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eigenvalue problem for nontrivial v, w ∈ L2(Ω) and k ∈ R+,

⎧⎪⎨
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(Δ + k2)v = 0 in Ω,

(Δ + k2(1 + V ))w = 0 in Ω,

w − v ∈ H2
0 (Ω), ‖v‖L2(Ω) = 1.

We show that the transmission eigenfunctions v and w carry 
the geometric information of supp(V ). Indeed, it is proved 
that v and w vanish near a corner point on ∂Ω in a generic 
situation where the corner possesses an interior angle less than 
π and the potential function V does not vanish at the corner 
point. This is the first quantitative result concerning the 
intrinsic property of transmission eigenfunctions and enriches 
the classical spectral theory for Dirichlet/Neumann Laplacian. 
We also discuss its implications to inverse scattering theory 
and invisibility.
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1. Introduction

Let Ω be a bounded domain in Rn, n ≥ 2, and V ∈ L∞(Ω) be a potential function. 
Consider the following (interior) transmission eigenvalue problem for v, w ∈ L2(Ω),

⎧⎪⎪⎨
⎪⎪⎩

(Δ + k2)v = 0 in Ω,

(Δ + k2(1 + V ))w = 0 in Ω,

w − v ∈ H2
0 (Ω), ‖v‖L2(Ω) = 1.

(1.1)

If the system (1.1) admits a pair of nontrivial solutions (v, w), then k is referred to as 
an (interior) transmission eigenvalue and (v, w) is the corresponding pair of (interior) 
transmission eigenfunctions. Note in particular that nothing is imposed a-priori on the 
boundary values of v or w individually. In this paper, we are mainly interested in the 
real eigenvalues, k ∈ R+, which are physically relevant. The study of the transmission 
eigenvalue problem has a long history and is of significant importance in scattering 
theory. The transmission eigenvalue problem is a type of non elliptic and non self-adjoint 
problem, so its study is mathematically interesting and challenging. In the literature, the 
existing results are mainly concerned with the spectral properties of the transmission 
eigenvalues, including the existence, discreteness and infiniteness, and Weyl laws; see for 
example [4,7,11,25,30–32] and the recent survey [8]. There are few results concerning 
the intrinsic properties of the transmission eigenfunctions. Here we are aware that the 
completeness of the set of generalized transmission eigenfunctions in L2 is proven in 
[4,31].

In this paper, we are concerned with the vanishing properties of interior transmission 
eigenfunctions. It is shown that in admissible geometric situations, transmission eigen-
functions which can be approximated suitably by Herglotz waves will vanish at corners 
of the support of the potential V . To our best knowledge, this is the first quantitative 
result on intrinsic properties of transmission eigenfunctions. As expected, these carry 
geometric information of the support of the underlying potential V as well as other in-
teresting consequences and implications in scattering theory, which we shall discuss in 
more details in Section 7.

The location of vanishing of eigenfunctions is an important area of study in the classi-
cal spectral theory for the Dirichlet/Neumann Laplacian. Two important topics are the 
nodal sets and eigenfunction localization. The former is the set of points in the domain 
where the eigenfunction vanishes. For the latter, an eigenfunction is said to be localized
if most of its L2-energy is contained in a subdomain which is a fraction of the total 
domain. Considerable effort has been spent on the nodal sets and localization in the 
classical spectral theory. We refer to the recent survey [17]. For the curious, we men-
tion briefly basic facts about them, all of which are completely open for transmission 
eigenfunctions. Nodal sets are C∞-curves whose intersections form equal angles. By the 
celebrated Courant’s nodal line theorem, the nodal set of the m-th eigenfunction divides 
the domain into at most m nodal domains. Localization seems to be a more recent topic 
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even though some examples have been known for a long time. A such example is the 
whispering gallery modes that comes from Lord Rayleigh’s study of whispering waves in 
the Saint Paul Cathedral in London during the late 19th century. These eigenfunctions 
concentrate their energy near the boundary of a spherical or elliptical domain. Other well 
known localized modes are called bouncing ball modes and focusing modes [9,23]. It is 
worth noting that the Laplacian does not possess localized eigenfunctions on rectangular 
or equilateral triangular domains [28]. However, localization does appear for the classical 
eigenvalue problem in a certain sense when the angle is reflex [27]. We also refer to [20]
for more relevant examples.

In our case of the transmission eigenvalue problem, peculiar and intriguing phenom-
ena are observed in that both vanishing and localization of transmission eigenfunctions 
may occur near corners of the support of the potential. Indeed, in an upcoming numer-
ical paper [3], we show that if the interior angle of a corner is less than π, then the 
transmission eigenfunctions vanish near the corner, whereas if the interior angle is big-
ger than π, then the transmission eigenfunctions localize near the corner. In this paper, 
we shall rigorously justify the vanishing property of the transmission eigenfunction in a 
certain generic situation. It turns out to be a highly technical matter. In fact, even in 
the classical spectral theory, the intrinsic properties of the eigenfunctions are much more 
difficult to study than those of the eigenvalues, and they remain a fascinating topic for 
a lot of ongoing research. Nevertheless, we would also like to mention that with the help 
of highly accurate computational methods, we can present a more detailed numerical 
investigation in [3] including the vanishing/localizing order as well as its relationship to 
the angle of the corner.

