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1. Introduction
For an equation of the type
—Au(z) + q(x)u(x) =0, z€Q, (1)

the inverse boundary value problem is the question of determining the potential g, given knowledge of
pairs (ulgq, dyulon) of Dirichlet and Neumann data, either on the whole boundary, or on some proper
subset of it. One way to encode the given information is the Dirichlet-to-Neumann map A, : ulgg —
Oyu|on. An interesting sub-problem is the one of uniqueness, i.e. showing that if A, = Ag,, then ¢ = ¢o.
A more general question is that of stability: showing that a suitable norm ||q; — ¢2|| of the difference of two
potentials can be controlled by a suitable operator norm |[Ag, —Ag, ||« of the difference of the corresponding
Dirichlet-to-Neumann maps, through an estimate of the form

[l = 2l < 6([[Ag, = Agol), where lim ¢(s) = 0. (2)
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When full boundary data are given, log-type (¢(s) = |log(s)|~7) stability estimates have been obtained
(see [1]). In [24] it has been shown that log-type stability is optimal. For partial boundary data, log-log-type
(¢(s) = |log|log(s)||”7) estimates have been obtained (see [5], [6], [7], [8], [16], [23], [25], [20]), as well as
log-type estimates (see [2], [4], [5], [14], [17]).

In the paper of Heck and Wang [17], they consider the case of a bounded domain in three or more
dimensions and boundary data on a portion of the boundary whose complement is either flat or spherical.
In that instance they obtain a log-type stability result. This setup was used by Isakov in [18] to prove a
uniqueness result. In [5] a similar method is used to prove a log-type stability result with partial data in
the case of electromagnetism. In [2], [4], [14] different methods are used, but with the assumption that the
unknown coefficients are known near the boundary. In this paper we will follow the method in [17] to prove
a log-type stability result.

Suppose w C R™, n > 3, is a bounded domain with C2-boundary. The domain for the problem we will
consider here is an infinite cylinder of the form Q = R x w. We will denote vy = 0w and I' = 92 = R x ~.

We consider two types of geometry for w:

(a) w C {z, <0} is such that y9 = Ow N {z, =0} # 0,
(b) wC B(a,R) ={z € R": |z — a| < R} is such that 79 = dw N dB(a, R) # 0, o0 # 0B(a, R).

In each of these cases let To =R x v9, 1 =7\ 7, 1 =R x vy =T\ Ty.
Let ¢ € L>(Q) be real valued and such that

q(zo +1,2") = q(xg,2"), Vao € R,2’ € w. (3)
We consider the following boundary value problem

{(AJrq)u() in €, )

U|F = f

The Dirichlet-to-Neumann map A, assigns to the Dirichlet data f the corresponding Neumann data A,(f) =
Oyu|r. If we only consider data supported in the open subset I'y C T' of the boundary, then we can define
the local Dirichlet-to-Neumann map

Agr,(f) = 0vulr,, where supp(f) C I's. (5)

Infinite cylinder domains of this type have been considered in [3], [10], [13], [19], [20], [21], [22], in both
static and time dependent cases. In [11], [12], a log—log-type stability result for the potential problem has
been obtained.

We will exploit the fact that the potential is periodic in the z; variable and convert the boundary
value problem (4) into a problem on a bounded domain. Then we will establish a relation between the
Dirichlet-to-Neumann map for the two problems and then we will prove a stability estimate for the converted
problem in the bounded domain and hence we will prove the main result of this article.

1.1. Main results
Let
Co =sup{c > 0: ||[Vu|r2w) > cl|ullp2(w); Vu € Hé(w)}, (6)

and pick constants 0 < M_ < C,,, My > M_. We will consider potentials in the class
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V(M) ={q € L™(Q): g satisfies (3), [|q]|z~) < My, |max(0, —q)|[ o) < M_}. (7)

We will make use of spaces of the type H™*(R x Y) = H"(R; H*(Y")), where r,s > 0, and Y C R" could
stand for w, 7, 71, etc. Similarly let Hy*(R x Y) = H"(R; H5(Y)). By H™""*(R x Y') we will denote the
dual of Hy®*(R x Y). We also define the space

HA(Q) = {u e L*(Q): Au e L*(Q)}, (8)

with the norm

||U||?1A(Q) = ||UH%2(Q) + HAUHQL?(Q)' (9)
For functions ¢ € C$°(Q) we can define the trace operators To(¢) = ¢|r and T1(¢) = 8, ¢|r. These extend
(see [11], Lemma 2.2) to bounded linear operators Ty : Ha(Q) — H 27 2(T) and 75 : Ha(Q) — H 272 (I).
Since Ha () is a larger space than H?((2), it is not entirely straightforward to identify the range of these
trace maps in terms of classic function spaces. We will define 52 (T') = ToHA(2) as a set. Noticing that T
becomes a bijection onto 2 (I") when restricted to D = {u € HA () : Au = 0} (see [11], Lemma 2.3), we
endow S (I") with the topology D induces on it through 7p.
Before stating our stability theorem we need to clarify the well-posedness of the direct problem and give
a precise definition of the Dirichlet-to-Neumann map. We have that

Proposition 1. Given fized My, M_ and g € V(My).

