\left(\ell_{i}, p_{j}\right)}{\prod_{\alpha(x)} P_{\alpha(x)}\left(\ell_{i}, p_{j}\right)}
$$

${ }^{1} P_{\alpha(x)}\left(\ell_{i}, p_{j}\right)$ are Feynman propagators

3 expand amplitude in integral basis

$$
\mathcal{A}_{m}^{L-\text { loop }}=i^{L} g^{m-2+2 L} \sum_{\sigma(m)} \sum_{x \in \mathcal{S}} \frac{c^{(x)}}{S^{(x)}} \int d \mathcal{I}^{(x)}\left(\ell_{1}, \ldots, \ell_{L}, p_{1}, \ldots, p_{m}\right)
$$

4 Use unitarity cuts or leading singularity methods to determine coefficients $a_{k}^{(x)}$ e.g. Bern, Dixon, Dunbar, Kosower [arxiv:9409265] \& Cachazo [arxiv:0803. 1988]

3 expand amplitude in integral basis

$$
\mathcal{A}_{m}^{L-\text { loop }}=i^{L} g^{m-2+2 L} \sum_{\sigma(m)} \sum_{x \in \mathcal{S}} \frac{c^{(x)}}{S^{(x)}} \int d \mathcal{I}^{(x)}\left(\ell_{1}, \ldots, \ell_{L}, p_{1}, \ldots, p_{m}\right)
$$

4 Use unitarity cuts or leading singularity methods to determine coefficients $a_{k}^{(x)}$ e.g. Bern, Dixon, Dunbar, Kosower [arxiv:9409265] \& Cachazo [arxiv:0803. 1988]

5 Use method of maximal cuts to confirm that amplitude is correct and complete e.g. Bern, Carrasco, Johansson, Kosower [arxiv:0705. 1864]

3-loop basis of Integrals

1 Parent diagrams for 3-loop amplitude in $\mathcal{N}=4$ SYM \checkmark
Bern, Carrasco, Dixon, Johansson, Kosower, Roiban [arXiv:07022112, 0808.4112]

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

3-loop basis of Integrals

1 Parent diagrams for 3-loop amplitude in $\mathcal{N}=4$ SYM \checkmark
Bern, Carrasco, Dixon, Johansson, Kosower, Roiban [arXiv:07022112, 0808.4112]

(a)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Example 1 - Diagram d)

2 basis of numerators $N_{k}^{(d)}$
\square diagram has only Feynman propagators \rightarrow double poles?

- go deeper in the cut structure of the integral

Useful cut technology

recurring cut situations

1 box cut

2 collinear cut
completely massless corner

3 soft-collinear cut
completely massless rung

$$
\begin{aligned}
& \ell_{5}^{*}=\cdots, \\
& J_{5}=\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \ell_{5}^{*}=k_{1}, \\
& J_{5}=\left(k_{1}+k_{2}\right)^{2}
\end{aligned}
$$

For box Jacobians and cut solutions, see e.g. Britto, Cachazo, Feng [arXiv:0412103]

Example 1 - Diagram d)

2 basis of numerators $N_{k}^{(d)}$

- power counting for numerator

$$
N_{k}^{(d)}=\mathcal{O}\left(\ell_{6}^{4}\right)=\left(\ell_{6}^{2}+Q_{1} \cdot \ell_{6}+c_{1}\right)\left(\ell_{6}^{2}+Q_{2} \cdot \ell_{6}+c_{2}\right)
$$

- resemblance with 2-loop nonplanar diagram

$$
N_{2-\mathrm{loop}}^{(\mathrm{NP})}=\left(\ell_{5}-k_{3}\right)^{2}+\left(\ell_{5}-k_{4}\right)^{2}
$$

\Rightarrow Ansatz for 3-loop diagram

$$
\widetilde{N}^{(\mathrm{d})}=\left[\left(\ell_{6}+k_{1}\right)^{2}+\left(\ell_{6}+k_{2}\right)^{2}\right] \cdot\left[\left(\ell_{6}-k_{3}\right)^{2}+\left(\ell_{6}-k_{4}\right)^{2}\right]
$$