We believe that the vanishing and localizing properties of transmission eigenfunctions 
are closely related to the analytic continuation of the eigenfunctions. Indeed in the recent 
papers [5,14,15,21,29], it is shown that transmission eigenfunctions cannot be extended 
analytically to a neighborhood of a corner. The failure of the analytic continuation of 
transmission eigenfunctions can be used via an absurdity argument in [21] to show the 
uniqueness in determining the polyhedral support of an inhomogeneous medium by a 
single far-field pattern in the inverse scattering theory. By further quantifying the afore-
mentioned analytic continuation property of transmission eigenfunctions, sharp stability 
estimates were established in [1] in determining the polyhedral support of an inhomo-
geneous medium by a single far-field pattern. Those uniqueness and stability results 
already indicate that the intrinsic properties of transmission eigenfunctions carry ge-
ometric information of the underlying potential function V . Furthermore in [1], as an 
interesting consequence of the quantitative estimates involved, a sharp lower bound can 
be derived for the far-field patterns of the waves scattered from polyhedral potentials 
associated with incident plane waves. In this paper, we can significantly extend this re-
sult by establishing a similar quantitative lower bound associated with incident Herglotz 
waves. On the other hand, it is known [6] that the scattered waves created by incident 
waves that are Herglotz approximations to transmission eigenfunctions will have an ar-
bitrarily small far-field energy. This critical observation apparently indicates that the 
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transmission eigenfunctions must vanish near the corner point. We shall give more rel-
evant discussion of our results in Section 7, connecting our study to inverse scattering 
problems and invisibility cloaking.

The rest of the paper is organized as follows. We will recall scattering theory and 
define notation in Section 2. All of the background and admissibility assumptions are 
contained therein. We state our main results mathematically in Section 3, and then 
proceed to prove them in Section 5 and Section 6 using results from Section 4.

2. Preliminaries

In this section we recall background theory, lay some definitions and fix notation. We 
will start by describing acoustic scattering theory for penetrable scatterers. This will 
be referred to as “background assumptions” in theorems. After that we recall what is 
the interior transmission problem and some of its known facts. Finally we define which 
potentials are admissible for our theorems.

2.1. Background assumptions

Whenever we say that “let the background assumptions hold” we mean that everything 
in this section should hold, unless stated otherwise. We will recall the fundamentals of 
acoustic scattering theory. For more details in the three dimensional case we refer the 
readers to [12].

We will consider only scatterers of finite diameter that are contained in a large origin-
centered ball, the domain of interest,

BR = B(0̄, R) = {x ∈ R
n | |x| < R}

where R > 1 is fixed. Let V ∈ L∞(BR) be a bounded potential function representing 
the medium parameter of the scatterer. We shall consider scattering of a fixed frequency 
by fixing the wavenumber k ∈ R+.

The scatterer V is illuminated by an incident wave, which in this paper is chosen to 
be any Herglotz wave. These are superpositions of plane-waves that can be written as

ui(x) =
∫

Sn−1

eikθ·xg(θ)dσ(θ) (2.1)

where the kernel g ∈ L2(Sn−1). We say that ui is normalized if ‖g‖L2(Sn−1) = 1. The 
field ui is called incident because it satisfies the equation

(Δ + k2)ui = 0

which corresponds to a background unperturbed by the presence of V .
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Unless V is transparent to ui, the illumination of V by ui creates a unique scattered 
wave us ∈ H2

loc(Rn) such that

(Δ + k2(1 + V ))u = 0 in R
n,

u = ui + us,

lim
r→∞

r
n−1

2 (∂rus − ikus) = 0.

(2.2)

Here u is the total field which, as a superposition of the incident field and scattered field, 
represents the physical observable field. The third condition, where r = |x|, says that 
us satisfies the Sommerfeld radiation condition, which can be interpreted as having us

propagating from V to infinity instead of the other way around.
A property of the scattered field is that as one zooms out, the potential V starts to 

look more and more like a point-source in a sense. This means that far away, us looks like 
the Green’s function to Δ + k2 but modulated by a far-field pattern us

∞. More precisely, 
as |x| → ∞, u has the expansion

u(x) = ui(x) + eik|x|

|x|(n−1)/2u
s
∞

(
x

|x| ;u
i

)
+ O

(
1

|x|n/2

)

where for a fixed ui the far-field pattern is a real-analytic map us
∞ : Sn−1 → C (it is also 

called the scattering amplitude).