(a) For any f € J2(T1), there is unique uw € HA(Q) solving (4) and C > 0 depending on w and M4, M_
such that

lullz2() < Cllfll ) (10)

(b) The Dirichlet to Neumann map Aq : f — Tiu is a bounded operator from J€(I') into ’Hfz”%(F).
(c) For any G € V, the operator A, — A4 is bounded from (L) to L*(T).

This is identical to the statement of [11, Proposition 1.1]. Though there w C R2, their proof does not
rely crucially on the dimension and does apply equally well to our w C R™ case.
Let || - [l« = || - [|#(r)—L2(r). Our main result is

Theorem 1.1. Let Q = R x w C R where w satisfies one of the geometry constraints (a) or (b). Let My,
M_, N be fixed. If ¢1,q2 € VN H*((0,1) X w) for an s > 1"'7", and ||q1 || ms((0,1)xw)> 12|72 ((0,1)xw) < N,
then there exist C > 0 and o > 0, depending on w, M, and N, such that

g1 — g2l () < Cllog||Ag, v, — Agry [14] 77 (11)

We will prove Theorem 1.1 by making use of the Floquet-Bloch-Gel’fand (FBG) transform (or fiber
transform). This will allow us to prove Theorem 1.1 by proving an equivalent result for a bounded domain.
We describe this in section 2. In section 3 we introduce complex geometric optics solutions for case (a),
which we then, in section 4.1, use to establish our stability estimate. Finally, in section 4.2 we make use of
a (partial) Kelvin transform to reduce case (b) to case (a).
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2. Fiber decomposition

In this section we summarize a few results concerning the FBG transform. All statements are easy
generalizations of results proven in [11].
Let Y be w, Ow, or ;. We define the operator

U(fo(xo,a’) =Y €™ f(zo +k.a'), fECTRXY), 0€[0,2m). (12)
keZ
This extends to a unitary operator mapping L?(R x Y) onto the direct sum f(eg o) L2((0,1) x Y)%. We
will use the notation ¥ = (0,1) x Y.
We need to introduce several function spaces. Let

Hpp(@) ={u € Ha(w): 03 u(l,-) — e u(0,-) =0, j =0,1}. (13)
Also let Hj*(Y) be the set of all functions

$lx) =Y OTEITG (@), g€ HI(Y), Y (1+K)lokl[3re () < oo (14)

kEZ kEZ
The maps v — uls and u — 0,u|y defined on smooth functions may be extended to bounded operators
Toe : Hap(w) — H273(§) and Tip: Hp (@) = H27E(F). (15)
Consider the set
Hy(Y) ={Toou: u € Ha (@)} (16)

It can be shown that 7p ¢ is a bijection between Dy = {u € Ha o(0) : Au = 0)} and (). As with the
original problem, we use this bijection to endow 7 (¥) with a topology.

Note that if X4(Y) is any of the spaces defined above, and X (R x Y) is the similarly defined space on
R x Y, then it holds that

o
.. dé
UXRXY) = / XQ(Y)2—. (17)
™
(0,2m)
It also holds that, for ¢ € V(M4),
i dé
UL+ @) paU ™" = / (=O+ q)lHA,G(JJ)%7 (18)
(0,2m)
i do
UTU* = / Tiog =01 (19)
(0,2m)

For any 6 € [0,27) consider the following boundary value problem in &

(—A+qu=0 in @,
u=f on %, (20)
u(1,-) —e?u(0,-) =0 in w,

du(l,-) —9,e%u(0,-) =0 inw.
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The following proposition is analogous to Proposition 1.
Proposition 2 (see [11], Proposition 3.2). Let 6 € [0,27) and fit My, M_ and g € V(My). Then
(a) For any f € #4(¥%), there exists unique u € Hp o(®) solving (20) with
lullze@) < Cllfllo53)- (21)

(b) The DN map Agg : f — Tigu |5, is a bounded operator from S3(%) to H™>72 ().
(c) For q,G € V(My), the operator Ay g — Ng. is bounded from #4(%) to L*(¥).

We have that

o
- de
UNgr, U t= / Aq7’?179%7 (22)
(0,2m)
and
||AQ1,F1 - ACI27F1 ”*: Sup HAlIh’leﬂ - AQ27’?179||*7 (23)
0e[0,2m)
where on the right hand side || - ||« denotes the operator norm || - || g — 2.

