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ABSTRACT: Ambient PM2.5 concentrations measured at
fixed site monitors (FSM) are often biased with respect to
exposure concentrations because of spatial variability and
infiltration. Based on comparison of ambient concentrations
from 14 FSMs and of exposure concentrations measured
indoors and outdoors at two schools in Hong Kong for winter
and summer seasons, the magnitude and sources of exposure
error based on using FSMs as a surrogate for exposure are
quantified. An approach for bias correcting surrogate exposure
estimates from FSMs is demonstrated. The approach is based
on a proximity factor (PF) that accounts for differences in
spatial locations, proximity to emissions and deviation from
dominant wind direction, and an infiltration factor (IF) that
varies by season. The combination of the PF and IF reduce bias in mean school exposure estimates from ±90% to ±20%. Bias in
exposure estimates from using FSMs as surrogates tend to be smaller for which the exposure site and FSM are aligned with wind
direction, have similar sampling height, and are in close proximity. The methodology demonstrated to assess concordance
between FSMs and exposure measurement sites can be applied more broadly to help reduce exposure error, which may help to
interpret seasonal variations in health estimates.

■ INTRODUCTION

Fine particles, referred to as PM2.5, have an aerodynamic
diameter of 2.5 μm or less. For ambient PM2.5, the weight of
evidence is “causal” for cardiovascular effects and premature
mortality from both short-term (daily) and long-term (annual)
exposure at concentrations typical of air quality in the U.S.1

Short- and long-term exposures are “likely to be causal” for
respiratory effects.1 The assessment of causality was informed
by integration of evidence from multiple health effects
studies.2−9

Ninety two percent of the world population lives in areas
with ambient PM2.5 concentrations exceeding the annual
World Health Organization (WHO) air quality guideline of 10
μg/m3.10 Human exposure to ambient PM2.5 includes exposure
to PM2.5 concentrations while outdoors, and exposure while
indoors or in vehicles to ambient PM2.5 that has infiltrated into
these microenvironments.11,12 A microenvironment is a

location for which exposure concentrations are homogeneous
or well-characterized.13 PM2.5 concentrations recorded at a
fixed site monitors (FSM) are typically used as a surrogate for
exposure in estimating health effects in epidemiologic studies
as they can provide readily available real time data with high
measurement accuracy.14−18 However, measurements from
FSMs often lack of spatial coverage and do not account for
exposure in different microenvironments.19,20 Failure to
account for the variations in outdoor concentration and
outdoor to indoor infiltration may lead to potential for classical
exposure error based on differences between exposure and
FSM ambient PM2.5 concentrations.

13,20,21 Classical exposure

Received: August 10, 2018
Revised: November 4, 2018
Accepted: November 6, 2018
Published: November 6, 2018

Article

pubs.acs.org/estCite This: Environ. Sci. Technol. 2019, 53, 808−819

© 2018 American Chemical Society 808 DOI: 10.1021/acs.est.8b04474
Environ. Sci. Technol. 2019, 53, 808−819

D
ow

nl
oa

de
d 

vi
a 

H
O

N
G

 K
O

N
G

 U
N

IV
 S

C
IE

N
C

E
 T

E
C

H
L

G
Y

 o
n 

Fe
br

ua
ry

 1
9,

 2
01

9 
at

 0
8:

50
:2

4 
(U

T
C

).
 

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.
 

pubs.acs.org/est
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.8b04474
http://dx.doi.org/10.1021/acs.est.8b04474


error leads to effect attenuation and reduced statistical power
in epidemiological studies.19−21

Most people spend more than 80% of their daily time
indoors; therefore, infiltration of ambient PM2.5 to indoor
microenvironments is an important determinant of personal
exposure to PM2.5.

22 For example, the infiltration of outdoor
PM2.5 was found to be up to 80% at homes with open
windows.23 While people are indoors, they are exposed to
PM2.5 generated from indoor sources and particles infiltrate
from outdoors through the building envelope and ventilation
systems. In enclosed microenvironments, the contribution of
ambient air pollution to indoor exposure can be quantified
using linear regressions between simultaneous indoor and
outdoor measurements.11,24−26 The infiltration factor (IF),
which is the equilibrium fraction of ambient particles that
infiltrate indoors and remain suspended, is inferred as the slope
from linear regression.
Infiltration factors derived from linear regression are widely

used in microenvironmental (ME) models, such as the U.S.
Environmental Protection Agency (EPA) Air Pollutants
Exposure (APEX) model or Stochastic Human Exposure and
Dose Simulation (SHEDS-PM) model for PM.12,27 In these
ME models, the IFs are used to estimate the exposure to
ambient pollutants in indoor microenvironments based on
outdoor ambient concentrations.
PM2.5 concentrations from FSMs are commonly used in

these models as a surrogate for outdoor concentration.12,28,29

However, the use of FSM outdoor concentrations may under-
or overestimate the outdoor concentrations nearby the
targeted microenvironment due to spatial variability in outdoor
PM2.5 concentrations.

