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Grain boundary (GB) migration in polycrystalline materials nec-
essarily implies the concurrent motion of triple junctions (TJs),
the lines along which three GBs meet. Today, we understand
that GB migration occurs through the motion of disconnections
in the GB plane (line defects with both step and dislocation
character). We present evidence from molecular dynamics grain
growth simulations and idealized microstructures that demon-
strates that TJ motion and GB migration are coupled through
disconnection dynamics. Based on these results, we develop a
theory of coupled GB/TJ migration and use it to develop a physi-
cally based, disconnection mechanism-specific continuum model
of microstructure evolution. The continuum approach provides
a means of reducing the complexity of the discrete disconnec-
tion picture to extract the features of disconnection dynamics
that are important for microstructure evolution. We implement
this model in a numerical, continuum simulation and demonstrate
that it is capable of reproducing the molecular dynamics (MD)
simulation results.
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Grain growth has long been described as motion by mean cur-
vature (i.e., curvature flow) (1–3); grain boundaries (GBs)

migrate toward their center of curvature, reducing the total GB
area and energy. Triple junctions (TJs) (lines along which three
GBs meet), in turn, migrate to balance the surface tensions (and
torques) exerted by the constituent GBs (4, 5), leading to a set
of equilibrium dihedral angles. As GBs migrate, the TJs migrate
to maintain these angles; the whole microstructure evolves via
this tandem motion. While extensions exist that account for GB
anisotropy (6–12), this has been the conceptual core of grain
growth theory over the past half century. This theory rests on
the assumption that TJs can migrate much faster than GBs (13–
15). However, substantial experimental (13, 16, 17) and atomistic
simulation (18) evidence demonstrates that this is often not
true. Finite TJ mobility causes TJ drag, which leads to dynamic
TJ dihedral angles that differ from their thermodynamic values
(14, 15, 18–20). When the grain size is sufficiently small, grain
growth is controlled by TJ drag rather than curvature flow (13,
14, 20–22). While mechanistic models of GB migration have
gained prominence (23–28), particularly in the past decade (29–
39), mechanistic models for TJ migration are only just being
established (40).

Shear can drive the migration of many grain boundaries. Con-
versely, migrating GBs often induce shears as they migrate.
Each GB is characterized by a temperature-dependent shear-
coupling factor β= Ḃ/Ḣ , where Ḣ is the GB velocity and Ḃ is
the shear velocity (30). This was first observed by Li et al. (41)
and Bainbridge et al. (42). Shear coupling in high-angle GBs has
been reported in experiments (28, 32, 43–45), ab initio cal-
culations (46–49), and atomistic simulations (50–54). Recent
theoretical predictions (33, 35–37) and transmission electron
microscopy (TEM) observations (55, 56) connect shear cou-
pling to the motion of line defects/disconnections; disconections
are characterized by both a step height hi and Burgers vector

bi (25, 27, 57–61). This step-mediated migration mechanism was
first proposed by Bollmann (62), Ashby (63), and Hirth and
Balluffi (24). For each GB, there is an infinite set of possible
disconnection modes {bi , hi} determined by the crystal structure
and the relative orientations of the grains meeting at the GB (64).
The ratio between the GB migration velocity v⊥ and shear dis-
placement rate (across the GB) v‖, β= v‖/v⊥, can be related to
the ratio βi = bi/hi for disconnection-mode i (while bi is a vector
quantity, it is generally parallel to a symmetric tilt inclination of
the GB; it is often used interchangeably with the scalar quantity
bi , where sign indicates direction).

The effective β and GB mobility represent thermal averages
over the available disconnection modes (34, 36, 38, 55, 65). Shear
coupling tends to vanish at high temperature (i.e., grain bound-
ary sliding or migration without shear); this is associated with the
nucleation and migration of multiple disconnection types with
different signs of βi .

Just as GBs migrate via the nucleation and migration of
disconnections, TJ migration is also associated with disconnec-
tion motion, i.e., the flux of disconnections into/out of the TJ
along their constituent GBs. The finite step height and Burg-
ers vector of these disconnections constrain TJ motion. A TJ
can migrate only such that all three GBs remain connected at
the TJ; this leads to a zero displacement incompletion condition
associated with the flux of steps (40, 66). Since disconnections
also carry Burgers vectors, the flux of disconnections into/out
of TJs can lead to Burgers vector accumulation (Burgers vector
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is a conserved quantity). Since there is a long-range stress field
associated with a Burgers vector, the accumulation of a Burgers
vector at a TJ can create a back stress on the disconnections on
the GBs, leading to disconnections being repelled from the TJ
and possibly to TJ stagnation.

