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Spinor Notations

kȧa ≡ kµσµ, kµ · kµ = det(kȧa). Massless condition leads
to

kȧa = λ̃ȧλa

where we have spinor λa and antispinor λ̃ȧ. The
factorization property is the key of much simple expression
of amplitudes when using spinor notation.
Spinor indices can be raised or lowered as

λa = εabλb, λa = εabλ
b , (1)

Thus we can also define Lorentz invariant products

〈i |j〉 ≡ λa
i λja, [i |j] ≡ λ̃i ȧλ̃

ȧ
j (2)
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To map to familiar notations, first notice that

u±(k) =
1± γ5

2
u(k), v∓(k) =

1± γ5

2
u(k), (3)

u±(k) = u(k)
1∓ γ5

2
, v∓(k) = v(k)

1∓ γ5

2
(4)

Thus we have

|i〉 ≡
∣∣k+

i

〉
= u+(ki) = v−(ki),

|i] ≡
∣∣k−i 〉 = u−(ki) = v+(ki),

〈i | ≡
〈
k−i
∣∣ = u−(ki) = v+(ki),

[i | ≡
〈
k+

i

∣∣ = u+(ki) = v−(ki) (5)
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Using above notation, we have following translations

〈i |j〉 = u−(ki)u+(kj), 〈i |P|j] = u−(ki) 6 Pu−(kj)

u+(ki)�k ju+(kl) ≡
[
i |kj |l

〉
, u+(ki)�k j�kmu−(kl) ≡

[
i |kjkm|l

]
One most important fact is the polarization vector can be
written as

ε+ν (k |µ) =
+ 〈µ|γν |k ]√

2 〈µ|k〉
, ε−ν (k |µ) =

− [µ|γν |k〉√
2 [µ|k ]

,
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The key is to use right variables: Changing variables from
(kµ, εµ) to (λ, λ̃), especially for the on-shell massless particles.
[Xu, Zhang, Chang, 1987]

momentum k → λ, λ̃.
For scalar, wave function 1.
For massless fermions, wave functions λ, λ̃
For vector, wave functions ε±ν (k |µ).
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Color ordering

Generators of SU(Nc) in the fundamental representation
can be taken as

Tr(T aT b) = δab, f abc =
−i√

2
Tr(T a[T b,T c]), (6)

thus
N2

c−1∑
a=1

(T a)
j1
i1

(T a)
j2
i2

= δ
j2
i1
δ

j1
i2
− 1

Nc
δ

j1
i1
δ

j2
i2

(7)

or equivalent to be∑
a

Tr(XT a)Tr(T aY ) = Tr(XY )− 1
Nc

Tr(X )Tr(Y )

∑
a

Tr(XT aYT a) = Tr(X )Tr(Y )− 1
Nc

Tr(XY ) . (8)
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Color ordering: Thus we write whole amplitudes into gauge
invariant subset (the color-ordered amplitudes)

M tree(1,2, ...,n) =
∑

permutation

Tr(Ta1 ...Tan )Atree
n (a1,a2, ...,an)

Color ordering separate the group information from the
dynamical information.
Naively there are (n − 1)! different dynamical basis, but
there are some relations among them to reduce to
independent basis (n − 3)!.
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Four relations for ordered gluon amplitudes:

Color-order reversed relation:

A(n, {β1, ..., βn−2},1) = (−)nA(1, βn−2, βn−1, ..., β1,n)

The U(1)-decoupling relation is given by∑
σ∈cyclic

An(1, σ(2,3, ...,n)) = 0
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KK-relation: [Kleiss, Kujif, 1989]

An(1, {α},n, {β}) = (−1)nβ
∑

σ∈OP({α},{βT })

An(1, σ,n) .

where sum is over partial ordering.
Example

A(1, {2},5, {3,4} = A(1,2,4,3,5)

+A((1,4,2,3,5) + A(1,4,3,2,5)
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BCJ-relation: [Bern, Carraso, Johansson, 2008]

An(1,2, {α},3, {β}) =
∑

σi∈POP

An(1,2,3, σi)F ,

α = {4,5, ...,m}
β = {m + 1,m + 2, ...,n}

Beautiful proof from string theory
[ Bjerrum-Bohr, Damgaard, Vanhove, 2009]

[ Stieberger, 2009]

Pure field theory proof
[Feng, Huang, Jia, 2010 ]

[ Chen, Du, Feng, 2011]

Bo Feng Tutorial of on-shell recursion relation



Some backgrounds
The derivation of on-shell recursion relation

Application
The Field Theory Proof of KLT

Part II: Derivation of
on-shell (BCFW) recursion

relation
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Structure for Tree-level amplitudes: ⇐= It will be used late:

Only singularity is poles. From Feynman diagrams, it
appears when propagators are on-shell.
Factorization property: When one propagator goes to
on-shell, i.e., P2 −m2 → 0, we have

Atree(1, ..,n) →
∑
λ

Am+1(1, ..,m,Pλ)
1

P2
1m −m2

An−m+1(−P−λ,m + 1, ...,n)

In fact, this point gives the residue at the pole.