30−33 For example, Raysoni et al. found
that the outdoor PM2.5 concentrations measured at four
schools were 15−40% higher than at the nearest FSMs.33 In
some epidemiological studies, exposure differences due to
spatial variations in outdoor concentration have been
considered categorically based on their proximity to a major
emission source. For example, a cross-sectional study
conducted in Italy categorized the subjects into highly exposed,
moderately exposed, and unexposed groups based on their
distance from a major road.34 In APEX, a proximity factor
(PF) is used to account for spatial differences in outdoor PM2.5
concentrations between a FSM and the outdoors adjacent to
the microenvironment of interest. PFs can be derived from
linear regression of PM2.5 concentrations between outdoors
adjacent to the targeted microenvironments and the selected
FSMs.27 However, studies on PF are scarce. If data on PF are
unavailable, a default PF value of one is typically used, which
may lead to classical errors in exposure estimates.
Recent studies indicate that spatial differences in outdoor

PM2.5 concentrations are related to geographical and
meteorological parameters.35−38 For example, Eeftens et al.
found that 21−79% of the variability in annual average outdoor
PM2.5 concentration in 20 European study areas can be
explained by differences in GIS-derived predictor variables,
such as elevation, X/Y-coordinate and land use information.35

These factors reflect geographic location characteristics which
may relate to the dispersion of pollution, distance to the
emission sources, and intensity of nearby emissions.35 Wind
direction is also an important variable that determines the
impact of sources on receptor points.26,39−41 For example, the
outdoor PM2.5 concentration at 10 schools in Pakistan were
observed to be 20−35% higher in winter than in summer due
to differences in dominant wind direction.42 Quantifying the

association between influential sources of spatial variability and
the PF may help in evaluating whether a FSM is a useful
outdoor surrogate for a targeted location and help in
developing methods to address the classical error in exposure
estimates for indoor microenvironments.
There are 16 FSMs spatially distributed over an area of 1100

km2 in Hong Kong, of which 14 stations have long-term
available monitoring data. The accessibility of air quality
monitoring data from these stations provides a unique
opportunity to investigate the errors in exposure estimates
that accrue from using FSM measured concentrations as a
surrogate for outdoor concentrations adjacent to a micro-
environment of interest. School is an important microenviron-
ment because children of school age are particularly susceptible
to exposure to PM2.5, and exposure at schools may impose
health risks and adversely affect study performance.43−47

However, studies on children’s exposure to ambient particles
at schools are scarce.28 Two schools, located in areas with
different location characteristics, were chosen for investigation.
Indoor and outdoor measurements were made at both schools
in both winter and summer, which enables quantification of
infiltration factors and proximity factors under different
conditions. The objectives of this paper are to (1) assess the
sensitivity of PF to the choice of FSM; (2) quantify the
exposure error introduced by using FSM as an outdoor
surrogate with and without PF correction; and (3) determine
whether variability in the PF can be explained by location
characteristics.

■ MATERIALS AND METHODS

The methodology includes identification of factors affecting
outdoor PM2.5 concentrations and infiltration of PM2.5 into
indoors, site selection, measurement of indoor and outdoor
exposure concentrations at selected schools, analysis of FSM
data, quantification of IF and PF derived from linear regression
models, development of exposure error under three scenarios,
development of concordance indices and quantification of their
associations with PF, and statistical methods in data analysis.

Site Selection. Factors affecting spatial variations in
outdoor PM2.5 concentrations and PM2.5 infiltration were
considered in deciding when and where to measure indoor and
outdoor PM2.5 concentrations.
Outdoor PM2.5 concentrations vary with space and time due

to variations of emission sources and meteorology.35,36,38,39

Concentrations measured at a specific location are related to its
proximity to local sources, geographic location relative to the
air pollution flow determined by the wind, and terrain features
regarding air pollution dispersion.35,36,39,48 As an example of
the influence of proximity to emission sources, the annual
PM2.5 concentrations monitored at a roadside site in Hong
Kong were nearly 2.5 times higher than at a rural background
site.49 With regard to direction of air flow, outdoor air quality
in Hong Kong is closely related to the Asian Monsoon system,
characterized by shifts in dominant wind direction. The
persistent northeast monsoon in winter brings pollutants from
the Asian continent, whereas the summer monsoon shifts to
southwesterly winds that bring in cleaner marine air.49−51 The
average PM2.5 concentrations observed at a background site in
Hong Kong were 2 times higher in winter than in summer.50

Air dispersion tends to be better at higher elevation, whereas
exposure microenvironments located in a valley or urban street
canyon may experience higher ambient concentrations.38,48
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The selected 14 FSMs are spread widely over the Hong
Kong territory, including three roadside sites (R1-R3), one
background site (BG), and ten general stations (G1-G10). The
roadside and general stations are located in urban areas. The
background site is located in a northeast rural area, which is
upwind of other sites in winter. Most of the FSMs have an
elevation lower than 15 m, except the site BG (16 m) and G1
(67 m). The height of the sampling inlet from ground at these
sites ranges from 3 to 4.5 m at the roadside monitors, to 11 to
27.5 m at the background and general sites. Roadside monitors
are more subject to local vehicle emissions because of their
close proximity to the road (less than 5 m) and lower sample
inlet height.49