2.2. The interior transmission problem

Direct scattering theory is all about the study of the map (ui, V ) �→ us
∞. Given a 

potential V the far-field operator1 maps the Herglotz kernel g of ui to the far-field 
pattern us

∞. In inverse scattering one is interested in recovering meaningful information 
about the scatterer V from full or partial information of the far-field operator.

A number of algorithms in inverse scattering, such as linear sampling [10] and fac-
torization methods [24] fail at wavenumbers where the far-field operator has non-trivial 
kernel. In such a case there is an incident wave ui for which V does not cause a de-
tectable change in the far-field, and thus by Rellich’s lemma and unique continuation ui

does not scatter at all: suppus ⊂ Ω. If this happens we call k a non-scattering energy
(or wavenumber) and say that V is transparent to ui, or that ui is non-scattering. It 
is known that there are radially symmetric potentials which are transparent to certain 
incident waves [16].

If ui is non-scattering and we restrict it to the supporting set Ω, then the following 
interior transmission problem has a non-trivial solution (v, w) ∈ L2(Ω) × L2(Ω)

1 Also called the relative scattering operator. The unitary scattering operator is the identity plus the 
former.
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(Δ + k2)v = 0 in Ω, (2.3)

(Δ + k2(1 + V ))w = 0 in Ω, (2.4)

w − v ∈ H2
0 (Ω), (2.5)

namely v = ui
|Ω and w = u|Ω. When this non-elliptic, non self-adjoint eigenvalue problem 

has a solution, we call k a transmission eigenvalue. The functions v and w are referred 
to as the transmission eigenfunctions.

If V is radially symmetric, then v in (2.3) extends to the whole Rn as a Herglotz 
function, and hence in this case transmission eigenvalues and non-scattering energies 
coincide [13]. This observation hinted for a long time that these sets of numbers coincide 
in general. However it was a red herring: a series of papers on corner scattering [5,14,
15,29] showed that in the presence of a certain type of corner or edge singularity in the 
potential V there are no non-scattering energies despite the well-known fact that such a 
scatterer always has an infinite discrete set of transmission eigenvalues.

We remark that the problem (2.3)–(2.5) has been studied heavily [8]. Many properties 
of the transmission eigenvalues are known. Despite this almost nothing is known about 
the eigenfunctions themselves before this paper.

2.3. Herglotz approximation

We introduced the Herglotz wave function in (2.1), which shall be used to approximate 
the transmission eigenfunction v satisfying (2.3). We briefly recall the following result 
concerning the Herglotz approximation for the subsequent use.

Theorem 2.1 (Theorem 2 in [36]). Let Wk denote the space of all Herglotz wave functions 
of the form (2.1). For Ω ⊂ R

n a C0-domain, define

Uk(Ω) := {u ∈ C∞(Ω); (Δ + k2)u = 0},

and

Wk(Ω) := {u|Ω;u ∈ Wk}.

Then Wk(Ω) is dense in Uk(Ω) ∩ L2(Ω) with respect to the topology induced by the 
L2-norm.

2.4. Admissible potentials

As part of our proof of the vanishing of transmission eigenfunctions at corners we will 
show lower bounds for the far-field pattern us. That is, we shall consider the scattering 
from a corner and make use of the corner singularity in the potential. To save notational 
burden we collect these a-priori assumptions in this section.
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We shall only consider polygonal or hypercuboidal scatterers V for simplicity. In 
essence V will be defined as a Hölder-continuous function ϕ restricted to a polygonal 
domain Ω; see below. As the arguments are local, the results will hold qualitatively for 
any potential V for which V|U = χΩϕ|U for some open set U and such that there is a 
reasonable path from U to infinity.

Definition 2.2. Recalling the notation BR from Section 2.1, we say that the potential V
is (qualitatively) admissible if

(1) V = χΩϕ, where χΩ(x) = 1 if x ∈ Ω and χΩ(x) = 0 otherwise;
(2) Ω ⊂ BR is an open convex polygon in 2D or a cuboid in higher dimensions;
(3) ϕ ∈ Cα(Rn) for some α > 0 in 2D and α > 1/4 in higher dimensions;
(4) ϕ 
= 0 at some vertex of Ω.

2.5. Function order

An important concept in corner scattering is the so-called function order. This deter-
mines how flat the function is at a certain point, or in other words what is the order of 
the first non-trivial homogeneous polynomial in its Taylor expansion at that point.

Definition 2.3. Let f be a complex-valued function defined in an open neighborhood of 
xc ∈ R

n. We say that f has order N at xc if

N = max{M ∈ Z | ∃C < ∞ : |f(x)| ≤ C |x− xc|M near xc}.

If the set is unbounded from above we say that f has order ∞. If the set is empty f has 
order −∞.

Remark 2.4. If f is smooth then it has order N < ∞ at xc if and only if ∂αf(xc) = 0
for α ∈ N

n, |α| < N and ∂βf(xc) 
= 0 for some β ∈ N
n, |β| = N . When N = ∞ the 

second condition is ignored: there are smooth functions vanishing to infinite order e.g. 
exp(−1/ |x|2). Smooth functions always have non-negative order.