Bo Feng Tutorial of on-shell recursion relation



Some backgrounds
The derivation of on-shell recursion relation

Application
The Field Theory Proof of KLT

BCFW deformation

One basic assumption: Tree-level amplitudeM can be
considered as a rational function of complex momenta.
BCFW deformation: Let us consider following deformation.
Picking two external momenta p1,p2 and auxiliary
momentum q, we do following deformation:

p1(z) = p1 + zq, p2(z) = p2 − zq

and impose following conditions:

q2 = q · p1 = q · p2 = 0

[Britto, Cachazo, Feng , 2004] [Britto, Cachazo, Feng , Witten, 2004]

Bo Feng Tutorial of on-shell recursion relation



Some backgrounds
The derivation of on-shell recursion relation

Application
The Field Theory Proof of KLT

BCFW recursion relation

Two good points of BCFW deformation:
It keeps the momentum conservation conditions:
p1 + p2 = p1(z) + p2(z)

It keeps on-shell conditions p2
1 = p1(z)2, p2

2 = p2(z)2;
Amplitude becomes the meromorphic function of single
complex variable z. (P + zq)2 = P2 + z(2P · q). ⇐= Much
easy to study.
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BCFW-derivation

Considering the contour integration I =
∮

dzA(z)/z by two
ways:

Doing it along the point z =∞, we get the "boundary
contribution" I = B.
Doing it for big cycle around z = 0, we have
I = A(0) +

∑
α Res(A(z)/z)|zα .

Combining above we have

A(z = 0) = B −
∑

poles zα

Res
(

A(z)

z

)
z=zα
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Pole part

Location: Pole happens when one propagator goes to
on-shell, i.e., P2 + z(2P · q) = 0. From it we find the
location of pole zα = P2

α
−2P·q .

Reside: Given by Factorization property:(
A(z)

z

)
z=zα

=
∑
λ

AL
m+1(1, ..,m,Pλ(zα))

1
P2 AR

n−m+1(−P−λ(zα),m + 1, ...,n)
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Boundary part

It has following three cases:

When z →∞, A(z)→
∑k

i=0 ciz i +O(1/z) with c0 6= 0 =⇒
nonzero boundary contribution
When z →∞, A(z) ∼ 1

z =⇒ zero boundary contribution
When z →∞, A(z) ∼ 1

zk , k ≥ 2 =⇒ zero boundary
contribution and bonus relations

Boundary behavior is a very nontrivial problem.
Fortunately, for some theories under right choice of p1,p2,
we haveM(z)→ 0 when z →∞. These include gauge
and gravity theory.

[Britto, Cachazo, Feng , Witten, 2004] [Arkani-Hamed, Kaplan 2008]
[Cheung 2008]
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BCFW recursion

BCFW recursion relation for gluons:
[Britto, Cachazo, Feng , 2004]

The formula is

An(1,2, . . . , (n − 1)−,n+) =
n−3∑
i=1

∑
h=+,−

Ai+2(n̂,1,2, . . . i ,−P̂h
n,i )

1
P2

n,i
An−i (+P̂−h

n,i , i + 1, . . . ,n − 2, ˆn − 1)
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For 6-point, the contributed terms are given by

The result is given by

A(1−,2−,3−,4+,5+,6+) =
1

〈5|3 + 4|2](
〈1|2 + 3|4]3

[2 3][3 4] 〈5 6〉 〈6 1〉P2
234

+
〈3|4 + 5|6]3

[6 1][1 2] 〈3 4〉 〈4 5〉P2
345

)
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Let us work out the details of Figure (a).
It is the product of two MHV amplitudes and a propagator,

〈
2 3̂
〉3〈

3̂ p̂
〉
〈p̂ 2〉

 1
P2

23

 〈1 p̂〉3〈
p̂ 4̂
〉〈

4̂ 5
〉
〈5 6〉 〈6 1〉

 (9)

Note that

λ3̂ = λ3, λ4̂ = λ4 −
P2

23
〈3 2〉 [2 4]

λ3, 〈• p̂〉 = −〈•|2 + 3|4]

[P̂ 4]
.(10)

(9) can straightforwardly be simplified to

〈1|2 + 3|4]3

[2 3][3 4] 〈5 6〉 〈6 1〉P2
234 〈5|3 + 4|2]

. (11)

Performing i → i + 3 and 〈 〉 ↔ [ ] in (11), we obtain
Figure (c).
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Generalization One—Massive theory

The solution of q exists for D ≥ 4. Thus it can be applied to
massive theory and higher dimension quantum field
theories
For the case p2

j 6= 0, we first construct two null momenta
by linear combinations η± = (pi + x±pj) with

x± =
(
−2pi · pi ±

√
(2pi · pj)2 − 4p2

i p2
j

)
/2p2

j . The solution
can be

q = λη+ λ̃η− , or q = λη− λ̃η+ .