Infiltration of outdoor particles depends on ventila-
tion.23,52−54 For example, IF was found to be approximately
0.1 at homes with air conditioning (A/C) on and 0.8 at homes
with open windows.23 Common ventilation methods at schools
in Hong Kong include natural ventilation through open
windows and doors, and mechanical ventilation through the
use of inlet and exhaust fans, ceiling fans and A/C.55 Typically,
natural ventilation is used in winter. A/C is used in summer
when ambient temperature is higher than 25 °C.55

Two public primary schools were selected: one on a hillside
with an elevation of 82 m (School A) and the other in a valley
with an elevation of 6 m (School B). They are shown in Figure
1. Public schools in Hong Kong are operated or aided by the
government and provide free education for more than 80% of
the total primary students.56,57 The selected schools are typical
public schools in Hong Kong with 6-stories of mostly
classrooms and an average class size of 30 students.57 There
are no obvious combustion sources inside the selected schools
as meals are provided by lunchboxes delivered from suppliers
outside campus, which is the common practice in Hong
Kong.58 School A is adjacent to a road with annual average
traffic flow of less than 500 vehicles/hour.59 School B is located
in a congested urban area adjacent to a road with annual
average traffic flow of 1500 vehicles/hour.59 Both schools use
natural ventilation in winter with open windows and doors,
and A/C with ceiling fans in summer. Windows and doors
were usually closed during A/C use, except that some windows
at School B were 1/10−1/8 of fully open in summer to help
reduce a flu epidemic.

School Measurement and Quality Control. Measure-
ments at the selected schools were conducted during the

Figure 1. Geographic location of indoor and outdoor at selected schools and the 14 fixed-site monitors (FSM) in Hong Kong.
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school semester under normal operation with students in
attendance. Continuous indoor and outdoor measurements
were simultaneously conducted on weekdays during school
hours (8:00 a.m. to 3:00 p.m.). PM2.5 concentrations measured
in both classrooms and nonclass rooms, such as assembly hall
and multifunction room, were used to quantify indoor
concentrations, which reflect the exposure concentrations
during typical school activities. Outdoor PM2.5 concentrations
were measured along a transect along the nearest road, which
was less than 0.5 km from the school. The sampling periods
ranged from January 5 to 30, 2015 in winter and from June 1
to 28, 2015 in summer.
PM2.5 concentrations were measured using a portable light

scattering laser photometer, TSI DustTrak II Aerosol Monitor
8530.60,61 CO2 concentrations and temperature and relative
humidity were measured using a TSI Q-Trak model 7575.62 All
measurements were made at 1 Hz. CO2 is an indicator of
ventilation and human occupancy in enclosed spaces.63 Two
identical sets of instruments were placed into two backpacks,
each with one DustTrak and one Q-Trak, for simultaneous
measurements indoors and outdoors at each school. The
sampling tube outside the backpack was placed at the height of
nose level of a student while sitting in the classroom, which
was approximately 0.9 m above the ground.
Quality assurance included instrument calibration, time

synchronization, a before-and-after check list, consistency
checks, cross-checking during parallel measurements, and
measurement protocol. The DustTrak measured PM2.5
concentrations are typically a factor of 2−4 higher compared
to reference methods, such as those used in FSMs.61,64,65 The
light scattering detection method used in the DustTrak is
potentially sensitive to humidity, which affects particle size and
shape.66,67 To enable comparison with FSMs, the DustTraks
were calibrated against a federal equivalent method, a Thermo
Fisher Scientific Synchronized Hybrid Ambient Real-time
Particulate monitor, SHARP model 5030,68 at the Hong Kong
University of Science and Technology (HKUST) air quality
research supersite. Calibration factors were derived for each
DustTrak based on 7−8 h of colocation with the SHARP at 1
min resolution in each winter and summer period, to account
for seasonal differences in humidity.
All instruments were time synchronized each day to the

Hong Kong Observatory clock. The DustTrak and Q-Trak
were zero calibrated in the lab before each measurement. A
before-and-after checklist was developed to record instrument
operation status. The two backpacks were cross-checked in
parallel by colocating them during daily trips between the lab
at HKUST and the schools. A detailed measurement standard
operating procedure with log sheets was developed.
Fixed Site Monitors. Hourly average ambient PM2.5

concentrations were obtained from each FSM during the
sampling period in each season. The PM2.5 concentrations at
the selected FSMs were measured with hourly or subhourly
resolution using “reference methods” or “equivalent methods”
designated by the U.S. EPA, including Thermo Scientific
Partisol-Plus 2025, R&P TEOM Series 1400a-AB-PM2.5,
Thermo Scientific TEOM 1405-DF, Met One BAM1020,
and T-API 602 Beta Plus.69 Hourly wind speed and wind
direction were obtained from a background meteorological
station (Waglan Island) in Hong Kong. The average wind
speed was 6.1 m/s in winter with stand deviation of 2.6 m/s,
and 5.5 m/s in summer with stand deviation of 2.1 m/s. The

dominant wind direction in Hong Kong is northeast in winter
and south to southwest in summer.
Factors that may affect the differences in outdoor PM2.5

concentrations between schools and FSMs were hypothesized
to include distance between the school and FSM, differences in
elevation and sampling height between the school and FSM,
and direction from the school to the FSM relative to the
dominant wind direction. These comparative variables were
quantified based on site data for each school and FSM.