Nonetheless, experiments do show that grain growth routinely
occurs and consequently that triple junctions do migrate. The
implication is that TJs may accommodate these constraints either
through disconnection dynamics within the GB network or by
some form of bulk plasticity (dislocation emission/absorption,
twinning, . . .). The conditions outlined above can be satisfied
within the GB network only by requiring that the GBs conspire to
produce the necessary disconnections to eliminate the net flux of
Burgers vector into the TJ. This is, in general, not possible with
single disconnection modes on each GB (38). More commonly,
this can occur by the constituent GBs contributing (or the TJs
emitting) disconnections with multiple coupling modes. The abil-
ity to access multiple coupling modes is temperature dependent
and different for each GB; GBs with disconnections of disparate
activation energies imply extremely slow TJ motion and highly
temperature-sensitive migration kinetics. If the net zero Burgers
vector flux condition at the TJ cannot be met, then some form of
plasticity must operate to dissipate the accumulated Burgers vec-
tor; such lattice dislocation emission into the surrounding grains
has been observed both in experiment (67–69) and in simulation
(70). Another possibility is the relaxation of the TJ through twin-
ning; both molecular dynamics (MD) simulations (71–73) and
experiments (74) show that coherent twin boundaries may form
at TJs during microstructural evolution (in the absence of exter-
nal stress). While the origin of annealing twins remains a topic
of considerable debate (23, 75–80), these observations suggest
that annealing twins may be a natural outcome of and/or may
facilitate TJ migration.

In this paper, we present results from MD simulations of poly-
crystalline grain growth that elucidate the connection between TJ
migration and grain boundary migration in terms of the under-
lying disconnection dynamics. Based on these observations, we
construct a disconnection-mediated TJ migration model that is
consistent with disconnection dynamics-controlled GB migra-
tion. Finally, we implement this mechanistic model in a contin-
uum framework suitable for large-scale microstructure evolution
simulations.

Grain Growth
As discussed above, normal grain growth is widely described as
capillarity-driven GB motion, where each point on a GB migrates
toward its local center of curvature with velocity

v =MGγκ, [1]

where γ, κ, and MG are the GB energy (per area), mean cur-
vature, and GB mobility at this point on the GB (1). Triple
junctions, in turn, migrate to maintain a set of equilibrium dihe-
dral angles that balance the surface tension (and torques) from
their constituent GBs. If γ(i) is inclination independent, this
condition reduces to the classical Herring angles

γ(1)

sin Θ(1)
=

γ(2)

sin Θ(2)
=

γ(3)

sin Θ(3)
, [2]

where Θ(i) is the dihedral angle opposite the GB with interfa-
cial energy γ(i). If triple junctions can move sufficiently rapidly
to remain in equilibrium with respect to the GBs, then the
microstructure evolves by pure curvature flow with fixed angle
junctions. This type of motion may be viewed as a two-step pro-
cess whereby (i) GBs migrate in accordance with Eq. 1, thereby
pulling the TJs out of equilibrium, and (ii) the TJs migrate

to restore the equilibrium angles (if GBs have an inclination-
dependent energy, new terms arise that account for the torque
on GBs at TJs). Experimental (16, 17, 19, 22) and simulation
(18) observations show that TJs do indeed have finite mobility,
as indicated by steady-state dihedral angles of migrating TJs that
differ from their equilibrium values (14, 15, 18–20).

Atomistic simulation permits an examination of grain growth
free of any of the normal grain growth theory assumptions
described above. We performed MD simulations of polycrys-
talline embedded atom method nickel (84) in an NPT ensemble
(Nosè–Hoover thermostat) at 1,200 K (∼ 0.85Tm) under zero
external stress. The initial microstructure was created by gener-
ating a steady-state curvature-flow microstructure (85), assigning
grain orientations at random, and populating each grain with
atoms in a face-centered cubic (FCC) structure with the cor-
responding orientation (see ref. 73 for more details). This was
done instead of using the more common Voronoi tessellation,
which produces flat GBs, unrealistic TJ angles, and grain size
distributions inconsistent with normal grain growth microstruc-
tures (72). A cross-section of one such simulation is depicted in
Fig. 1, which compares the microstructure between two simula-
tion times. Over this 2-ns timespan, the mean linear grain size
[i.e., (V /N )1/3, where V is the system volume and N is the
number of grains] increases from 40 Å to 140 Å. It is apparent
from Fig. 1 that while some triple junctions migrate significantly,
others do not. Grain growth is also accompanied by the for-
mation of many defects in the grain interiors; these include
dislocations and coherent twin boundaries.

Fig. 2 shows finite-thickness cross-sections from the same
MD simulation along with corresponding schematic illustrations.
Here, a migrating TJ emits a pair of partial dislocations. All dislo-
cations in this simulation (that are not part of low-angle tilt GBs)
are emitted from TJs or GBs. The direct emission of dislocations