To prove Theorem 1.1 it is then enough to prove

Theorem 2.1. Under the same conditions as in Theorem 1.1, we have

lgr — g2ll e < Co [log[|Ag, 0 = Ags.ry6ll+] 7, (24)

holds for 6 € [0,27). The constant Cy depends on w, My, N, and 6.
3. Complex geometric optics solutions

In this section we will construct complex geometric optics solutions for the problem (20). These will later
be used to prove Theorem 2.1 and hence Theorem 1.1.

In this section we consider the case (a), i.e. w C {z, < 0} is such that v = dw N {z, = 0} # 0. If
r = (w0, 21,...,%,) € RM" we will use the notation z* = (xg,21,...,—2,). For a function f defined on
R+ or a proper subset of it, we will write f*(z) = f(z*).

We extend g; so that as ¢; = 0 for z € {R'™ : 2, < 0} \ & and g;(z) = gj(z*) for z € {R*"T" : 2, > 0}.
This means that ¢j = g;.

For each j = 1,2 we are interested in solutions u; € Ha (&) of (20) for ¢ = g; of the form

u]‘($0,$,) = eCj'z(l —|—’/‘j), (25)
where (; € C**" is chosen so that ¢; - (; = 0.
We will construct (; explicitly. Let £,7 € R™\ {0} such that [{]| =1,£-n=0and £-(0,...,0,1) = 0. For

any0§0<27r,kEZ—&—%,T>Oand§,77asabovewedeﬁne

1= (0+2n ([r] + o%)) (1,—$n>, (26)
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where [r] denotes the integer part of [r], and oy, = 7/4 if K —1/2 is even and oy, = 5/4 if k —1/2 is odd. Let

_ [P 27.2 2
T = 1 + k2 + |1)2. (27)
We define

(= (mk,—75+ig) +il,

2 (28)
G = (—mk,Tf — 15) +1l,
and observe that
G+ G =i2nk,m), (4G =i(2rk,n"),
. = . 1 N 2wk .
G+ G = ik )+ 0+ 27 (0] + ) g (=)
1 21k (29)
= . * ™ *
Gt G = i@k, S(n+17) = (0 + 27 ([r] + ox)) W(n -n%),
G¢G=0=CC
Suppose R > 0 is such that w C B(0, R) C R™. We follow [15,12] to prove
Lemma 3.1. Solutions of the form (25) exist in [0,1] X [-R, R]"™ such that
C
73]l 20,11 x [~ R.Rm) < ?H%‘HLW, (30)
IV75llL2 o, (- rR)7) < CllgjllLee, (31)
for 7> 2wR||q;|| Lo~
Proof. Note that u = e¢#(1 +r), where ¢ = ¢; or { = (, satisfies (20) if
—Ar—2¢-Vr+qr=—q, r(1,-) =7(0,-), dyr(1,-) = 9,r(0,-). (32)

We will construct a solution operator G¢ for the operator —A — 2¢ - V. Without loss of generality we
may choose a basis in R™ so that £ = (1,0...,0) € R™. For any a = (ag, ') € (ZH” — (0, 1/2,0,...,0)),
let

ea = (2R) ™% exp {2m’a0x0 + %a’ : x'} . (33)

These form an orthonormal basis in L?([0,1] x [ R, R]"). Suppose we want to find a solution r to the
equation

—Ar—2¢-Vr=¢.
If we define 7, = (r,es) and (;Aﬁa = (¢, eq) then

A
N Pa

fa = 2 (402 + R~2a/ - o/ — dim—1 (oo — 2i(mR)~1¢" - o)’
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In our case we have Re((y) = 0, Re(¢') = —7(1,0,...,0) € R™, so we get

N |¢a TR -
ol < 57 < —¢al
ﬁlal‘ T

for all a. Writing r = G¢¢ and using Plancherel’s equality we get

e
1Geollr2qox-r R < ——10ll2(0,0]x[- R A7) -

We may also obtain (see [15]) estimates of the form

[IVGeollL2o,1)x[-r,m1) < CillllL2(0,1)x (=R, B>
IAG |2 0,11x[= R, R1m) < C2(OND]L2(j0,1)x [— B, R]™)

where C7 doesn’t depend on (.

We may write (32) in the form

r+Gelqr) = —Ge(q).