3. Statement of the main results

Theorem 3.1. Let n ∈ {2, 3} and let the background assumptions hold. If V is qualitatively 
admissible with ϕ(xc) 
= 0 at a vertex xc of Ω, and N ∈ N, then there is c, 
 < ∞
depending on V, n, k, N and S = S(V, k) ≥ 1 such that

‖us
∞‖L2(Sn−1) ≥

S
exp exp

(
cmin(1, ‖PN‖)−�

) (3.1)

for any normalized incident Herglotz wave ui which is of order N ≤ N at xc and whose 
Taylor expansion there begins with PN . Here ‖PN‖ =

∫
n−1 |PN (θ)| dσ(θ).
S



E. Blåsten, H. Liu / Journal of Functional Analysis 273 (2017) 3616–3632 3623
Theorem 3.2. Let n ∈ {2, 3} and V be a qualitatively admissible potential. Assume that 
k > 0 is a transmission eigenvalue: there exists v, w ∈ L2(Ω) such that

(Δ + k2)v = 0 in Ω

(Δ + k2(1 + V ))w = 0 in Ω

w − v ∈ H2
0 (Ω), ‖v‖L2(Ω) = 1.

If v can be approximated in the L2(Ω)-norm by a sequence of Herglotz waves with uni-
formly L2(Sn−1)-bounded kernels, then

lim
r→0

1
m(B(xc, r))

∫
B(xc,r)

|v(x)| dx = 0

where xc is any vertex of Ω such that ϕ(xc) 
= 0.

Remark 3.3. A sequence of Herglotz waves vj with uniformly bounded kernels has uni-
formly bounded L2-norms in any fixed bounded set. However the converse is not true by 
inspecting a sequence of spherical harmonics gj = Y 0

j . In other words the condition we 
have here is rather technical. See Section 7 for more relevant discussion.

4. Auxiliary results

In this section, we collect three auxiliary propositions that follow without too much 
effort from our previous results in [1] concerning the corner scattering. We add a proposi-
tion showing that in the presence of transmission eigenfunctions incident waves creating 
arbitrary small far-field patterns can be generated. Finally, another proposition gives a 
lower bound for the Laplace transform of a harmonic polynomial. The latter is neces-
sary for quantitative estimates involving incident Herglotz waves in corner scattering. 
In comparison, we note that the paper [1] is mainly concerned with corner scattering 
associated with incident plane waves.

Proposition 4.1. Let the background assumptions hold with n ∈ {2, 3}, V qualitatively 
admissible, ui a normalized Herglotz wave and let S ≥ 1. Then there is εm(S, k, R) > 0
such that if ‖us‖H2(B2R) ≤ S and ‖us

∞‖L2(Sn−1) ≤ εm then

sup
x∈∂Ω

|us(x)| + |∇us(x)| ≤ c√
ln ln S

‖us
∞‖

L2(Sn−1)

(4.1)

for some c = c(V, S, k, R) < ∞.

This is a less general version of Proposition 5.10 in our previous paper. We will also 
need a “converse” result estimating the far-field pattern by the near-field. In more detail, 
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we will build incident waves with arbitrarily small far-field patterns in the presence of a 
transmission eigenfunction (cf. [6]).

Proposition 4.2. Let the background assumptions hold with V supported in Ω, and assume 
that (v, w) ∈ L2(Ω) × L2(Ω) are a pair of transmission eigenfunctions on a bounded 
domain Ω. There is C = C(V, k) < ∞ such that if vj ∈ L2

loc is an incident wave such 
that ‖v − vj‖L2(Ω) < ε then the produced far-field pattern has 

∥∥vsj∞∥∥
L2(Sn−1) < Cε.

Proof. Let vi0 be the zero-extension of v to the whole Rn, and let vs0 be the radiating 
solution to (Δ + k2(1 + V ))vs0 = −k2V vi0. Also let νs0 be the zero-extension of w − v ∈
H2

0 (Ω) to Rn. By standard scattering theory (e.g. Chapter 8 in [12]) we see that vs0 = νs0
since

(Δ + k2(1 + V ))vs0 = −k2V vi0 = −k2V v = (Δ + k2(1 + V ))νs0

in Rn and both satisfy the Sommerfeld radiation condition trivially. Hence the far-field 
pattern of vs0 is zero.

Since vj approximates v in L2(Ω), and V is supported on Ω, we have −k2V vj approx-
imating −k2V vi0 in Rn. Let vsj be the scattered wave arising from the incident wave vj
and potential V . Then, again from standard scattering theory, its far-field pattern ap-
proximates the far-field pattern of vs0, i.e. zero. The operators involved are all bounded, 
so

∥∥vsj∞∥∥
L2(Sn−1) < CV,kε. � (4.2)

We also recall the existence of complex geometrical optics solutions.