Infiltration Factor and Proximity Factor. Infiltration
factors for outdoor particles at selected schools were derived
based on linear regression between simultaneous indoor
measurements at a school and outdoor measurements made
in close proximity to the school, which was at the nearby road
transect, in each season:

ε= + +C C CIFs p t s p t s p t tidr, , , s,p odr, , , NA, , , (1)

Where Cidr,s,p,t = indoor PM2.5 concentrations at school s in
season p at time t (μg/m3); Codr,s,p,t = outdoor PM2.5
concentrations at school s in season p at time t (μg/m3);
CNA,s,p,t = nonambient component of indoor concentration at
school s in season p at time t (μg/m3); IFs,p = infiltration factor
derived for school s in season p, unitless; εt = random error
(μg/m3); idr = indoor location (e.g., classroom); s = school
index (e.g., School A, School B); p = season (e.g., winter,
summer);t = time step (hour); odr = outdoor location in close
proximity to the school, which is the nearest transect in this
study; NA = nonambient sources.
PFs were estimated by school and season based on linear

regression models (LRM) developed from outdoor PM2.5
concentrations between the nearest transect and each of the
FSMs:

ε= + +C C CPFs p t s p p t s p t todr, , , ,FSM, odr,FSM, , UE, ,FSM, , (2)

Where Codr,FSM,p,t = outdoor PM2.5 concentrations measured at
a FSM in season p at time t (μg/m3); CUE,s,FSM,p,t = unexplained
concentrations at school s that is not explained by the
variability in the concentration at a FSM in season p at time t
(μg/m3); PFs,FSM,p = Proximity factor estimated between
school s and a FSM in season p, unitless; FSM = fixed site
monitor, i.e., R1-R3, G1-G10, BG; UE = unexplained sources
which may associated with local sources.

Exposure Error. To assess the exposure error introduced
from using different outdoor surrogates, indoor PM2.5
concentrations were estimated based on three sources of
direct or surrogate outdoors concentrations: (S1) outdoor
concentration measured at transects in close proximity to the
selected school; (S2) outdoor concentration from a FSM; and
(S3) outdoor concentration from an FSM adjusted by an
appropriately calibrated PFs, FSM,p. In all three scenarios, IFs,p is
used to estimate indoor concentration based on outdoor
concentration.
The exposure errors introduced by using different outdoor

surrogates were evaluated by comparing the differences
between hourly estimated indoor PM2.5 concentrations and
the hourly measured indoor concentrations for both schools in
both winter and summer:

=
−

×
C C

C
EE

( )
100%r s p t

r s p t s p t

s p t
, , ,

, , , idr, , ,

idr, , , (3)

Where EEr,s,p,t = exposure error under scenario r at school s in
season p at time t, unitless; Cr,s,p,t = estimated concentration
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under scenario r at school s in season p at time t (μg/m3); r =
scenarios, i.e., S1, S2, S3.
Concordance Indices. Four concordance indices (CIs)

were developed based on factors that may affect the spatial
variability of PM2.5 concentrations, including distance between
school and FSM (Ds,FSM), difference in elevation (ΔEs,FSM) and
sampling height (ΔHs,FSM) between school and FSM, and the
angle difference between school to FSM and the dominant
wind direction (ΔWs,FSM). Ds,FSM, and ΔEs,FSM represent the
horizontal and vertical spatial differences between the selected
schools and FSMs. ΔHs,FSM represents the vertical proximity to
ground emission sources, whereas ΔWs,FSM represents the
geographic location relative to the air pollution flow. Different
forms of these indexes, such as inverse and log, are compared
to examine possible relationships under different weightings on
CIs.35 The inverse forms are developed based on assumed
Gaussian dispersion to reflect the inversely decreasing impact
from emissions with distance and height.70,71 The log-normal
forms take into account that the variability in the quantified
variable must be non-negative. To investigate the interactions
among these factors and their impacts on PF, seven mixed CIs
were introduced based on various combinations of products of
individual CIs, as listed in Table 1. To assess the sensitivity of
associations to school location, the associations between
PFs,FSM,p and each CI were examined separately for School A
and School B. Associations between PFs,FSM,p and the CIs were
used to develop guidance regarding whether a FSM is a useful
surrogate for ambient air quality immediately outside the
selected school. The relationship between PFs,FSM and CIs were
quantitatively described using a linear regression model to
enable inference of the magnitude of the PF for sites of
interest.
Statistical Analysis. Data from the portable monitors were