[Badger, Glover, Khoze and Svrcek, 2005]
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Generalization Two— SUSY theory

For N = 4 theory, super-wave-function is given by
Grassmann variables ηA (A = 1,2,3,4)

Φ(p, η) = G+(p) + ηAΓA(p) +
1
2
ηAηBSAB(p)

+
1
3!
ηAηBηCεABCDΓ̄D(p) +

1
4!
ηAηBηCηDεABCDG−(p) ,

The generalized BCFW-deformation

λi(z) = λi + zλj , λ̃j(z) = λ̃j − zλ̃j , ηj(z) = ηj − zηi ,

so both momentum δ4(
∑

i λi λ̃i) and super-momentum
δ(8)(

∑n
i=1 λαi η

A
i ) conservations are kept
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Generalization Two— SUSY theory

Now we need to sum over super-multiplet

A =
∑

split α

∫
d4ηPiAL(pi(zα),pα(zα))

1
p2
α

AR(pj(zα),−Pα(zα)) .

[Arkani-Hamed, Cachazo and J. Kaplan, 2008; Brandhuber, Heslop and
Travaglini, 2008]
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Generalization Three– Off-shell current

The famous Berends-Giele off-shell recursion relation is

Jµ (1,2, ..., k)

=
−i

p2
1,k

[
k−1∑
i=1

Vµνρ
3 (p1,i ,pi+1,k ) Jν (1, ..., i) Jρ (i + 1, ..., k)

+
k−1∑

j=i+1

k−2∑
i=1

Vµνρσ
4 Jν (1, ..., i) Jρ (i + 1, ..., j) Jσ (j + 1, ..., k)


[Berends, Giele, 1988]

Off-shell current is gauge dependent: (a) choice of
polarization vector

ε+iµ =
〈ri |γµ|pi ]√

2 〈ri |pi〉
, ε−iµ =

[ri |γµ|pi〉√
2 [ri |pi ]
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Generalization Three– Off-shell current

Gauge choice of propagator to fix to Feynman gauge
To deal with the gauge dependence, we need to define two
more polarization vectors

εLµ = pi , εTµ =
〈ri |γµ|ri ]

2pi · ri

so we have

0 = ε+ · ε+ = ε+ · εL = ε+ · εT = ε− · ε−

= ε− · εL = ε− · εT = εT · εT = εL · εL

1 = ε+ · ε− = εL · εT

The key observation is that now we have

gµν = ε+µ ε
−
ν + ε−µ ε

+
ν + εLµε

T
ν + εTµ ε

L
ν

Bo Feng Tutorial of on-shell recursion relation
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Generalization Three– Off-shell current

Taking (i , j) = (1, k), the recursion relation is given by

Jµ (1,2, ..., k)

=
k−1∑
i=2

∑
h,h̃

[
A
(

1̂, ..., i , p̂h
)
· 1

p2
1,i
· Jµ

(
−p̂h̃, i + 1, ..., k̂

)

+Jµ
(

1̂, ..., i , p̂h
)
· 1
p2

i+1,k
· A
(
−p̂h̃, i + 1, ..., k̂

)]
,

where the sum is over (h, h̃) = (+,−), (−,+), (L,T ), (T ,L).
[Feng, Zhang, 2011]
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Generalization Four– Nonzero boundary contribution

Boundary is a (quasi)-global phenominon, i.e., depending
the chosen pair and whole helicity configuration
There are three ways to deal with boundary contributions:

Using auxiliary fields to make boundary zero
[Benincasa, Cachazo, 2007; Boels, 2010]

Analyze Feynman diagrams directly
[Feng, Wang, Wang, Zhang, 2009; Feng, Liu, 2010; Feng, Zhang,

2011]
Transfer to the discussion of roots of amplitude

[Benincasa, Conde, 2011; Feng, Jia, Luo, Luo, 2011]
More pairs of deformation [Feng, Zhou, Qia, Rao, 2014]
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Feynman diagram for λφ4 theory

With (1,2)-pair deformation, Feynman diagrams will be
following two types:

I J

1 2

1

2

a b

Boundary contribution is

Ab = (−iλ)
∑

I′
⋃
J ′={n}\{i,j}

AI′ ({KI′))
1

p2
I′

1
p2
J ′

AJ ′ ({KJ ′})
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Feynman diagram for Yukawa theory

Same analysis for typical Feynman diagram

pq

Only a few types of Feynman diagrams give boundary
contributions and they can be evaluated directly

[Feng, Wang, Wang, Zhang, 2009; Feng, Liu, 2010; Feng, Zhang, 2011]

Bo Feng Tutorial of on-shell recursion relation



Some backgrounds
The derivation of on-shell recursion relation

Application
The Field Theory Proof of KLT

Roots of amplitude

Another angel for boundary contributions:

Mn(z) =
∑

k∈P(i,j)

ML(zk )MR(zk )

p2
k (z)

+ C0 +
v∑

l=1

Clz l

= c
∏

s(z − ws)ms∏Np
k=1 p2

k (z)

Split all roots into two groups I,J . For nI < Np

c
∏nI

s=1(z − ws)∏Np
k=1 p2

k (z)
=

∑
k∈P(i,j)

ck

p2
k (z)

Mn(z) =
∑

k∈P(i,j)

ck

p2
k (z)

nJ∏
t=1

(z − wt )
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Roots of amplitude

Perform a contour integration around the pole zk and
obtain

ML(zk )MR(zk )

(−2pk · q)
=

ck

(−2pk · q)

nJ∏
t=1

(zk − wt ),

so

ck =
ML(zk )MR(zk )∏nJ

t=1(zk − wt )

and finally

Mn(z) =
∑

k∈P(i,j)

ML(zk )MR(zk )

p2
k (z)

v+1∏
t=1

(z − wt )

zk − wt

by setting nI = Np − 1.
[Benincasa, Conde, 2011; Feng, Jia, Luo, Luo, 2011]
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Comments for boundary BCFW-relation

Root method is very general and useful for theoretical
discussions. However, it is very hard to find root
recursively, especially roots are in general not rational
function
Feynman diagram method is practical, but not general
since we need to do analysis for each different theory
Both methods are not completely satisfied and better
method is the more deformations!
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Generalization five–Bonus relation

Bonus relations can be derived from the observation

0 =

∮
dz
z

zbA(z), b = 1,1, ...,a− 1, if , A(z)→ 1
za .