Fig. 1. Cross-section of a 1,200-K MD polycrystal grain growth simulation,
comparing microstructures at 400 ps (blue) and 2,400 ps (red) after ini-
tial relaxation. FCC-structure atoms [as determined by common neighbor
analysis (81)] are not shown. Coherent twin boundaries are highlighted in
a lighter shade and black rectangles indicate dislocations. Triple junctions
that are nearly stationary relative to the microstructure are circled. The
visualization was performed using OVITO (82).
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Fig. 2. (A–D) The 5-nm-thick cross-sections from the MD polycrystal grain
growth simulation shown in Fig. 1. FCC atoms (common neighbor analysis)
are not shown and the remaining atoms are colored by centrosymmetry
(83). The white lines depict the simulation cell boundaries. A–D, Insets
are schematic representations of the microstructure (lines are GBs; roman
numerals label grains)—a pair of partial dislocations (red) separated by a
stacking fault (gray) is emitted from the I/II/IV TJ that migrates up and left.

from triple junctions has also been observed experimentally (67–
70). Fig. 3 shows a migrating TJ leaving behind a set of closely
spaced coherent twin boundaries. As with dislocations, nearly all
of the twin boundaries that did not form during the initial relax-
ation of the GB network formed at triple junctions during grain
growth. While twinning at TJs has been proposed as a mecha-
nism for relaxing the total energy of the GB network (74), this
does not explain the successive twinning during TJ motion/grain
growth observed here. It is possible, however, that twin forma-
tion may relax internal stresses [as has already been suggested
to explain successive deformation twinning in the vicinity of two
GBs (86)]. This begs the question, What is the origin of these
internal stresses?

TJ Migration Simulations
While the MD simulations of polycrystal grain growth faith-
fully represent TJs and GBs as they occur in the “wild” (i.e.,
in a polycrystal) without the need for all of the simplifying
assumptions made in grain growth theories, the complexity of
the polycrystalline microstructure confounds attempts to draw
precise conclusions on how TJs move. We therefore perform
two sets of MD simulations in more “tame” circumstances,
where TJ kinetics may be more directly probed. The first one
employs a tricrystal configuration, where the microstructure
relaxes from an initial, nonequilibrium geometry toward equi-
librium via coupled GB and TJ migration. The second set
consists of a single, initially elongated grain spanning an oth-
erwise flat GB; for a sufficiently elongated grain this will lead
to steady-state TJ migration as long as the grain width is small
compared with the TJ separation (according to a curvature flow
model, Eq. 1). Similar geometries were used both in experi-
ment (17, 19) and in atomistic simulations studies of the TJ drag
effect (18, 87).

In the tricrystal simulations (Fig. 4), a cylindrical simulation
cell (radius R≈ 37.5 nm) was divided into three grains, all shar-

ing a common [210] axis parallel to the TJ line which initially lies
along the cylinder axis. The vertical GB, labeled 1, is a symmet-
ric tilt GB (Σ9, 96.38◦ misorientation). The other GBs, labeled
2 and 3, are also initially symmetric tilt GBs (Σ15, ±48.19◦

misorientation)—see SI Appendix, Note 3 for more detail. The
ends of GBs 1, 2, and 3 were fixed on the perimeter of the cylin-
drical simulation cell by fixing the atomic positions in a thin shell
along the circumference (the effect of pinning the ends is dis-
cussed in SI Appendix, Note 2). The system inside this shell then
evolves via molecular dynamics in an NPT ensemble with zero
stress along the axial direction. Multiple simulations were per-
formed, varying both simulation temperature (at 800 K, 1,000 K,
and 1,200 K) and pinning-point (2 and 3) locations.

Triple-junction dihedral angles are difficult to measure reli-
ably in an MD simulation because of the discreteness of the
lattice and thermal fluctuations. Therefore, we directly measure
an effect of dihedral/TJ angle φ(t) and TJ location z (t) from
the triangle formed by the pinning points 2 and 3 and the TJ, as
shown schematically in Fig. 4, Upper Right. The triple-junction
angle φ(t) and the TJ position z (t)≤ 0 are related through

tan (
φ(t)

2
) =

sin (φ(0)
2

)

cos (φ(0)
2

) + z(t)
R

, [3]

where φ(0) is the initial TJ angle [its initial position is along the
cylinder axis, z (0) = 0] that also describes the location of the pin-
ning points. If the GBs are nearly flat as they migrate (Fig. 4),
then φ is approximately equal to the dihedral angle Θ(1) [in
equilibrium φ(∞) = Θ(1)].

The time evolution of φ is shown in Fig. 5A at the highest tem-
perature, 1,200 K. At this temperature, the TJ migrates slower
and slower as time passes, asymptotic at late time to φ(∞)≈
100◦ (achieved during the 12-ns simulations) for all initial-angle
TJ angles (i.e., location of the pinning points 2 and 3). The
fact that the TJs in all simulations at this temperature con-
verge to the same angle suggests that the TJ reaches equilibrium,

Fig. 3. Cross-section from a polycrystalline MD grain growth simulation,
colored by centrosymmetry. (A–D) A TJ (circled) migrates up and to the right,
leaving behind multiple, parallel, coherent twin boundaries (thin yellow
lines of atoms).
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Fig. 4. (Lower Left) Time series of a 1,200-K tricrystal MD simulation. The
FCC atoms were removed and the remaining atoms were colored by time
after initial relaxation. The atoms on the surface of the cylindrical simula-
tion cell (black) were held fixed, pinning GBs 1 and 2 at the simulation cell
perimeter. This simulation is represented by the red open circles in Fig. 5.
The GBs and TJs migrate such that the TJ is at position z(t). Replacing the
actual GB profile with straight lines from points 2 and 3 to the TJ, the TJ
angle φ(t) is related to the TJ position z(t) as in Eq. 3, as indicated in the
schematic (Upper Right).