merged into a 1 min averaging time data set using SAS version
9.3. The 1 min average PM2.5 data were scaled based on the
calibration factors derived for each DustTrak in comparison to
the SHARP at the same time resolution in each season. For

comparison to FSMs, the 1 min DustTrak PM2.5 concen-
trations were averaged on an hourly basis. Association between
indoor and outdoor PM2.5 concentrations at schools and FSMs
were quantified using Spearman correlation coefficient (SCC),
which assesses how well the relationship between two variables
can be described using a monotonic function.72 The
association assessed by SCC can be either linear or nonlinear.
Estimates and standard errors of IFs,p and PFs,FSM,p were

derived from LRMs as given in eqs 1 and 2, respectively. Two
tailed t tests were used to determine whether the slopes and
intercepts estimated from LRMs were significantly different
from zero and whether the slopes were significantly different
from unity at a 95% confidence level (p-value < 0.05). The
developed LRMs were evaluated based on the coefficient of
determination (R2), which indicates the proportion of the
variance in the dependent variable that can be explained by the
independent variable. Associations between PFs,FSM,p and
individual CIs were investigated using SCC. The quantitative
relationship between PFs,FSM,p and CIs with significant SCC
was investigated using a stepwise regression model with entry
and stay significance level of 0.1. The final model for PFs,FSM,p

was determined by the minimized Akaike’s information criteria
(AIC). Differences in indoor PM2.5 concentrations were
calculated between hourly estimated indoor concentrations
and the corresponding measured values for each school and
season. For each outdoor concentration scenario (S1, S2, S3),
exposure errors were quantified based on their mean and
standard deviation, and were visualized with boxplots.
Continuous measurements have been reported to be

autocorrelated, indicating serial dependence with previous
observations.73 The presence of autocorrelation is a potential
factor that may affect the regression analysis between outcome
and explanory variables.74 Sensitivity tests were conducted to
evaluate the impact of autocorrelation on the infiltration
estimates. For a 1 h time interval, there is no significant
differences in IF estimates between with and without

Table 1. Spearman Correlation Coefficient between Concordance Indices and PF, and Final Modela

concordance indices (CI) with PF

name description unit all (N = 56) School A (N = 28) School B (N = 28)

Ds, FSM distance between school and FSM km 0.01 0.00 0.00
IVSDs,FSM inverse Ds,FSM −0.01 0.00 0.00
logDs,FSM log of Ds,FSM 0.01 0.00 0.00
ΔEs,FSM the differences in elevation between school and the FSM m 0.12 0.10 0.09
IVSΔEs,FSM inverse ΔEs,FSM 0.01 −0.10 −0.06
logΔEs,FSM log of ΔEs,FSM −0.08 −0.10 0.11
ΔHs,FSM difference in elevation and sampling height between school and FSM m 0.05 0.06 0.04
IVSΔHs,FSM inverse ΔHs,FSM −0.05 −0.06 −0.04
logΔHs,FSM log of ΔHs,FSM 0.05 0.06 0.04
ΔWs,FSM the angle difference between school to FSM and dominant wind direction radian 0.67 0.59 0.71
IVSΔWs,FSM inverse ΔWs,FSM 0.33 0.42 0.27
logΔWs,FSM log of ΔWs,FSM 0.33 −0.49 0.67
MIX1 logDs, FSM × ΔWs,FSM 0.64 0.53 0.70
MIX2 logΔEs,FSM × ΔWs,FSM 0.49 0.57 0.46
MIX3 logΔHs,FSM × ΔWs,FSM 0.62 0.57 0.66
MIX4 logDs, FSM × logΔEs,FSM × ΔWs,FSM 0.47 0.51 0.46
MIX5 logDs, FSM × logΔHs,FSM × ΔWs,FSM 0.60 0.53 0.68
MIX6 logΔEs,FSM × logΔHs,FSM × ΔWs,FSM 0.50 0.56 0.46
MIX7 logDs,FSM × LOGΔEs,FSM × logΔHs,FSM × ΔWs,FSM 0.48 0.52 0.46
final model: PFs,FSM = (0.29 ± 0.06) × ΔWs,FSM − (0.02 ± 0.01) × MIX5 + (0.54 ± 0.06) (N = 56; R2 = 0.53; AIC = −43.2)

aNote: bold figures are estimates with p-value < 0.05.
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autocorrelation correction. Details are provided in the
Supporting Information.

■ RESULTS

Sixty to seventy sampling hours were completed for each
school and each season. Hourly data were obtained from 14
FSMs during the school sampling periods. The results include
instrument calibration, measurement data summary, estimation
of infiltration factors, estimation of proximity factors,
quantification of exposure error for three outdoor surrogate

concentration scenarios, and association betweenproximity
factors and proposed concordance indices.