Because the zb factor, there is no pole at z = 0. Taking
contributions from other poles, we have bonus relations

0 =
∑
α

∑
h

AL(ph(zα))
zb
α

p2 AR(−p−h(zα))

for b = 1, ...,a− 1.
[Arkani-Hamed, Cachazo, Kaplan, 2008]
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Generalization six– Rational part of one loop
amplitude

The new features appeared in this generalization are:
There are double poles like 〈a|b〉 / [a|b]2, thus we need to
find way to reproduce double pole and single pole
contained inside double pole
Loop factorization formula is

A1−loop
n → A1−loop

L Atree
R + Atree

L A1−loop
R + Atree

L SAtree
R .

[Bern, Dixon, Kosower, 2005]

Bo Feng Tutorial of on-shell recursion relation



Some backgrounds
The derivation of on-shell recursion relation

Application
The Field Theory Proof of KLT

Generalization six– Rational part of one loop
amplitude

Solution for above two difficulties:
Two collinear momenta provide following divergent
expression

A3;1(1+,2+,3+) =
[1|2] [2|3] [3|1]

K 2
12

Thus double pole structure can then be obtained as

Atree
L

1
K 2

a,a+1
A3;1(−K̂+

a,a+1, ã
+, (a + 1)+)

→ Atree
L

1
K 2

a,a+1

1
K 2

a,a+1

[
K̂a,a+1|â

] [
â|a + 1

] [
a + 1|K̂a,a+1

]
[Bern, Dixon, Kosower, 2005]

Bo Feng Tutorial of on-shell recursion relation



Some backgrounds
The derivation of on-shell recursion relation

Application
The Field Theory Proof of KLT

Generalization six– Rational part of one loop
amplitude

Single pole inside double pole is solved by multiplying by a
dimensionless function

K 2
cdS(0)(a, s+,b)S(0)(c, s−,d)

, where the soft factor is given

S(0)(a, s+,b) =
〈a|b〉

〈a|s〉 〈s|b〉
, S(0)(c, s−,d) = − [c|d ]

[c|s] [s|d ]
.

[Bern, Dixon, Kosower, 2005]
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Generalization seven– QFT in 3D

The deformation null momentum q has solution when and
only when D ≥ 4.
For 3D,

pαβ = xµ(σµ)αβ = λαλβ

thus on-shell BCFW-deformation can considered as matrix
transformation over two spinors(

λi(z)
λj(z)

)
= R(z)

(
λi
λj

)
,

This transformation keeps on-shell condition automatically

[Gang, Huang, Koh, Lee, Lipstein, 2010]
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Generalization seven– QFT in 3D

Conservation of momenta leads to(
λi(z) λj(z)

)( λi(z)
λj(z)

)
=
(
λi λj

)( λi
λj

)
or

RT (z)R(z) = I, R(z) ∈ SO(2,C)

With parameterization

R(z) =

(
z+z−1

2 −z−z−1

2i
z−z−1

2i
z+z−1

2

)
,

propagator is

p̂2
f (z) = af z−2 + bf + cf z2
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Generalization seven– QFT in 3D

Now the derivation is to start from contour integration

A(z = 1) =

∮
z=1

dz
z − 1

A(z)

where the contour is a small circle around z = 1.
Each on-shell propagator will gives four poles and we need
to sum up their contributions.
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Generalization eight– Different deformation

Previous recursion relations based on the
BCFW-deformation where two particles have been
deformed
However, there are other deformations we can consider.
For example, for NMHV-amplitude, we do following
holomorphic deformations

|i(z)] = |i] + z 〈j |k〉 |η] , |j(z)] = |j] + z 〈k |i〉 |η] ,

|k(z)] = |k ] + z 〈i |j〉 |η] ,

where i , j , k have negative helicities.
This deformation keeps (1) on-shell conditions; (2)
momentum conservation.

[Risager, 2005]
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Generalization eight– Different deformation

Using the new deformation we can derive recursion
relation using

∮
(dz/z)A(z) as

A =
∑
α,i∈AL

AL(zα)
1
p2
α

AR(zα)

It is nothing, but the MHV-decomposition for
NMHV-amplitude.

[Cachazo, Svrcek, Witten, 2004]
For general Nn−1MHV-amplitudes, we make the
deformation

|mi(z)] = mi + zri |η] , i = 1, ...,n + 1,

for n + 1 particles of negative helicity. Here
∑

i ri |mi〉 = 0
to ensure momentum conservation.