Proposition 4.3. Let n ∈ {2, 3}, k > 0 and let V be a qualitatively admissible potential. 
Then there is p = p(V, n) ≥ 2 and c = c(V, R, k, n) < ∞ with the following properties: if 
ρ ∈ C

n satisfies ρ · ρ + k2 = 0 and |�ρ| ≥ c(n+1)/2 then there is ψ ∈ Lp(Rn) such that 
u0(x) = eρ·x(1 + ψ(x)) solves (Δ + k2(1 + V ))u0 = 0 in Rn, and

‖ψ‖Lp(Rn) ≤ c |�ρ|−n/p−β

for some β = β(V, n) > 0. In addition there is the norm estimate ‖ψ‖H2(B2R) ≤ c |ρ|2.

Proposition 4.3 specializes Proposition 7.6 from [1]. Also, mainly by Corollary 6.2 
from that same paper, together with the use of Taylor’s theorem on the real-analytic 
incident wave ui, we can show

Proposition 4.4. Let n ∈ {2, 3} and let the background assumptions hold with ui a nor-
malized Herglotz wave. Let V = χΩϕ be a qualitatively admissible potential. Choose 
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coordinates such that the origin is a vertex of Ω where ϕ 
= 0. Let N ∈ N be such that 
∂γui(0̄) = 0 for |γ| < N and set

PN (x) =
∑

|γ|=N

∂γui(0̄)
γ! xγ .

Let ρ ∈ C
n be such that it satisfies the assumptions of Proposition 4.3, |�ρ| ≥ max(1, k)

and �ρ · x ≤ −δ0 |x| |�ρ| for some δ0 > 0 and any x ∈ Ω. Then

c

∣∣∣∣∣∣
∫
C

eρ·xPN (x)dx

∣∣∣∣∣∣ ≤ |�ρ|−N−n−min(1,α,β) + |�ρ|3 sup
∂(C∩B(0̄,h))

{|us| , |∇us|} (4.3)

where C is the open cone generated by Ω at the origin, h = h(Ω) is the minimal distance 
from any vertex of Ω to any of its non-adjacent edges, and the constant c > 0 depends 
on V, N, δ0 and k.

Next is the turn of a lower bound to the Laplace transform for homogeneous harmonic 
polynomials of arbitrary degree. The proof is a compactness argument with basis in the 
non-vanishingness proofs from [5] and [29]. We recall that the norm for homogeneous 
polynomials is

‖P‖ =
∫

Sn−1

|P (θ)| dσ(θ).

Proposition 4.5. Let n ∈ {2, 3}, C 
= ∅ be either an open orthant (3D) or an oblique open 
cone (2D). For N ∈ N set

PN =
{
P : Cn → C

∣∣∣ΔP ≡ 0, P (x) =
∑

|γ|=N

cγx
γ
}
.

Let the angle of C be at most 2αm < π and let αm +αd < π/2. Then there is τ0 > 0 and 
c > 0, both depending only on C, N, n, αm + αd with the following properties: If P ∈ PN

then there is a curve τ �→ ρ(τ) ∈ C
n satisfying ρ(τ) · ρ(τ) + k2 = 0, τ = |�ρ(τ)|,

�ρ(τ) · x ≤ − cos(αm + αd) |�ρ(τ)| |x|

for all x ∈ C, and such that if τ ≥ τ0 then
∣∣∣∣∣∣
∫
C

eρ(τ)·xP (x)dx

∣∣∣∣∣∣ ≥
c ‖P‖

|�ρ(τ)|N+n
. (4.4)
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Proof. We identify PN with a subset of Cm, where m = #{γ ∈ N
n| |γ| = N} = (N +

n − 1)!/(N !(n − 1)!), by mapping P ∈ PN to the point corresponding to its coefficients 
listed in some fixed order (e.g. by the lexical order of the multi-indices γ). This induces 
a topology on PN which makes it a complete metric space. The space PN ∩ {‖P‖ = 1}
is compact.

We will first consider the easier case of a complex vector satisfying ζ · ζ = 0 instead 
of ρ · ρ + k2 = 0. Write δ0 = cos(αm + αd) and set

RC,δ0 = {ζ ∈ C
n|ζ · ζ = 0, |�ζ| = 1,�ζ · x ≤ −δ0 |�ζ| |x| ∀x ∈ C}.