■ Ansatz free of double poles?
$\square \widetilde{N}^{(\mathrm{d})}=\left[\left(\ell_{6}+k_{1}\right)^{2}+\left(\ell_{6}+k_{2}\right)^{2}\right] \cdot\left[\left(\ell_{6}-k_{3}\right)^{2}+\left(\ell_{6}-k_{4}\right)^{2}\right]$

- Collinear cuts $\Rightarrow \ell_{5}=\alpha k_{2}, \ell_{7}=-\beta k_{3}$

■ quadruple cut \Rightarrow Jacobian $J_{6}=s u(\alpha-\beta)^{2}$,

$$
\ell_{6}^{*}=\alpha \lambda_{4} \widetilde{\lambda}_{2} \frac{\langle 12\rangle}{\langle 14\rangle}-\beta \lambda_{1} \widetilde{\lambda}_{3} \frac{\langle 34\rangle}{\langle 14\rangle}
$$

(d)

double pole!

$\operatorname{Res}\left[\mathcal{I}^{(\mathrm{d})}\right]_{\text {cut }}=-\frac{(\alpha(1+\beta)+\beta(1+\alpha))^{2}}{s^{3} u \alpha \beta(1+\alpha)(1+\beta)(\alpha-\beta)^{2}}$

2 basis of numerators $N_{k}^{(d)}$

- Can we cancel the double pole?
- Add contact term
$\ell_{6}^{2}\left(\ell_{6}+k_{1}+k_{2}\right)^{2} \rightarrow s^{2} \alpha \beta(\alpha+1)(\beta+1)$

$$
\begin{aligned}
& \text { final numerator - no double pole } \\
& N^{(\mathrm{d})}=\left[\left(\ell_{6}+k_{1}\right)^{2}+\left(\ell_{6}+k_{2}\right)^{2}\right] \cdot\left[\left(\ell_{6}-k_{3}\right)^{2}+\left(\ell_{6}-k_{4}\right)^{2}\right]-4 \ell_{6}^{2}\left(\ell_{6}+k_{1}+k_{2}\right)
\end{aligned}
$$

Example 2 - Diagram e)

- planar diagram $\rightarrow \mathrm{DCI} \rightarrow$ numerator make no use of DCI, but derive numerator from log. sing. constraints power counting for numerator

$$
N_{k}^{(e)}=\mathcal{O}\left(\ell_{5}^{2}\right)=\left(c_{1} s+c_{2} t\right)\left(\ell_{5}^{2}+d_{1} Q \cdot \ell_{5}+d_{2} s+d_{3} t\right)
$$

Example 2 - Diagram e)

planar diagram $\rightarrow \mathrm{DCI} \rightarrow$ numerator make no use of DCl , but derive numerator from log. sing. constraints power counting for numerator $N_{k}^{(e)}=\mathcal{O}\left(\ell_{5}^{2}\right)=\left(c_{1} s+c_{2} t\right)\left(\ell_{5}^{2}+d_{1} Q \cdot \ell_{5}+d_{2} s+d_{3} t\right)$

- extract double pole constraints \rightarrow quadruple cut on ℓ_{6}-box subdiagram
$J_{6}=\left(\ell_{5}+k_{4}\right)^{2} \ell_{7}^{2}-\ell_{5}^{2}\left(\ell_{7}+k_{4}\right)^{2}$
- cut $\left(\ell_{7}+k_{4}\right)^{2} \Rightarrow$ factorizes $J_{6} \rightarrow\left(\ell_{5}+k_{4}\right)^{2} \ell_{7}^{2}$ generates new propagator ℓ_{7}^{2}