[Risager, 2005]
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Part III : Applications of
on-shell (BCFW) recursion

relation
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Applications of on-shell recursion relation can be divided into
following two types:

Calculation of various amplitudes: This is the initial
motivation leading to the discovery of on-shell recursion
relation. It is also one of most important practical
applications for high energy experiments.
Understanding of various properties of QFT: It has two
distinguish features:

It keeps only on-shell information
It relies only on some general properties of QFT, so it opens
new way to study QFT in the frame of S-matrix program
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On-shell plus S-matrix

Now we discuss some general properties for massless
quantum fields, which is initiated by Benincase and Cachazo.

[Benincase, Cachazo, 2007]
For massless field, we have

On-shell condition makes the better variable to be spinor λ
and anti-spinor λ̃ (not the familiar pµ and polarization
vector)
Lorentz invariance allows only following combinations
〈λ1|λ2〉 and

[
λ̃1|λ̃2

]
λ carries helicity charge −1/2 and λ̃ carries helicity charge
+1/2. Amplitude must carry the right helicity for each
massless particle
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On-shell plus S-matrix

First nontrivial result:

Three-point on-shell amplitude is completely determined
by Lorentz symmetry and helicity. For example, with the
case h1 = h2 = h3 we have following four configurations:

M3(1−m ,2
−
r ,3

+
s ) = κmrs

(
〈1|2〉3

〈2|3〉 〈3|1〉

)h

,

M3(1+
m,2

+
r ,3

−
s ) = κmrs

(
[1|2]3

[2|3] [3|1]

)h

,

M3(1−m ,2
−
r ,3

−
s ) = κ̃mrs (〈1|2〉 〈2|3〉 〈3|1〉)h

,

M3(1+
m,2

+
r ,3

+
s ) = κ̃mrs ([1|2] [2|3] [3|1])h

,
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Two immediately conclusions:

By crossing symmetry, when h = odd , the κmrs must to
totally antisymmetric, while when h = even, the κmrs must
to totally symmetric.
Thus for vector with h = 1, if we have less than three
particle types, it is identical zero. It is very familiar for U(1)
photo without self-interaction.
To have self-interaction, the minimal number is three, i.e.,
the non-Abelian SU(2).
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On-shell plus S-matrix

Second nontrivial result: Four particle test

Now we consider A(1,2,3,4) with hi = 1 and calculate it
using two different deformations: (1) (1,2)-deformation; (2)
(4,1)-deformation.
Results from both deformations should be same. The
consistent condition gives familiar Jacobi identity∑
aI

fa1a4aI faIa3a2 +
∑
aI

fa1a3aI faIa4a2 +
∑
aI

fa1a2aI faIa3a4 = 0.
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On-shell plus S-matrix

If all particles with hi = 2, four particle test tell us that the
algebra defined by

Ea ? Eb = fabc Ec

must be commutative and associative.
With h > 2 we can show there is no non-trivial way to
satisfy the four-particle test
When some particle with h = 2 and some with h < 2,
coupling constant should be same.
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Now we want to show following four facts:

(1) Color-order reversed relation for general n;
(2) The U(1)-decoupling relation;
(3) The KK-relation;
(4) The BCJ relation;

The only assumption we will use: BCFW cut-constructibility of
gluon amplitudes
Another fact from previous discussion is that for color-ordered
three-point amplitude we have

A(1,2,3) = −A(3,2,1)

[Feng, Huang, Jia, 2010]
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Color-order reversed relation

Color-order reversed relation:

A(1,n, {β1, ..., βn−2})

=
n−3∑
i=1

A(n, β1, ..., βi ,−P)
1

P2 A(P, βi+1, ..., βn−2,1)

=
n−3∑
i=1

(−)n−iA(1, βn−2, ..., βi+1,P)
1

P2 (−)i+2A(−P, βi , ..., β1,n)

= (−)nA(1, βn−2, βn−1, ..., β1,n)
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U(1)-decoupling identity

U(1)-decoupling identity. It can be done by induction for which
we use n = 5 to show the idea (by (1,2)-deformation)

A(1,2,3,4,5) = A(1,P23,4,5) + A(1,P234,5) + 0
A(1,5,2,3,4) = A(1,5,P23,4) + A(1,5,P234) + A(1,P52,3,4)
A(1,4,5,2,3) = A(1,4,5,P23) + 0 + A(1,4,P52,3)
A(1,3,4,5,2) = 0 + 0 + A(1,3,4,P52)

+ 0 + 0
+ A(1,P523,4) + 0
+ A(1,4,P523) + A(1,P452,3)
+ 0 + A(1,3,P452)

where

A(1,P23,4,5) ≡ A(1̂, P̂23,4,5)
1

s23
A(−P̂23, 2̂,3)
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KK-relation

KK-relation: [Kleiss, Kujif, 1989]

An(1, {α},n, {β}) = (−1)nβ
∑

σ∈OP({α},{βT })

An(1, σ,n) .

where sum is over partial ordering.
Example

A(1, {2},5, {3,4} = A(1,2,4,3,5)

+A((1,4,2,3,5) + A(1,4,3,2,5)
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KK-relation

We use (1,5)-shifting for n = 5. First step we do BCFW
expansion:

A(1,2,5,3,4) = A(4,1,2,P35)
1

P2
35

A(−P35,5,3)

+A(3,4,1,P25)
1

P2
25

A(−P25,2,5)

+A(1,2,−P12)
1

P2
12

A(P12,5,3,4)

+A(4,1,−P41)
1

P2
41

A(P41,2,5,3)
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Using Color-order reverse, U(1) and KK for components:

A(1,2,5,3,4)

= (−A(1,2,4,P35)− A(1,4,2,P35))
1

P2
35

(−A(−P35,3,5))

+A(1,4,3,P25)
1

P2
25

A(−P25,2,5)

+A(1,2,−P12)
1

P2
12

A(P12,4,3,5)

+(−A(1,4,−P41))
1

P2
41

(−A(P41,2,3,5)− A(P41,3,2,5))

T1 + T4 = A(1,2,4,3,5), T2 + T5 = A(1,4,2,3,5),

T3 + T6 = A(1,4,3,2,5)
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BCJ relation

First we want to remark that all BCJ-relation can be
derived from the one with length one at the set α. We call it
the fundamental set.
The form of fundamental one

0 = I4 = A(2,4,3,1)(s43 + s41) + A(2,3,4,1)s41

0 = I5 = A(2,4,3,5,1)(s43 + s45 + s41)

+A(2,3,4,5,1)(s45 + s41) + A(2,3,5,4,1)s41

0 = I6 = A(2,4,3,5,6,1)(s43 + s45 + s46 + s41)

+A(2,3,4,5,6,1)(s45 + s46 + s41)

+A(2,3,5,4,6,1)(s46 + s41) + A(2,3,5,6,4,1)s41
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The dual format by momentum conservation

0 = A(2,4,3,5,1)s24 + A(2,3,4,5,1)(s24 + s34)

+A(2,3,5,4,1)(s24 + s34 + s54)

A special case with n = 3: A(1,2,3)s23 = 0.
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BCJ relation

Take (1,6) to do the deformation, consider combination

I6(z) = s21̂A(1̂,2,3,4,5, 6̂) + (s21̂ + s32)A(1̂,3,2,4,5, 6̂)

+(s21̂ + s32 + s42)A(1̂,3,4,2,5, 6̂)

+(s21̂ + s32 + s42 + s52)A(1̂,3,4,5,2, 6̂)

Consider contour integration
∮

z=0
dz
z I6(z) = I6(z = 0).

Same contour can be evaluated using the finite poles plus
boundary contribution.
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To see boundary part,

I6(z) = I1 + I2

I1 = s21̂

[
A(1̂,2,3,4,5, 6̂) + A(1̂,3,2,4,5, 6̂)

+A(1̂,3,4,2,5, 6̂) + A(1̂,3,4,5,2, 6̂)

]

= −s21̂A(1̂,3,4,5, 6̂,2)→ 1
z

where KK-relation has been used, while for

I2 → 1
z

Result
∮

z=∞
dz
z I6(z) = 0
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Finite pole part, expansion by on-shell recursion relation

A(1̂,2,3,4,5, 6̂)→ s21̂A3(1̂,2,P) A(−P,3,4,5, 6̂)

A(1̂,3,2,4,5, 6̂)→ −A3(1̂,3,P) A(−P,2,4,5, 6̂)(s24 + s25 + s26̂)

A(1̂,3,4,2,5, 6̂)→ −A3(1̂,3,P) A(−P,4,2,5, 6̂)(s25 + s26̂)

A(1̂,3,4,5,2, 6̂)→ −A3(1̂,3,P) A(−P,4,5,2, 6̂)(s26̂)

A(1̂,2,3,4,5, 6̂)→ s21̂A3(1̂,2,3,P) A(−P,4,5, 6̂)

A(1̂,3,2,4,5, 6̂)→ (s21̂ + s23)A3(1̂,3,2,P) A(−P,4,5, 6̂)

A(1̂,3,4,2,5, 6̂)→ −A3(1̂,3,4,P) A(−P,2,5, 6̂)(s25 + s26̂)

A(1̂,3,4,5,2, 6̂)→ −A3(1̂,3,4,P) A(−P,5,2, 6̂)(s26̂)
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A(1̂,2,3,4,5, 6̂)→ s21̂A3(1̂,2,3,4,P) A(−P,5, 6̂)

A(1̂,3,2,4,5, 6̂)→ (s21̂ + s23)A3(1̂,3,2,4,P) A(−P,5, 6̂)

A(1̂,3,4,2,5, 6̂)→ (s21̂ + s23 + s24)A3(1̂,3,4,2,P) A(−P,5, 6̂)

A(1̂,3,4,5,2, 6̂)→ −A3(1̂,3,4,5,P) A(−P,2, 6̂)(s26̂)

For the general n, the proof will be exactly same
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The differences between gauge theory and gravity

Let us compare gauge theory and gravity theory:
Gauge symmetry is symmetry for inner quantities while
gravity theory is based on the space-time symmetry, the
general equivalence principal for the choice of coordinate.
The spin of gauge bosons is one while the spin of graviton
is two.
More importantly, the Lagrangian of gauge theory is
polynomial with finite interaction terms while the Einstein
Lagrangian is highly non-linear and infinite interaction
terms after perturbative expansion.
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However, we must be careful about these differences we have
talked:

The Lagrangian description is a off-shell description. What
happens if we constraint to only on-shell quantities?
We have clues from string theory:

Graviton given by closed string; Gluons given by open
string.
Closed string === left-moving open mode × right moving
open mode
In one word, on-shell Graviton == [Gluon]2

Bo Feng Tutorial of on-shell recursion relation



Some backgrounds
The derivation of on-shell recursion relation

Application
The Field Theory Proof of KLT

On-shell plus S-matrix program
The proof of KK andBCJ relations
The KLT relation

One accurate description of above claim is the KLT relation
for tree-level scattering amplitude, which is obtained from
string theory. For example

M3(1,2,3) = A3(1,2,3)Ã3(1,2,3),

M4(1,2,3,4) = A4(1,2,3,4)s12Ã4(3,4,2,1)

[Kawai, Lewellen, Tye; 1985] [Bern, Dixon, Perelstein, Rozowsky; 1999]

Question: Could we understand this relation directly in the
framework of quantum field theory?
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Idea of field theory proof of KLT

Now we can give the idea of field theory proof of KLT relation:

First using only the Lorentz invariance and spin symmetry
we haveM3(1,2,3) = A3(1,2,3)Ã3(1,2,3).
Using BCFW-relation to expand gluon amplitudes and then
recombine them to give the BCFW expansion of graviton
amplitude. Thus by the induction method, we have the
pure field theory proof.
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Example One: four gravitons with relation

M4(1,2,3,4) = (−)s12A(1,3,4,2)A(1,4,3,2)

Step one: Using (1,2)-BCFW-shifting to make

I =

∮
dz
z

(−)s12A(1̂,3,4, 2̂)A(1̂,4,3, 2̂) = 0

BCFW expansion to get∑
h

s12A3(1̂,3,−P̂h
13)

1
s13

A3(P̂−h
13 ,4, 2̂)A4(1̂(z13),4,3, 2̂(z13))

+
∑

h

s12A4(1̂(z14),3,4, 2̂(z14))A3(1̂,4,−P̂h
14)

1
s14

A3(P̂h
14,3, 2̂)
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For the first line we can use the BCJ relation
s12A4(1̂(z13),4,3, 2̂(z13)) = s13(z13)A4(4, 2̂(z13),3, 1̂(z13)
to write it as

A3(1̂,3,−P̂h
13)

1
s13

A3(P̂−h
13 ,4, 2̂)s13(z13)A4(4, 2̂(z13),3, 1̂(z13) .

Naively in the cut z13 we will have s13(z13) = 0. However,
notice that

A4(4,2,3,1)

=
∑

h

A3(4, 2̂(z13), P̂13(z13))A3(−P̂13(z13),3, 1̂(z13))

s13

+
A3(1̂,4, P̂23(z13)A3(−P̂23(z14),3, 1̂(z14))

s14
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Thus we see that

s13(z13)A(4, 2̂(z13),3, 1̂(z13)

=
∑

h

A(4, 2̂(z13),P23)A(−P23(z13),3, 1̂(z13))

Doing similarly for the second term we obtain∑
h,h̃

A3(1̂,3,−P̂h
13)

1
s13

A3(P̂−h
13 ,4, 2̂)A3(1̂,3,−P̂ h̃

13)A3(P̂−h̃
13 ,4, 2̂)

+
∑
h,h̃

A3(1̂,4,−P̂ h̃
14)A3(P̂−h̃

14 ,3, 2̂)A3(1̂,4,−P̂h
14)

1
s14

A3(P̂−h
14 ,3, 2̂)
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The double sum
∑

h,h̃ can be written as two sums
∑

h̃=h
and

∑
h̃=−h.

We have also vanishing identity for flipped helicity

A3(1̂,3,−P̂+
13)A3(1̂,3,−P̂−13) = 0 .

Using three point result we can combine to get

M4(1,2,3,4) =
∑

h=+,−
M3(1̂,3,−P̂h

13)
1

s13
M3(P̂−h

13 ,4, 2̂)

+M3(1̂,4,−P̂h
14)

1
s14

M3(P̂−h
14 ,3, 2̂)
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Function S:

To write down the general KLT relation, we need following
function

S[i1, ..., ik |j1, j2, ..., jk ]p1 =
k∏

t=1

(sit 1 +
k∑

q>t

θ(it , iq)sit iq )

where θ(it , iq) = 0 is zero when pair (it , iq) has same
ordering at both set I,J and otherwise, it is one.. Set J is
the reference ordering set.

S[2,3,4|2,4,3] = s21(s31 + s34)s41,

S[2,3,4|4,3,2] = (s21 + s23 + s24)(s31 + s34)s41
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Property:

S[i1, ..., ik |j1, j2, ..., jk ] = S[jk , ..., j1|ik , .., i1]

Dual function

S̃[i2, .., in−1|j2, ..., jn−1]pn =
n−1∏
t=2

(sjt n +
∑
q<t

θ(jt , jq)sjt jq ) .