Also, write LP (ζ) =
∫
C

exp(ζ · x)P (x)dx for P ∈ PN and ζ ∈ RC,δ0 . We claim first that

inf
P∈PN

sup
ζ∈RC,δ0

|LP (ζ)| = c ‖P‖ (4.5)

for some constant c = c(N, C, δ0) > 0. By dividing P with ‖P‖ and the linearity of 
L we may assume that ‖P‖ = 1. If (4.5) did not hold then for any j ∈ N there is 
Pj ∈ PN , ‖Pj‖ = 1 such that |LPj(ζ)| < j−1 for any ζ ∈ RC,δ0 . Since PN ∩{‖P‖ = 1} is 
compact there is P∞ ∈ PN , ‖P∞‖ = 1 and a subsequence Pj� → P∞. Let ζ ∈ RC,δ0 . It 
is easily seen that |L(Pj� − P∞)(ζ)| ≤ (N + n − 1)!δ1−N−n

0 ‖Pj� − P∞‖ → 0 as 
 → ∞. 
Hence |LP∞(ζ)| = 0 for any complex vector ζ ∈ RC,δ0 , but this contradicts the Laplace 
transform lower bounds from [5] and [29]. Thus the lower bound (4.5) holds, but for 
vectors satisfying ζ · ζ = 0.

Let us build ρ(τ) by using a ζ from the previous paragraph. Let P ∈ PN be arbitrary 
and take ζ ∈ RC,δ0 such that |LP (ζ)| ≥ c ‖P‖ /2. For τ > 0 set

ρ(τ) = τ�ζ + i
√

τ2 + k2�ζ.

Then ρ(τ)/τ → ζ as τ → ∞ and moreover ρ(τ) · ρ(τ) + k2 = 0, and �ρ(τ) · x ≤
−δ0 |�ρ(τ)| |x| for x ∈ C. When τ is large enough we will have |LP (ρ(τ)/τ)| ≥ c ‖P‖ /4. 
The proof is as follows: set

f(r) = exp((�ζ + ir�ζ) · x).

Then f(1) = exp(ζ · x) and f
(√

1 + k2/τ2
)

= exp(ρ(τ) · x/τ). By the mean value 
theorem ∣∣∣f(1) − f

(√
1 + k2/τ2

)∣∣∣ ≤ sup
1<r<

√
1+k2/τ2

|f ′(r)|
∣∣∣√1 + k2/τ2 − 1

∣∣∣ .
But note that 

√
1 + k2/τ2 − 1 = τ−1k2/ 

(
τ +

√
τ2 + k2

)
≤ k/τ . Also f ′(r) = i�ζ ·xf(r)

and since |�ζ| = |�ζ| = 1 we get |f ′(r)| ≤ |x| exp(−δ0 |x|). In other words

∣∣∣f(1) − f
(√

1 + k2/τ2
)∣∣∣ ≤ k |x| e−δ0|x|.
τ



E. Blåsten, H. Liu / Journal of Functional Analysis 273 (2017) 3616–3632 3627
Finally we see the claim:

∣∣∣LP (ζ) − LP
(
ρ(τ)
τ

) ∣∣∣ =

∣∣∣∣∣∣
∫
C

(
f(1) − f

(√
1 + k2/τ2

))
P (x)dx

∣∣∣∣∣∣
≤ k

τ

∫
C

e−δ0|x| |x| |P (x)| dx = ‖P‖ k

τ

∞∫
0

e−δ0rr1+N+n−1dr

= (N + n)!δ−N−n
0 kτ−1 ‖P‖ ,

and so |LP (ρ(τ)/τ)| > c ‖P‖ /4 if τ > 4(N + n)!δ−N−n
0 k/c. A change of variables gives 

then LP (ρ(τ)/τ) = τN+nLP (ρ(τ)) and so the proposition is proven. �
5. Bound for far-field pattern with incident Herglotz wave

Proof of Theorem 3.1. Let S = S(V, k) be such that ‖us‖H2(B2R) ≤ S whenever the 
incident wave is a normalized Herglotz wave. Let ui be a normalized incident wave and 
us the corresponding scattered wave. Let ui be of order N ∈ N at the vertex xc, which we 
may take as being the origin, and on which ϕ 
= 0. Moreover let PN be its N -th degree 
homogeneous Taylor polynomial at 0̄. Note that this polynomial is harmonic because 
(Δ + k2)ui = 0. Firstly combine (4.4), (4.3) and (4.1) to get

c ‖PN‖ ≤ |�ρ(τ)|− min(1,α,β) + |�ρ(τ)|N+n+3√
ln ln S

‖us
∞‖L2(Sn−1)

when ‖us
∞‖ ≤ εm and τ ≥ τ0, with constants depending on V, N, n, k, αm + αd, S.

The estimate above depends monotonically on each individual constant. Fix N ∈ N

and set

εm,N = min
N≤N

εm, τ0,N = max
N≤N

τ0, cN = min
N≤N

c.

Then if N ≥ N the estimate holds with these new constants and N in the exponent 
instead of N (since |�ρ(τ)| = τ ≥ 1). In other words

cN ‖PN‖ ≤ |�ρ(τ)|− min(1,α,β) + |�ρ(τ)|N+n+3√
ln ln S

‖us
∞‖

L2(Sn−1)

(5.1)

when ‖us
∞‖ ≤ εm,N and τ ≥ τ0,N and ui is of order N ≤ N at 0̄.