φ(∞) = Θ(1). On the other hand, at the intermediate (1,000 K)
and lowest (800 K) simulation temperatures, the TJ moves slowly
and continues to move at the end of the 12-ns simulation time.
This suggests that equilibrium has yet to be achieved. This is sup-
ported by the observation that simulations starting with different
initial TJ angles φ(0) do not achieve the same values by the end
of the simulation. However, φ(t) moves toward the same value
for different initial conditions, even if they do not reach it within
the simulation time when T < 1,200 K. Fig. 5 B and C shows
the details of migration during the initial nanosecond for several
simulations. At the very earliest times, the TJs all move at com-
parable rates for all temperatures; at low temperatures, the TJ
subsequently stagnates to the velocity seen at long times.

Fig. 6A shows the higher-resolution image of the region
around the TJ from the 800 K, φ(0) = 134◦ simulation at 0.2
ns and 5 ns. In this case, the TJ is moving very slowly. In
Fig. 6A we see that the TJ is not symmetric and that a dis-
connection that is initially present on the GB in the lower left
moves into the TJ, shifts the GB in the lower left downward,
and displaces the TJ (toward the right). This is a unit step of the
disconnection-mediated TJ migration. Fig. 6B shows the shear
stress field near the TJ for the same two configurations. The
very fine-scale features in Fig. 6 B1 are associated with the struc-
ture of the GB itself. Note that when the disconnection in Fig. 6
B1 moves into the TJ in Fig. 6 B2, the stress field around the
TJ changes dramatically on a large scale compared with the
stress features of the GBs themselves. Analysis of the stress
field around the TJ after disconnection absorption shows that
this stress is associated with the net addition of the disconnec-
tion Burgers vector. This observation suggests that disconnection
flux into the TJ both conserves Burgers vector and builds the TJ
stress field.

We now turn to the motion of the elongated grain embedded
into the bicrystal simulations. Fig. 7A shows a time series of one

of the embedded-loop simulations. These simulations are rem-
iniscent of simulations performed by Upmanyu et al. (18, 87);
however, unlike those simulations, these are fully 3D, are per-
formed over a range of temperatures, and focus on a high-angle
tilt GB in place of a low-angle GB for GB(1). In these simula-
tions, periodic boundary conditions are applied in the y and z
directions with free surfaces in the x direction. Over the course
of the simulation, GBs 2 and 3 facet; the system remains in this
state for an extended period. Eventually, the upper TJs suddenly
and very rapidly migrate, annihilating the central grain. Repeat-
ing this simulation under exactly the same conditions (except
different initial velocities) and for a wide range of temperatures
demonstrates that this result is repeatable; see Fig. 7B where we
plot the y coordinate of the upper TJ vs. the logarithm of the
time. At the highest temperature (1,200 K), the waiting period is
very short (0.3 ns) and grows quickly with decreasing tempera-
ture. In most simulations, once the upper TJ starts to migrate,
it does so smoothly. In all cases, GBs 2 and 3 strongly facet
and these faceted GBs do not migrate inward before TJ migra-
tion. We do not report the results for the few cases (6 of 40) in
which either the lower TJ migrates first or both begin migrating
simultaneously.

The motion of the TJ appears to depend on two timescales—
one that characterizes the wait or stagnation time for the TJ to
start moving and the other associated with the finite TJ migra-
tion velocity. Once the TJ begins migrating, the grain shrinks and
the capillarity-driving force for migration increases (hence the TJ
accelerates). At this point, the evolution becomes complex, con-
sisting of simultaneous inward motion of the two TJs as well as
changes in the facet sizes of the vertical GBs. We can quantify the
time before the TJ begins migrating by a wait time τ ; we measure
this from the time of the initial relaxation (faceting) to the time
the TJ passes a particular point (i.e., the dotted line in Fig. 7B).
τ was averaged over eight simulations at the same temperature.
Fig. 7C shows an Arrhenius plot of τ vs. inverse temperature
(τ0 = 1 ns). The fact that these data fall on a straight line demon-
strates that the wait time for the initiation of TJ migration is
thermally activated with an activation barrier of approximately
0.57 eV. Since the timescale associated with the actual TJ migra-
tion is short, this estimate is insensitive to the choice of the
dashed line in Fig. 7B. The magnitude of this activation bar-
rier is comparable to nudged elastic band (NEB) calculations
for disconnection nucleation (36, 88). However, this agreement
should be viewed with caution since these NEB calculations
were performed for GBs other than those in our simulations
and they were based on zero temperature energy surfaces (no
entropy effects). Nonetheless, the agreement suggests (rather
than proves) that the “liberation” of the previously stagnant TJ
may be associated with disconnection nucleation on one of the
GBs. The wait time for TJ motion is long compared with the
migration time, suggesting that the initial disconnection nucle-
ation may be slow compared with subsequent nucleation events.
Perhaps this indicates a change in disconnection nucleation (e.g.,
heterogeneous rather than homogeneous).