S̃ and S are related as follows:

S̃[I|J ]pn = S[J T |IT ]pn

S̃[2,3,4|4,3,2] = s45(s35 + s34)(s25 + s23 + s24)
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Application
The Field Theory Proof of KLT

A crucial property

I =
∑
α∈Sk

S[α(i1, ..., ik )|j1, j2, ..., jk ]A(k + 2, α(i1, ..., ik ),1) = 0

by BCJ relation.
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General KLT relations:

The manifest (n − 3)! symmetric form

Mn

= (−)n+1
∑

σ∈Sn−3

∑
α∈Sj

∑
β∈Sn−3−j

A(1, {σ2, .., σj}, {σj+1, .., σn−2},n − 1,n)

S[α(σ2, .., σj )|σ2, .., σj ]p1 S̃[σj+1, .., σn−2|β(σj+1, .., σn−2)]pn−1

Ã(α(σ2, .., σj ),1,n − 1, β(σj+1, .., σn−2),n)

[Bern, Dixon, Perelstein, Rozowsky; 1999]
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The set I or set J can be empty, so we have two more
symmetric forms:

Mn = (−)n+1
∑

σ,σ̃∈Sn−3

A(1, σ(2,n − 2),n − 1,n)

S[σ̃(2,n − 2))|σ(2,n − 2))]p1Ã(n − 1,n, σ̃(2,n − 2),1)

as well as

Mn = (−)n+1
∑

σ,σ̃∈Sn−3

A(1, σ(2,n − 2),n − 1,n)

S̃[σ(2,n − 2))|σ̃(2,n − 2))]pn−1Ã(1,n − 1, σ̃(2,n − 2),n)
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The (n − 2)! symmetric new KLT formula:

Mn = (−)n
∑
γ,β

Ã(n, γ(2, ...,n − 1),1)

S[γ(2, ...,n − 1)|β(2, ..,n − 1)]p1A(1, β(2, ...,n − 1),n)/s123..(n−1)

and

Mn = (−)n
∑
β,γ

A(1, β(2, ...,n − 1),n)

S̃[β(2, ...,n − 1)|γ(2, ..,n − 1)]pn Ã(n, γ(2, ...,n − 1),1)/s2...n
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New vanishing identities:
If we use the (n+,n−) to denote the number of positive
(negative) helicities in A having been flipped in Ã, then when
n+ 6= n−, we obtain zero, i.e.,

0 = (−)n
∑
γ,β

Ãn+ 6=n−(n, γ(2, ...,n − 1),1)

S[γ(2, ...,n − 1)|β(2, ..,n − 1)]p1A(1, β(2, ...,n − 1),n)/s123..(n−1)
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The BCFW proof of the new KLT formula: First step, the pole
structure analysis of a general one, for example, s12..k

The pole appears in only one of the amplitudes Ãn and An.
The pole appears in both amplitudes Ãn and An.
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Bo Feng Tutorial of on-shell recursion relation



Some backgrounds
The derivation of on-shell recursion relation

Application
The Field Theory Proof of KLT

The second step is to show the structure (A) giving zero:

The BCFW expansion is given by

(−1)n+1

s1̂2..n−1

∑
γ,σ,β

∑
h Ãn−k+1(n̂,γ,−P̂h)Ãk+1(P̂−h,σ,1̂)

s12..k

×S[γσ|β2,..,n−1]An(1̂, β2,..,n−1, n̂) ,

Important observation:

S[γσ|β2,..,n−1] = S[σ|ρ2,k ]×(a factor independent of σ) ,

By BCJ relation∑
σ

Ãk+1(P̂−h, σ, 1̂)S[σ|ρ2,k ] = 0 ,
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The third step is to show the part (B) giving the desired result:

The BCFW expansion is now

(−1)n+1

s1̂2...(n−1)

∑
γ,β,σ,α

[∑
h Ã(n̂, γ, P̂−h)Ã(−P̂h, σ, 1̂)

s12..k

]
S[γσ|αβ]

[∑
h A(1̂, α,−P̂h)A(P̂−h, β, n̂)

s1̂2..k

]
,
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Using S[γσ|αβ] = S[σ|α]× SP̂ [γ|β] we obtain

(−1)n+1

s12..k

∑
h

[(∑
σ,α

Ã(−P̂h, σ, 1̂)S[σ|α]A(1̂, α,−P̂h)

s1̂2..k

)
(∑

γ,β

Ã(n̂, γ, P̂−h)SP̂ [γ|β]A(P̂−h, β, n̂)

sP̂k+1..(n−1)

)+ (h,−h) ,

It is nothing but

−
∑

h Mk+1(1̂,2, . . . , k ,−P̂h)Mn−k+1(P̂−h, k + 1, . . . , n̂)

s12..k
,
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The proof of (n − 3)! form will be almost same:

Divide the pole structure into (A) and (B) part.
Using the BCJ to show the (A) part to be zero.
Using the (n − 2)! form to show that the part (B) is nothing,
but the BCFW expansion.
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Some remarks

The on-shell structure of [gravity ] = [gluon]2 is extremely
important. One can apply it to construct the loop amplitude
of SUGRV.
The reason we have the simple proof is because on-shell
recursion relation has got rid of complicated off-shell
information
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The study of analytic property of scattering amplitudes has
caught many attentions in recent years. Although there are
huge progresses we have made, there are still more waiting us
to discover!
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