Write γ = min(1, α, β) and R =
√

ln ln(S/ ‖us
∞‖L2(Sn−1)). The right-hand side of (5.1)

has a global minimum at the point

τm = (γR/(N + n + 3))1/(N+n+3+γ),
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and the minimal value there is given by c(N , n, γ)R−γ/(N+n+3+γ). Hence if τm ≥ τ0,N , 
we may set τ = τm in (5.1) and solve for the norm of the far-field pattern. We then have

‖us
∞‖L2(Sn−1) ≥

S
exp exp

(
c ‖PN‖−� ) (5.2)

where the exponent 
 ≥ 2(N + n + 4) and c < ∞ may be chosen to depend only on 
V, n, k, N . The other case, namely τm < τ0,N reduces to ‖us

∞‖L2(Sn−1) > S/(exp exp c)
for some c = c(V, n, k, N ). �
6. Vanishing of the interior transmission eigenfunction at corners

Proof of Theorem 3.2. Let us start by taking a sequence of incident Herglotz waves

vj(x) =
∫

Sn−1

exp(ikθ · x)gj(θ)dσ(θ)

approximating the interior transmission eigenfunction v in the L2(Ω)-norm; see Theo-
rem 2.1. We may assume for example that ‖v − vj‖L2(Ω) < 2−j . By Proposition 4.2 we 
have the estimate

∥∥vsj∞∥∥
L2(Sn−1) < CV,k2−j (6.1)

for the corresponding far-field pattern. The assumption on v allows us to have 
‖gj‖L2(Sn−1) ≤ G < ∞ for all j.

Let xc ∈ ∂Ω be a vertex such that ϕ(xc) 
= 0. Our goal is to estimate the integral 
of |v| in B(xc, r) ∩ Ω. We will achieve that by estimating the corresponding integrals 
of vj . Let us denote B = B(xc, r) for convenience. Let Nj be the order of vj at xc, so 
∂αvj(xc) = 0 for |α| < Nj . Then by the smoothness of vj we have Nj ∈ N ∪ {∞}. By its 
real-analyticity we have Nj < ∞. Fix N ∈ N. If Nj ≥ N , then

‖v‖L1(B∩Ω) ≤ ‖v − vj‖L1(B∩Ω) + ‖vj‖L1(B) ≤ CΩ2−j + CN,vjr
N+n.

The theorem would follow if Nj ≥ 1 for an infinite sequence of j’s and supj CN,vj
< ∞

for these.
Let us study ‖vj‖L1 in more detail. Again, assuming Nj ≥ N , by Taylor’s theorem

vj(x) =
∑

|α|=N

∂αvj(xc)
α! (x− xc)α + Rvj ,N,xc

(x).

Set Pj,N (x) =
∑

|α|=N ∂αvj(xc)xα/α!, and so vj(x) = Pj,N (x −xc) +Rvj ,N,xc
(x). Define 

‖Pj,N‖ =
∫

n−1 |Pj,N (θ)| dσ(θ). Then

S
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‖Pj,N (· − xc)‖L1(B) = ‖Pj,N‖
N + n

rN+n

and

|Rvj ,N,xc
(x)| ≤

∑
|β|=N+1

|x− xc|N+1

β! max
|γ|=N+1

max
|y−xc|≤1

|∂γvj(y)|

≤ CN,n |x− xc|N+1 max
|γ|=N+1

max
|y−xc|≤1

∫
Sn−1

kN+1 |θγ | |gj(θ)| dσ(θ)

≤ CN,k,n |x− xc|N+1 ‖gj‖L2(Sn−1) .

In other words ‖vj‖L1(B) ≤ CN,k,n,G(‖Pj,N‖+r)rN+n if vj has order Nj ≥ N at xc since 
we had assumed the uniform bound ‖gj‖L2(Sn−1) ≤ G. Thus

‖v‖L1(B∩Ω) ≤ CΩ2−j + CN,k,n,G(‖Pj,N‖ + r)rN+n (6.2)

whenever Nj ≥ N .
Fix N = 1 now. At least one of the following is true: 1) there is a subsequence of vj

for which Nj ≥ 1, or 2) there is a subsequence for which Nj = 0. In the former case 
we note that ‖Pj,1‖ ≤ Cn,k,G < ∞ by the Herglotz wave formula for vj, and thus (6.2)
implies that v has order 1 at xc; a stronger result than in the theorem. So consider case 
2) from now on.

We may assume that Nj = 0 for all j since we are in case 2). We will use Theorem 3.1. 
To use (3.1) we need to have normalized incident Herglotz waves, a property which is 
not necessarily true for vj . However note that vj/ ‖gj‖L2(Sn−1) is normalized. We have

‖vj‖L2(Ω) ≥ ‖v‖L2(Ω) − ‖v − vj‖L2(Ω) > 1 − 2−j

and

‖vj‖L2(Ω) ≤
∫

Sn−1

∥∥eikθ·x∥∥
L2(Ω,x) |gj(θ)| dσ(θ)

≤
√

m(Ω)σ(Sn−1) ‖gj‖L2(Sn−1) .