The polycrystal simulations and TJ kinetics simulations yield
a number of important observations. Triple junctions are the
source of many defects that form during grain growth, among
them dislocations and twins. Some triple junctions migrate much
more readily than others. At high temperatures, TJs appear to
migrate consistent with conventional theory (smoothly until they
reach a consistent set of equilibrium dihedral angles). At low
temperature, TJs may migrate a short distance and stagnate.
This stagnation may be associated with the stresses generated
by disconnection adsorption. Stagnated TJs can migrate, but the
process that facilitates this migration appears to be thermally
activated and much slower than the initial and subsequent TJ
migration. We now examine these observations in light of a
disconnection dynamics approach.
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Fig. 5. (A) Triple-junction angle φ as a function of time for a variety of temperatures with different initial Θ(1). The colors indicate simulation temperature
and the symbol types indicate initial triple-junction angles φ(0). (B and C) Early time (initial 1.0-ns) behavior of the triple-junction angle φ for the simulations
with initial dihedral angles of 160◦ and 57◦ (indicated by the black dashed lines), respectively. Since the GBs are nearly flat during the migration (Fig. 4),
φ(t) is approximately equal to the dihedral angle Θ(1).

Theory
Grain boundaries migrate via the nucleation and motion of GB
step defects known as disconnections (38) which are charac-
terized by a step-height hi and Burgers vector bi . The set of
all possible disconnection modes {bi , hi} is determined by the
bicrystallography [specifically the displacement shift complete
(DSC) lattice (62)]. For each bi , there is a set of hi separated
by translation vectors in the coincident site lattice (CSL). At low
temperatures, and when large shear deformations may occur,
many GBs strongly favor a particular disconnection mode. This is
the origin of shear-coupled GB migration—the dominant discon-
nection mode determines the shear-coupling factor βi = bi/hi .
Since GBs migrate via disconnections, it follows that triple junc-
tions must migrate via the flux of disconnections from and into
their constituent GBs. The finite step size and Burgers vector
of these disconnections imply constraints on TJ migration that
can explain many of the observations from our MD simulations.
The first constraint is the zero displacement incompletion condi-
tion (40, 66). Simply stated, TJs may migrate only such that the
three GBs all meet along the TJ line. As disconnections are GB
steps with fixed height and direction, arbitrary combinations of
disconnections do not satisfy this condition. The disconnection
fluxes J (i) from each GB must combine at the TJ, satisfying the
expression

3∑
i=1

J (i)h(i) sin Θ(i) = 0, [4]

where Θ(i) is the dihedral angle opposite GB(i) (SI Appendix,
Note 1). This condition holds for a TJ in 2D or any cross-section
of a TJ normal to the TJ line in 3D. The resulting TJ velocity is
then

vtj =
1

3

∑
i,j ,k

εijk

[
J (k)h(k)

sin Θ(j)
− J (i)h(i)

sin Θ(k)

]
t(i), [5]

where εijk is the permutation operator and t(i) is a unit vector
aligned with the plane of GB (i), pointing toward the TJ. Nor-
mally, this condition is simply a description of how TJ and GB
motions are related.

When disconnections flow into a TJ, satisfying the zero
displacement incompletion condition, the disconnection step

Fig. 6. Stress accumulation at a migrating triple junction from a tricrys-
tal MD simulation performed at 800 K with an initial TJ angle φ(0) = 134◦.
(A1 and A2) The red lines in A2 (5.0 ns from initial) indicate the GB and TJ
positions in A1 (0.2 ns from initial). B1 and B2 show shear stress σxy . There is
some visible stress in B2 due to the initial relaxation. These images are taken
from the corresponding simulation depicted in Fig. 4.
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Fig. 7. (A) Time series of an embedded loop simulation at 800 K. After the GBs facet, the microstructure is stationary for a period and then suddenly
migrates rapidly. (B) TJ position vs. time for multiple simulations at different temperatures. Series with the same color are from simulations performed at
the same temperature. The Xs at the bottom show the time τ that the TJ crossed the dotted line at the corresponding temperature. (C) Arrhenius plot of
ln τ0/τ , where τ0 = 1 ns and τ is the time after initial relaxation that the TJ passes the dotted line in B, averaged over six simulations at each temperature.
This plot gives an activation energy of 0.57 eV± 0.02 eV.

content annihilates, moving the TJ. However, the disconnec-
tion Burgers vectors do not simply vanish; the total Burgers
vector is conserved. This implies that in all but very special
cases, the net result of disconnection-mediated TJ motion is the
accumulation of Burgers vector at the TJ. However, as the resid-
ual Burgers vectors accumulate, the resulting stress fields will
repel subsequent disconnections, stagnating TJ migration. Long-
distance TJ migration is possible only if there is no accumulation
of stress, implying an additional Burgers vector cancellation
condition