Calibration. The calibration factors for DustTraks 1 and 2
were 2.72 (R2 = 0.98) and 2.67 (R2 = 0.98) in winter and 3.26
(R2 = 0.87) and 3.02 (R2 = 0.91) in summer, respectively. The
average relative humidity (RH) and temperature during the
calibration were 49% and 17 °C in winter and 53% and 29 °C
in summer, respectively. The absolute humidity was 9 g/m3 in
winter and 20 g/m3 in summer, respectively. The higher
humidity in summer favors the growth of particles which leads

Figure 2. Proximity factor and its confidence interval derived for fixed site monitors at school A and B.
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to a higher calibration factor.66,67 These season-specific
calibration factors are used for the subsequent data analysis.
The accuracy of calibration of the gas sensors was confirmed
based on measurements with standard gas at a known
concentration in the lab.
Summary of Measurements. The winter average outdoor

PM2.5 concentrations were 43 μg/m3 and 63 μg/m3 at Schools

A and B, respectively. The average PM2.5 concentrations
recorded at the FSMs ranged from 25 μg/m3 at G1 to 67 μg/
m3 at R1. Significantly high correlations in PM2.5 concen-
trations were found among all outdoor locations, including
between FSMs and school transects, with most of the SCC
values being higher than 0.7. The prevailing winds in winter
were northeasterly. The high SCCs values indicate the

Figure 3. Boxplot of the estimate error in hourly indoor exposure concentration by school and season using (S1) outdoor concentration measured
at transects, (S2) FSM concentration, and (S3) PF corrected FSM concentration.
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influence of a regional pollution plume on the FSMs and
schools.
The summer average outdoor PM2.5 concentrations were 7

μg/m3 at both schools. The average PM2.5 concentrations
recorded at the FSMs ranged from 6 μg/m3 at G9 to 22 μg/m3

at R1. The correlations in outdoor PM2.5 concentrations
between each pairing of an FSM and transect at a school were
generally weak, with most of the SCC values being insignificant
and lower than 0.3. This indicates that the summer outdoor
PM2.5 concentrations in Hong Kong are most affected by local
sources. Site R1 recorded the highest PM2.5 concentrations
among all FSMs in both winter and summer, due to its
proximity to traffic emission at curbside with the lowest
sampling height of 3 m.
Infiltration Factors. The winter indoor PM2.5 concen-

trations were highly correlated with outdoor PM2.5 concen-
trations measured at transects at both schools (SCC > 0.98),
with average differences between indoor and outdoor
concentrations of less than 5%. Natural ventilation with open
windows was used at both schools in winter. The mean and
standard error of estimated IFs,p in winter were 0.91 ± 0.02 at
School A and 0.97 ± 0.02 at School B, respectively. The
outdoor PM2.5 concentrations at transect explained 98% (R2 =
0.98) and 99% (R2 = 0.99) of the variability in indoor
concentration at Schools A and B, respectively. The winter IFs,p
at School B was not significantly different than unity, indicating
there is no difference in exposure to ambient PM2.5 whether
indoors or outdoors at that school while windows were open.
A regional air pollution episode of unusually high PM2.5
concentrations was observed on January 21th during the
measurement at School B. During this episode, the mean PM2.5
concentration was 138 μg/m3 at the background FSM (BG)
and 152 μg/m3 at the outdoor transect. The mean indoor
PM2.5 concentration measured on that day was 148 μg/m3,
which was substantially higher than the average indoor
concentrations of 49 μg/m3, for all other measured days.
The summer indoor PM2.5 concentrations measured at

schools A and B were weakly correlated with those measured at
outdoor transects, with SCC values less than 0.35 at both
schools. The summer IFs,p was 0.27 ± 0.13 at School A and
0.25 ± 0.09 at School B. A/C was used in both schools in
summer.
The average indoor CO2 concentrations were 430 and 400

ppm at Schools A and B, respectively, in winter, and 920 and
720 ppm, respectively, in summer. The number of students at
each school did not vary between seasons, indicating that
exhalation of CO2 was similar between winter and summer.
The substantially higher indoor CO2 concentrations observed
in summer indicate reduction in air exchange associated with
the use of A/C. The reduction in air exchange helped to
decrease the infiltration of outdoor particles. The outdoor
PM2.5 concentrations at the transects explained only 7% (R2 =
0.07) and 13% (R2 = 0.13) of the variability in summer indoor
concentration at Schools A and B, respectively.
Proximity Factors. Estimates of PFs,FSM,p for both schools,

both seasons, and all 14 FSMs are presented in Figure 2,
together with coefficients of determination (R2). In winter,
variability in FSM concentrations were medium to strong
predictors of variability in transect concentrations for School A.
The R2 ranged from 0.32 to 0.83 among FSMs. The FSMs with
the highest R2 were G1 (R2 = 0.83), a site with elevation and
sampling height comparable to School A, and G8 (R2 =0 .79),
the nearest upwind site only 2.5 km away. The lowest R2 of

0.32 was found at R1, a roadside monitor located off to the
side of the dominant wind corridor that affects School A.
The PFA,FSM,w estimates for School A in winter ranged from