In other words ‖gj‖L2(Sn−1) ≥ 1/ 
(
2
√
m(Ω)σ(Sn−1)

)
> 0 when j ≥ 1. We also know 

that vj has order 0 at xc. Hence by Theorem 3.1

∥∥vsj∞∥∥ ≥
S ‖gj‖L2(Sn−1)

exp exp cmin(1, ‖Pj,0‖
‖gj‖L2(Sn−1)

)−�
≥

S/
(
2
√
m(Ω)σ(Sn−1)

)
exp exp cmin(1, ‖Pj,0‖

G )−�

for all j. By (6.1) and the above we see that ‖Pj,0‖ → 0 as j → ∞.
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By having N = 0 in (6.2) and taking the limit j → ∞ we see that ‖v‖L1(B) ≤
Ck,n,Gr

n+1. Hence

lim
r→0

1
m(B)

∫
B

|v(x)| dx = 0. �

7. Discussion

In this paper, we are concerned with the transmission eigenvalue problem, a type of 
non elliptic and non self-adjoint eigenvalue problem. We derive intrinsic properties of 
transmission eigenfunctions by showing that they vanish near corners at the support of 
the potential function involved. This is proved by an indirect approach, connecting to the 
wave scattering theory. Indeed, we first show that by using the Herglotz-approximation of 
a transmission eigenfunction as an incident wave field, the generated scattered wave can 
have an arbitrarily small energy in its far-field pattern. On the other hand, we establish 
that with an incident Herglotz wave the scattered far-field pattern has a positive lower 
bound depending on the Herglotz wave’s order of vanishing at a corner. This hints that 
the transmission eigenfunction should vanish near the corner point. Nevertheless, the 
rigorous justification of the vanishing property is a highly nontrivial procedure.

To our best knowledge, Theorem 3.2 is the first result in the literature on the intrinsic 
properties of transmission eigenfunctions. The vanishing behavior obviously carries geo-
metric information of the support of the involved potential function V . Indeed, in inverse 
scattering theory, an important problem arising in practical application is to infer knowl-
edge of V by measurements of the far-field pattern us

∞

(
x
|x| ;u

i
)

(cf. [12,22,26,33–35]). 
There is relevant study on determining the transmission eigenvalues using knowledge of 
us
∞

(
x
|x| ;u

i
)

(cf. [8]). Clearly, it would be interesting and useful as well to determine the 
corresponding eigenfunctions from the inverse scattering point of view. Indeed, as sug-
gested by Theorem 3.2, if the unknown function V is supported in a convex polyhedral 
domain, then one might use the vanishing property of the corresponding transmission 
eigenfunction to determine the vertices of the polyhedral support of V . As mentioned 
earlier, in the upcoming numerical paper [3], we shall show that the vanishing order is 
related to the angle of the corner and the vanishing behavior also occurs at the edge 
singularities of supp(V ). Hence, one can use these intrinsic properties of transmission 
eigenfunctions to determine the polyhedral support of an unknown function V . This is 
beyond the aim and scope of the present article and we shall investigate this interesting 
issue in our upcoming papers.

We will comment on the requirement of uniformly bounded Herglotz kernels of The-
orem 3.2. It is a technical condition and very difficult to relate directly to Theorem 2.1. 
This study is a first step in the research of intrinsic properties of transmission eigen-
functions and we have brought a new phenomenon into attention. This observation was 
derived from the apparent contradiction of the well-known Theorem 2.1 and our new 
Theorem 3.1. In addition, the upcoming numerical study [3] gives evidence that this 
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vanishing phenomenon is true more generally. Also in another upcoming paper (Propo-
sition 3.5 in [2]) we study corner scattering with more general incident waves, namely 
waves in H2 that do not need to be defined outside a small interior neighborhood of 
a corner of Ω. That result suggests that the condition of approximation by uniformly 
bounded kernels can be swapped out for the condition that v restricted to Ω ∩ B(xc, ε)
is in H2. In other words, if a transmission eigenfunction is smooth enough near a corner, 
then it must vanish at that corner. We shall further explore this interesting issue in 
forthcoming papers.

Finally, we would like to mention that Theorem 3.1 is of significant interest for its 
own sake, particularly for invisibility cloaking (cf. [18,19]). Indeed, it generalizes our 
earlier corner scattering result in [1] where the incident wave fields are confined to be 
plane waves. It suggests that if the support of the underlying scatterer possesses corner 
singularities, then in principle for any incident fields, invisibility cannot be achieved. On 
the other hand, it also suggests that if one intends to diminish the scattering effect, then 
the incident wave field should be such chosen that it vanishes to a high order at the 
corner point. This is another interesting topic worth of further investigation, especially 
the corresponding extension to anisotropic scatterers.
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