3∑
i=1

J (i)b(i) = 0. [6]

This equation represents three conditions on the three variables
J (i). Combined with the zero displacement incompletion condi-
tion, the system is overdetermined—there are more equations
than variables and valid solutions exist only for (very) special
cases (e.g., pure step disconnections, disconnections with paral-
lel Burgers vectors, etc.). However, since experiments and MD
simulations show that triple junctions do migrate long distances,
something else must happen; several mechanisms can facilitate
triple-junction migration, either by adding degrees of freedom
or by relaxing the resulting stresses.

Bicrystallography permits a discrete, infinite set of discon-
nection modes to any GBs. While GB migration favors dis-
connection modes with low nucleation/migration barriers, each
disconnection mode responds differently to driving forces on the
boundary. A GB can switch to secondary modes under a given set
of driving forces [e.g., when there are competing driving forces
for migration (65)]. Secondary-mode nucleation is associated
with GB sliding as well as GB migration without shear coupling,

but it may also facilitate TJ migration. If GB(i) is populated with
Ni types of disconnections, then Eq. 6 becomes

3∑
i=1

Ni∑
j=1

J
(i)
j b(i)

j = 0, [7]

where the summation on j represents all disconnection modes of
each GB. This modification adds many degrees of freedom for
TJ migration, and the conditions of TJ migration are easily sat-
isfied. TJ migration by this means implies that TJs may migrate
rapidly at first by the primary modes and then accumulate stress
and stagnate (barring the extremely rare/special case in which
the primary disconnections can satisfy both conditions simultane-
ously), after which their migration is controlled by the formation
of secondary disconnections.

At high temperature, when the population of secondary dis-
connections is larger, stagnation is easily overcome. This is
consistent with the GB simulations in TJ Migration Simulations.
However, the same simulations showed that GB migration may
stagnate at low temperature; this is associated with the large
energetic penalties associated with forming secondary-mode dis-
connections. This explains the TJ stagnation observed in the
800-K GB simulations.

As described above and seen in the polycrystal simulations
(Figs. 1–3), stresses can be relaxed during microstructure evo-
lution by dislocation and twin emission from GBs and TJs. If the
TJ can emit dislocations along N distinct slip planes, then Eq. 6
becomes

3∑
i=1

J (i)b(i) +

N∑
m=1

JLm bLm = 0, [8]
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where JLm and bLm denote fluxes and Burgers vectors of lattice
dislocations, respectively. With the additional degrees of free-
dom provided by lattice dislocation flux, TJ migration may occur
without new disconnection-mode activation. Likewise, sequen-
tial twinning at TJs may be a deformation process (89) that
relaxes the accumulating internal stress.

Dislocation emission into the grains is a viable accommoda-
tion mechanism only if the slip planes in the crystal are suitably
oriented to dissipate the accumulated Burgers vector. Coherent
twin boundaries form on a restricted set of lattice planes and so
may assist TJ migration only for particular lattice orientations
and migration directions. This leaves secondary disconnection
nucleation as the general determiner of TJ migration. In this
framework, TJ mobility MTJ is no longer an intrinsic property
of a TJ, but rather must be determined directly in terms of dis-
connection types, densities, and mobilities. At low temperature,
some TJs should be highly mobile while others are effectively
sessile, depending on the availability of secondary disconnec-
tion modes. This disparity should vanish at high temperature
where the formation of multiple disconnection types is likely.
More fundamentally, this implies that through the disconnec-
tion mechanism, GB and TJ migrations are deeply intertwined
and disconnection theory can yield a unified framework for
microstructure evolution. In the next section, we build a contin-
uum description of microstructure evolution accounting for GB
and TJ migration within the context of disconnection motion.

Continuum Model
Zhang et al. (40) developed an equation of motion for the evolu-
tion of GB profiles based on a single disconnection-mode model.
In this model, the disconnection density is a continuous variable
and the dynamics account for both disconnection nucleation and
migration. We extend this method to consider both multiple dis-
connection modes and disconnection-mediated TJ motion. The
profile of GB(i) is described by z (i), which measures the GB
“height” above some reference plane parallel to the symmetric
GB; it evolves as

z
(i)
,t =−

∑
j =1,2

v
(i)
j (|ρ(i)j |h

(i)
j + 2η

(i)
j ), [9]

where z
(i)
,t denotes the derivative of z (i) with respect to time. v (i)

j

is the glide velocity of j th-mode disconnections on GB(i) and is
given by

v
(i)
j =Md

[
(σ + τ )b(i)

j + Ψh
(i)
j − γz,xxh

(i)
j

]
, [10]

where Md is a disconnection mobility, σ is the contribution to
stress from other disconnections, and τ is any external stress.
The (σ + τ )b(i)

j term represents an appropriate summation over
stress and Burgers vector components as in the Peach–Koehler
force (90). In the limit that the GB is close to a symmetric inclina-
tion, such that b(i)

j lies parallel to the GB plane, we can consider
the shear stresses resolved along the GB plane σ and τ , as well
as the scalar b(i)j = |b(i)

j |. Finally, the background thermal density

of disconnections (scaled by step height) η(i)j is

η
(i)
j =

h
(i)
j

a
e−E

(i)
j /(kBT), [11]

where a is an atomic spacing, and E
(i)
j is half the disconnection

pair formation energy (40).
We consider three grain boundaries GB(1), GB(2), and GB(3),

which meet at a triple junction P = x0. We further assume that
each GB(i) has two possible disconnection modes (b