0.83 to 1.65 among FSMs. Most of the PFA,FSM,w values were
not significantly different than unity except for PFs of 1.36 at
G1, 1.65 at G6, and 1.31 at G8. The intercepts of LMRs were
not significantly different from zero at these three sites,
therefore, PFA,FSM,w values higher than unity indicate that
transect concentrations would be underestimated at School A
if PM2.5 concentrations at these sites were used as surrogates.
For example, the winter average PM2.5 concentration at G8 was
32% lower than at the School A transect which is close to the
bias in PFA,G8,w for this FSM, [PFA,G8,w − 1], of 0.31. The
intercept was significantly higher than zero at G2, a site located
off to the side of the dominant wind corridor that affects
School A, indicting a contribution from local sources.
Variability in winter PM2.5 concentrations at FSMs explains

61% to 93% of the variability in outdoor transect
concentrations at School B. The highest R2 was found at G7
(R2 = 0.93) and G5 (R2 = 0.91), the nearest FSMs, whereas the
lowest R2 was found at G9 (R2 = 0.63), the most distant FSM,
and R1 (R2 = 0.61), a roadside FSM. Most of the FSMs were
located downwind of School B in winter. For 5 out of 14
FSMs, the PFB,FSM,w values were significantly higher than unity
while the intercepts were not significantly different than zero,
indicating that underestimation of outdoor PM2.5 concen-
trations at School B would result if concentrations at these sites
were used as surrogates.
In the summer, variability in PM2.5 concentrations at FSMs

were weak predictors of variability in transect concentrations at
both schools, with R2 less than 0.20 for School A, and R2 less
than 0.25 for School B. For both schools and all FSMs, the
intercepts of LRMs were significantly higher than zero,
indicating spatial heterogeneity in PM2.5 concentrations due
to the impact of local emissions. Some of the PFs,FSM,s
estimates were insignificant, such as at FSMs R1, R2, G1,
G6, G8, and G9 for School A and FSMs R1, R3, G1−4, G6,
G8, and G9 for School B, which implies that FSMs are not
useful as surrogates for selected schools in summer when local
pollution dominates.

Exposure Error. Errors in hourly indoor exposure
estimates using different outdoor surrogates are summarized
as boxplots by school and season in Figure 3. In winter, the
errors in estimated indoor exposure based on using outdoor
concentrations measured at nearby transects (Scenario S1)
were small, with mean errors not exceeding 2% for both
schools and interquartile ranges of errors not exceeding ±6%.
The narrow range of errors indicates a high level of confidence
in indoor exposure estimates developed using nearby outdoor
concentrations when the infiltration factor is high.
The exposure errors introduced from using outdoor

concentrations at FSMs in Scenario S2 were much wider
compared to Scenario S1 in winter, with interquartile ranges of
relative exposure error approximately 2−4 times wider than
those under S1 for both schools. The mean exposure error
under S2 varied substantially among FSM sites, ranging from
−23% to 29% for School A and from −30% to 11% for School
B.
The exposure errors introduced from using PF-corrected

outdoor concentrations at FSMs (Scenario S3) were
substantially lower than those under Scenario S2 in winter.
For example, the mean error of estimated hourly indoor
concentration at School A was reduced from −23% under S2
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to 6% under S3 at G6, and from −21% under S2 to 4% under
S3 at G8. The mean error for School B changed from −28% to
6% under S2 to less than ±3% for the five sites with PFB,FSM,W
significantly higher than unity. The interquartile ranges of
exposure error under S3 were similar to those under Scenario
S2 in winter. Thus, PFs,FSM,W are useful in correcting for bias
but may not improve the precision of exposure concentration
estimates.
In summer, the mean error under S1 was 12% for School A

and 14% for School B, with interquartile ranges from −16% to
29% and from −15% to 38%, respectively. Positive mean errors
were observed for both schools at all FSMs, indicating an
overestimation of exposure since PFs,FSM,S were all less than
unity. The mean exposure error introduced from using FSMs
as surrogates was reduced from up to 88% and 92% under S2
for School A and B, respectively, to less than 11% under S3 for
both schools after PFs,FSM,S correction. This is consistent with
the findings in winter that PF is useful in correcting for the bias
in exposure concentrations estimates if FSMs are used as
outdoor surrogates.
The summer mean exposure errors were much larger and

the range of errors was wider compared to those in winter.
However, the indoor concentrations in summer were generally
below 10 μg/m3. The ratio of average indoor PM2.5
concentrations in winter to summer was 7 for school A and
12 for school B. Therefore, the exposure errors in summer are
not expected to substantially affect the annual exposure to
PM2.5 at both schools.
Concordance Indices. A selection of 19 potential

concordance indices were evaluated based on correlation
with PFs,FSM,p values in Table 1. Among the single parameter
concordance indices, significant correlations were found
between ΔWs,FSM and PFs,FSM,p, with SCC of 0.59 for School
A and 0.71 for School B, respectively, among all FSMs and
seasons. This indicates that wind direction is the major factor
affecting the spatial variability in PM2.5 concentrations between
selected schools and FSMs.
The correlation with PFs,FSM,p was low and not statistically