Example 2 - Diagram e)

planar diagram $\rightarrow \mathrm{DCI} \rightarrow$ numerator make no use of DCl , but derive numerator from log. sing. constraints
power counting for numerator
$N_{k}^{(e)}=\mathcal{O}\left(\ell_{5}^{2}\right)=\left(c_{1} s+c_{2} t\right)\left(\ell_{5}^{2}+d_{1} Q \cdot \ell_{5}+d_{2} s+d_{3} t\right)$

■ extract double pole constraints \rightarrow quadruple cut on ℓ_{6}-box subdiagram
$J_{6}=\left(\ell_{5}+k_{4}\right)^{2} \ell_{7}^{2}-\ell_{5}^{2}\left(\ell_{7}+k_{4}\right)^{2}$
■ cut $\left(\ell_{7}+k_{4}\right)^{2} \Rightarrow$ factorizes $J_{6} \rightarrow\left(\ell_{5}+k_{4}\right)^{2} \ell_{7}^{2}$ generates new propagator ℓ_{7}^{2}
\square also set $\ell_{7}^{2}=\left(\ell_{7}+k_{3}+k_{4}\right)^{2}=\left(\ell_{7}-\ell_{5}\right)^{2}=0 \Rightarrow J_{7}=s\left(\ell_{5}+k_{4}\right)^{2}$
$\square \operatorname{Res}\left[\mathcal{I}^{(e)}\right]_{\mathrm{cut}}=\frac{N^{(e)}}{s \ell_{5}^{2}\left(\ell_{5}-k_{1}\right)^{2}\left(\ell_{5}-k_{1}-k_{2}\right)^{2}\left(\ell_{5}+k_{4}\right)^{4}}$

Example 2 - Diagram e)

final numerator - no double pole

$$
N^{(e)}=\left(c_{1} s+c_{2} t\right)\left(\ell_{5}+k_{4}\right)^{2}
$$

- $N^{(e)}$ agrees with the DCI numerator! (up to factor independent of loop momenta)

Why back to planar sector?

- dual formulation of scattering amplitudes in terms of on-shell diagrams and cells in the positive Grassmannian
\Rightarrow logarithmic singularities and no poles at infinity manifest
■ interplay with local diagrammatic expansion? \rightarrow use same strategy as in nonplanar sector
- rather than an input, can we see DCI emerge?
- DCI allows multiple numerators for the same diagram topology
some have zero coefficient in the amplitude
- DCI allows multiple numerators for the same diagram topology
- some have zero coefficient in the amplitude
- Def: DCI-integrand = rational function of scaling weight zero in all dual variables $x_{i} \rightarrow$ a priori no difference between numerators
■ upon integration \rightarrow some integrals ill-defined in IR \rightarrow zero coeff.
Drummond, Korchemsky, Sokatchev [arXiv:0707.0243]
- DCI allows multiple numerators for the same diagram topology
- some have zero coefficient in the amplitude
- Def: DCI-integrand = rational function of scaling weight zero in all dual variables $x_{i} \rightarrow$ a priori no difference between numerators
\square upon integration \rightarrow some integrals ill-defined in IR \rightarrow zero coeff.
Drummond, Korchemsky, Sokatchev [arXiv:0707.0243]
- Can we understand this from logarithmic singularities?
- Are both criteria equivalent?
- DCI allows multiple numerators for the same diagram topology
- some have zero coefficient in the amplitude
- Def: DCI-integrand = rational function of scaling weight zero in all dual variables $x_{i} \rightarrow$ a priori no difference between numerators
■ upon integration \rightarrow some integrals ill-defined in IR \rightarrow zero coeff.
Drummond, Korchemsky, Sokatchev [arXiv:0707.0243]
- Can we understand this from logarithmic singularities?
- Are both criteria equivalent?

Logarithmic singularities and absence of poles at infinity imply dual conformal symmetry of local integrals in the planar sector.