(i)
1 , h

(i)
1 ) and

(b
(i)
2 , h

(i)
2 ), such that b(i)1 b

(i)
2 > 0 and h

(i)
1 h

(i)
2 < 0 (β1 and β2 have

opposite sign). The TJ migrates to reduce the total energy of the
system via the exchange of disconnections between the TJ and its
constituent GBs. TJ motion is therefore related to the step flux
into/from the GB,

J
(i)
1 h

(i)
1 + J

(i)
2 h

(i)
2 =−vTJ · n

(i), [12]

where J
(i)
j is the flux of j th-mode disconnections from the ith

GB and n(i) is the normal to the ith GB symmetric inclination.
The Burgers vector flux into the TJ is then

d

dt
bTJ =

∑
i=1,2,3

J
(i)
1 b(i)

1 + J
(i)
2 b(i)

2 , [13]

where bTJ is the total Burgers vector at the TJ.
The change in total energy due to TJ motion has contributions

from both the disconnection step and the Burgers vector. When
a net Burgers vector is present at the TJ, the TJ will tend to
absorb nearby disconnections (or emit disconnections) to cancel
this accumulated Burgers vector and reduce the ‖ bTJ ‖

2 energy
contribution. This cancellation happens very quickly and, in the
continuum limit, we assume that the zero accumulated Burgers
vector condition bTJ = 0 holds during TJ motion. Thus, the driv-
ing force on TJ motion is solely described by the variation of the
energy associated with surface tension (from the disconnection
step character and the GB energy itself),

vTJ =MTJ
∑

i=1,2,3

γ(i)t(i), [14]

where MTJ is the TJ mobility, γ(i) is the GB energy, and t(i) is
the unit vector tangent to GB(i). In particular, vTJ = 0 defines
the equilibrium angles in Eq. 2. While this equation of motion
merges with the classical continuum form of TJ motion, the TJ
mobility is not an intrinsic (well-defined) property of the TJ.
The TJ mobility is ultimately governed by the disconnection
availability and mobility.

The problem of TJ migration reduces to the optimization
problem (where MTJ≥ 0)

max |vTJ|=MTJ ‖
∑

i=1,2,3

γ(i)t(i) ‖, [15]

subject to constraints∑
i

J
(i)
1 b(i)

1 + J
(i)
2 b(i)

2 = 0 [16]

J
(i)
1 h

(i)
1 + J

(i)
2 h

(i)
2 =−vTJ · n

(i) [17]

|J (i)
j h

(i)
j | ≤Md

∣∣∣∣∣∣η(i)j n(i) ·
∑

k=1,2,3

γ(k)t(k)

∣∣∣∣∣∣ , [18]

where i = {1, 2, 3} and j = {1, 2}. Eqs. 16 and 17 refer to the
zero Burgers vector accumulation and zero displacement incom-
pletion conditions. The inequality Eq. 18 implies that not all
nucleated (positive or negative) disconnections can contribute to
TJ motion due to the above two constraints, where the right-hand
side describes the maximal possible disconnection flux (scaled by
step height). The driving force acting on a disconnection at the
TJ is n(i) ·

∑
k=1,2,3 γ

(k)t(k), and the available disconnections are

limited by the scaled thermal density η(i)j . Use of the maximal TJ
velocity is consistent with the assumption that TJ motion is over-
damped and occurs in the direction of the maximum force on
the TJ.
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Focusing now on the TJ migration case of Fig. 4, the symme-
try of the problem implies that there should be no net motion
of the TJ in the x direction [i.e., n(1) ·

∑
k γ

(k)t(k) = 0]. There-
fore, there is no flux of disconnections into/out of the TJ from
GB(1) and J

(1)
1 = J

(1)
2 = 0. This permits an analytic solution to

the optimization problem,

vTJ =MTJ
∑

i=1,2,3

γ(i)t(i) [19]

MTJ =


Mdη

(2)
2

(
b
(2)
2 h

(2)
1

b
(2)
1 h

(2)
2

− 1

)
, if η

(2)
1 b

(2)
1

h
(2)
1

≥ η
(2)
2 b

(2)
2

h
(2)
2

,

Mdη
(2)
1

(
1− b

(2)
1 h

(2)
2

b
(2)
2 h

(2)
1

)
, if η

(2)
1 b

(2)
1

h
(2)
1

<
η
(2)
2 b

(2)
2

h
(2)
2

,
[20]

where bji = |bj
i |.