significant for Ds,FSM, ΔEs,FSM, ΔHs,FSM, and their related
permutations, such as inverse and log form. However, these
CIs may interact with ΔWs,FSM and affect correlations with
PFs,FSM,p, as listed in Table 1. Among the mixed CIs,
statistically significant correlations were found for both schools
between PFs,FSM,p and the product of logarithmic Ds,FSM and
ΔWs,FSM (MIX1), the product of logarithmic ΔHs,FSM and
ΔWs,FSM (MIX3), and the product of logarithmic Ds,FSM,
logarithmic ΔHs,FSM and ΔWs,FSM (MIX5). This indicates that
variability in PF values are mainly affected by the direction to
the school relative to the air pollution flow (ΔWs,FSM) and
marginally affected by the spatial differences in geographic
locations (Ds,FSM), and proximity to ground emission sources
(ΔHs,FSM).
The final model developed for PFs,FSM is given in Table 1,

with ΔWs,FSM and the product of logarithmic Ds,FSM,
logarithmic ΔHs,FSM and ΔWs,FSM (MIX5) as independent
variables. The final model explained 53% (R2 = 0.53) of the
variation in PFs,FSM. Wind direction is the major predictor of
PFs,FSM. Shifts in the dominant wind direction under Asian
Monsoon system significantly changed the direction of air flow
and the abundance of inflow of PM pollution from Asia to
Hong Kong. Spatial distance and proximity to emission source
also affect the magnitude of PFs,FSM, which is consistent with
the association analysis.

■ DISCUSSION

Variations in outdoor PM2.5 concentrations were strong
predictors of variations in indoor exposure to PM2.5 at both
schools in winter (R2 > 0.98), when natural ventilation was
used, but weak indicators in summer (R2 < 0.13), when A/C
was used. The use of A/C is usually in conjunction with closed
windows, which reduces the air exchange and thus reduces the
infiltration of outdoor particles. Seasonal variations in health
risks related to PM2.5 exposures have been widely observed in
epidemiological studies in which ambient PM2.5 concentrations
were used as surrogates.14−17,75,76 These seasonal variations in
the health estimates are in part because of the differences in
infiltration of outdoor particles due to the changes in
ventilation operation. For example, Franklin et al. found that
increased prevalence of central air conditioning was associated
with a decreased effect of PM2.5 regarding all-cause and
specific-cause mortality in 27 US communities.15

Another factor that may contribute to the seasonal variations
observed in epidemiological studies is seasonal differences in
the spatial distribution of outdoor PM2.5 concentrations.

14−18

The exposure errors introduced by using FSMs as surrogates in
summer were found to be an average of 3−5 times higher than
those in winter. These seasonal variations in exposure error
could contribute to the decreased magnitude of effects
estimates and lower statistical power in epidemiological
studies. For example, Ko et al. found that the warm season
(summer) was associated with a lower risk of hospital
admission for asthma compared with the cold season (winter)
in Hong Kong, given the same 10 μg/m3 change in
ambient PM2.5 concentrations.

77

PF was found to be useful in correcting the systematic
positive or negative exposure errors introduced by using FSM
as surrogates. The mean errors in hourly PM2.5 exposures were
reduced from up to 92% to less than 20% for all schools and
seasons after taking into account the seasonal-specific PF
values (Scenario S3). The case study showed that magnitude
of the PF values can be inferred or estimated for Hong Kong
based on a few geographic and meteorological parameters, as
listed in Table 1. This demonstrates a way to estimate and
adjust for seasonal variations in exposure and, thus, the
seasonal variations observed in the epidemiological studies.
The uncertainty of the PF values can be estimated based on
the standard error of the parameters in the final model in Table
1, and can be further used to estimate the exposure
uncertainty.
In microenvironmental models, PF is usually regarded as a

static correction factor that only depends on distance between
FSM and the targeted microenvironment.27 However, PF is
affected by the direction of wind which determines the
direction of air flow and pollution transport. The wind
direction changes with time. Therefore, variations in dominant
wind direction should be taken into account in developing PFs
to address temporal differences in the spatial distribution of
outdoor PM2.5 concentrations. Variability in PF values was
found to be associated with variability in the dominant wind
direction, GIS-related parameters such as distance and
elevation differences between schools and FSMs, and differ-
ences in sampling height. Land use type has been used to
explain the spatial variability in outdoor PM2.5 in land use
regression models.26 However, the impact of land use on PF
could not be assessed because the two schools and most of the
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FSMs are located in urbanized areas. Future work is needed to
assess whether PFs are sensitive to land use.
The model developed for PF reflects the key sources of

spatial variations for PM2.5 pollution, such as the dominant
wind direction and proximity to ground emissions. However,
the numeric values may vary from city to city. It is
recommended to conduct replicate studies in other cities to
verify the results and develop city-specific models between PF
and concordance indices for better use in exposure and
epidemiological studies. Nevertheless, the recommendations to
use fixed sites located along the prevailing wind direction and
in close proximity are expected to be robust. In cases where
ambient data from multiple FSMs are available, the best choice
of a preferred FSM should not be based only on the shortest
distance but should also take into account which FSM is
located along the prevailing direction of air pollution flow, as
well as the proximity to ground emission.
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