To cancel multiple poles \rightarrow link various DCI-integrals together

5-loop planar integrals

Integrals assembling the 5-loop amplitude in planar $\mathcal{N}=4$ SYM
(nonzero coefficients)
Bern, Carrasco, Johansson, Kosower [arXiv:0705.1864],
Bourjaily, DiRe, Shaikh, Spradlin, Volovich [arXiv:1112.6432]

Example 1 - Window Diagram at 5-loops

Bourjaily, DiRe, Shaikh, Spradlin, Volovich [arXiv:1112.6432]

Example 1 - Coefficient 0 Window Diagram

■ All coefficient zero integrals explained up to 5-loops
Drummond, Korchemsky, Sokatchev [arXiv:0707.0243]

■ limit where $x_{6}, x_{7}, x_{8}, x_{9}$ approach internal point x_{5}
$\rho^{2}=x_{56}^{2}+x_{57}^{2}+x_{58}^{2}+x_{59}^{2} \rightarrow 0$

$$
\int \frac{d^{4} x_{6} d^{4} x_{7} d^{4} x_{8} d^{4} x_{9} N^{(j)}\left(x_{5}, x_{6}, x_{8}, x_{9}\right)}{x_{56}^{2} x_{57}^{2} x_{58}^{2} x_{67}^{2} x_{69}^{2} x_{78}^{2} x_{79}^{2} x_{89}^{2}} \sim \int \frac{\rho^{15} N^{(j)} d \rho}{\rho^{16}}
$$

■ no details, but coefficient zero integrals have double poles!
■ logarithmic singularities does more \rightarrow links DCI integrals together, explains coefficient zero integrals at higher loop beyond [arxiv:0707.0243]

■ Example: beyond maximal cut of I_{31} (cutting Jacobians) \rightarrow localize x_{5}, x_{6}, x_{8} and x_{9}

$$
\begin{aligned}
& \operatorname{Res}\left[\mathcal{I}_{21}+\mathcal{I}_{22}+\mathcal{I}_{31}\right]_{\mathrm{cut}} \sim \frac{\mathrm{~d}^{4} \mathrm{X}_{7}}{\left(\mathrm{X}_{74}^{2}\right)^{2} \mathrm{X}_{73}^{2} \mathrm{x}_{72}^{2}}\left(\mathrm{~N}_{\mathrm{cut}}^{(21)}+0+\mathrm{N}_{\mathrm{cut}}^{(31)}\right)
\end{aligned}
$$

\square Need to combine integrals to cancel double poles!

$$
\mathcal{I}^{A}=\mathcal{I}_{21}+\mathcal{I}_{31}+\mathcal{I}_{34}, \quad \mathcal{I}^{B}=\mathcal{I}_{22}+\mathcal{I}_{32}, \quad \mathcal{I}^{C}=\mathcal{I}_{33}
$$

Example 2 - Bowtie Diagram at 6-loops

Bern, Carrasco, Johansson, Kosower [arXiv:0705.1864]
Bourjaily, DiRe, Shaikh, Spradlin, Volovich [arXiv:1112.6432]

■ 6-loop planar coefficient 0 integral

- so far unexplained by heuristic-rules

Drummond, Korchemsky, Sokatchev [arXiv:0707.0243]
■ cut double-box completely (including Jacobian) \rightarrow double pole
■ no numerator allowed to cancel

Conclusion

- logarithmic singularities and no poles at infinity of the full 3-loop amplitude in $\mathcal{N}=4$ SYM
- relation of logarithmic singularities and dual conformal invariance in the planar amplitude up to 6-loops
■ explain the absence of certain integrals in the diagrammatic expansion of high loop planar $\mathcal{N}=4$ SYM
- unify known heuristic rules for dual conformal diagrams in a comprehensive framework
Outlook/Speculation
- Can we find a reformulation of nonplanar scattering amplitudes in $\mathcal{N}=4$ SYM that make the properties of logarithmic singularities no poles at infinity manifest? nonplanar on-shell diagrams?
- Is there a generalization of dual conformal invariance to the nonplanar amplitude?