Eq. 20 highlights a fundamental aspect of this analysis; the
dynamics that occur at the triple junction during disconnection
annihilation are very fast relative to the kinetics of disconnec-
tion nucleation and migration along the GBs (otherwise the TJ
would not be able to migrate rapidly in Fig. 7). The TJ mobility
is a result of the cooperation of available disconnections sub-
ject to certain constraints that account for the complex effects
of the crystallography of grains and grain boundaries. The resul-
tant TJ motion may be limited by the disconnection availability
and mobility and involves competition between disconnection
modes with different characteristics (step height and Burgers
vector). If secondary-mode nucleation is the limiting factor for
TJ migration, then Eq. 20 implies a connection between TJ and
GB mobility; these are both manifestations of the more funda-
mental disconnection nucleation terms ηi and mobility Md (likely
more important at low temperature).

Fig. 8 shows the results of a tricrystal simulation (same geom-
etry as Fig. 4) performed using the continuum model (for model
assumptions and input data, see SI Appendix, Note 3). Here,
the nucleation barriers describing η(i)1 and η(i)2 for each GB are
0.3 eV and 0.6 eV, respectively. The trends here are in excellent
agreement with the MD simulation results in Fig. 5. At high tem-
perature, the TJs rapidly migrate until they reach the equilibrium
triple-junction angle [i.e., Θ(1) = 120◦ here where we assumed
that the GB energies are isotropic]. At lower temperature, the

Fig. 8. Triple-junction migration (same geometry as Fig. 4) via the contin-
uum model [i.e., φ(t)] for comparison with the MD simulation results (Fig.
5). Unlike in the MD simulation the radius of the simulation cell R =∞.

migration is significantly slower, limited by the barrier to sec-
ondary disconnection nucleation [expressed via the η(i)2 terms].
While the MD simulations show that TJ stagnation is possible
at low temperature in the course of a finite-time simulation,
given sufficient time for secondary disconnection modes to acti-
vate, these too should approach equilibrium. In the continuum
model, which implicitly assumes statistical averaging, this simply
manifests as very slow kinetics (approaching equilibrium).

The advantages of the continuum simulation approach over
molecular dynamics are twofold. First, it provides a direct con-
nection between the theory and the microstructure evolution
that is not accessible to MD because of assumptions required on
simulation cell geometry and simulation timescale. Second, it
highlights the fundamental conclusion that TJ mobility is gov-
erned by the same kinetics as GB mobility by geometric necessity.

Discussion
TJ migration follows from GB migration; ultimately, TJs migrate
via the reaction of GB disconnections along the TJ line. Discon-
nections determine how and how fast TJs migrate. Specifically,
a TJ may migrate only if disconnections annihilate in appropri-
ate ratios that preserve the connectivity of GBs along the TJ
line and do not accumulate significant residual Burgers vector.
This condition cannot, in general, be met if each GB migrates
only by a single disconnection mode. If only single disconnection
modes are available on the GBs meeting at a TJ, such a TJ should
migrate a small distance, accumulate stress, and stagnate. How-
ever, all GBs have access to multiple disconnection modes. Since
secondary disconnection modes are necessary (in most cases)
for continued TJ migration, TJ motion will be slow if the for-
mation/motion of such secondary modes is difficult. This means
that while GBs in bicrystals may move via single disconnection
modes, such single-mode dominance is rare in the wild (i.e., poly-
crystalline materials). We also note that since the relative ease
of nucleating different disconnection modes varies dramatically
from GB to GB, TJs are also expected to show considerable
anisotropy in their mobilities. As noted by Holm and Foiles (91),
a minority of slow GBs may lead to grain growth stagnation (so
too for TJs). This may play a significant role in abnormal grain
growth.

While the present results point to the mechanism by which GB
and TJ motions are coupled, the results presented here also point
to an important coupling between microstructure evolution and
the mechanical response of a material. While the temperature-
dependent shear coupling of GB migration and strain (65) associ-
ated with disconnection motion can produce significant stresses in
constrained bicrystals, this effect may be both magnified and ame-
liorated in polycrystal microstructure evolution. Disconnection
pile-up at triple junctions can produce significant back stresses,
but such pile-ups can be relaxed by emission of dislocations or
twins into grain interiors. This pile-up mechanism at TJs may be
one of the dominant mechanisms for emission of defects into the
lattice in nanocrystalline materials (67–70).

Finally, we note that while a disconnection picture of grain
boundary and triple-junction dynamics appears to add com-
plexity to how we view microstructure evolution, it is through
examination of detailed mechanisms and reducing these to
physically based, mechanism-specific continuum models, as we
propose here, that we learn how to systematically simplify our
understanding of GB dynamics while retaining the important
features that affect microstructure evolution. To misquote Ein-
stein “everything should be made as simple as possible, but not
simpler” (ref. 92, p. 475).
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