(39)

For 7 > 27 R||q||1~ we may invert the operator I + G¢(g-) that appears on the left hand side to obtain a
solution 7 € H?([0,1] x [~ R, R]"™) that satisfies

CR
1711220011~ R, Ry < = llal]z=,

with a constant C' that depends only on w. We also get

Let

[IV7(lL2 0,1~ r.R1") < Cllal[lz~. O

vj = u; —uj = €S (1 +1;) — 521 + 7

Clearly, supp v;|5 C 1.
Using integration by parts we have, for ¢ = (¢1 — ¢2),

<(A(I17’V)’1»9 - Aqm'vh ,9)1]17 UQ>

:/QU1U_2 dx:/q(e(<1+§)'$+e(cf+§)m> d
_/q(e(cf+6)~x+e(gl+g).x) da
+/q<e(cl+6)-z(r1 +E+7’16)+6(Cf+§)m(ri+E+TT%)> da

- /q (e(cf@)-z(r; +73+1i7) + el 0TG4+ mé‘)) dx
w

2111—12—1—13—]4.
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We can easily estimate

|I5] < /qei(%k’n)'w (r1 +72 +m72) dz

) . L C
I /qez(Zﬂ'k,n Yo (7“1‘ + 713 +ri‘r§) dz| < ?”q”Loo(d)). (44)
@

Since Re(¢f + (2) = 0, we get in the same way that

C
110 < i~ o (45)
Using the fact that ¢* = ¢, we see that
1
L = Q/ei(Q’Tk’”)'Iq(x) dz = 2/6""”5/ /ekaxlq(mhx’) dzy | da’ =2q,(n), (46)
@ R 0
where
1
qr () = /ekamlq(xl,x’) dz. (47)
0
Similarly
I, = 2G4, (k), (48)
where k € R” is
1 N 2k N
= 50 ) (O 2]+ ) (0= ), (49)

where oy, is either 5/4 or 7/4.

Lemma 3.2. There exist constants C, g, > 0 such that for any 0 < € < €9

|4k (p)| < Clexp[——(k* + [p*)] + €] (50)

_€
4
Proof. Since ¢ € H*(&), s > (1 4+ n)/2 it follows that there is an o > 0 such that ¢ € C%(). We will

denote by G the extension by zero of ¢ to R**™. First we estimate, for |yo| < 1,

11G(- +yo, ) — G )12 (mr+n)

[yol

1
[+ [ [1a+claliaine
| 0 w

1-lyo
wICllal|#r= @) lyol*- (51)

y0|a

IA
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Applying [17, Lemma 2.2] (see also [9, Lemma 2.4]) we also obtain that there exist C,é > 0 such that if
y € R™ |y'| < 0 then

gC - +9") — a0l Lr@en) < Clyl®. (52)

Using the triangle inequality we can conclude that for y = (yo,y’)

lla(- +y) — q()|lp @i+n) < Cly|*. (53)
We can then apply [17, Lemma 2.1] to obtain the conclusion. O

A consequence of this is that

2

L] <C [exp {—i—ﬂ (k2 + 52)] + ea} . (54)

On the other hand

[((Agi51,0 = Ngz51,0)v15v2) | < [Agy 51,0 — Ngo 500l l|v1] e lv2] 2 5)
< C”A(h,’vhﬂ - AQ2,’?179 |*||U1||L2(o§)||v2||L2(dz)
< e2|£|T||AQ1,’VY179 - quﬁnﬁ”*' (55)

We have here used the fact that

V1l ¢5) < Cllvillaa o) < Cllvillz2w) + llarvil|z2@w)) < Cllvillrew)-

Putting together the above estimates and the fact that

42kr N
|H|2|77T|77—77 |, 1> 2mr, (56)
we obtain
) T 222k L1
0] < C [0 = Aol oo | -2 | 4 e 57)

where C' is a constant depending on n, @, M.
4. Stability estimate
4.1. Case (a), v0 C {z, = 0}

We need the following lemma:

Lemma 4.1 (see [11], Lemma 6.3). Let ¢ € L*((0,1) x R™). Then there exists C > 0 such that

llall a1 (0,1)xrm) < C

ST+ )1P) @)

kEZ

L2(R")
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Then

-1, <
ol oy <€ [ (4 1EDE) ™ GNP dut) d,

R1+n
where p(k) =, c; 0n. Let
B, ={(k,n) e R 1 |k| < p,[n+n*| < p,In—n*| < p}.

Then we have

—1,
lall3 101y ) <C / (14 k) 2) " |G ()2 dutk) dy
RI+"\ B,

+0 [ 1P G ) dr.
BP

The first integral in (60) is easy to estimate:
1
(L +1(kmP) " |G (m)* dpu(k) dn
R1+7\B,

c . C
= 2 / |gr(n)? dp(k) dn < ;Ilquiw(m.
R1+7\ B,

To estimate the second integral, we use (57) and the fact that on B,
7 < 100(r + p)

to obtain:

[ @ 1em?) ™ 1@ dnte) ay
BP

p

2.2
€E°r
< C[p1+n6200(r+p))HAqu’leﬁ - qufnﬂ”* + Ezapl+n + p1+nT71 +p" / exp |:_p—s

—p

< CIP RO Ny 50— Agg gyl 20T T e,

We can choose € such that €2® = r~!. Then

€2ap1+n +p1+nr71 +pn+2€71,},,71 S C[lern,rfl +pn+27,71+ﬁ} S Cpn+27,,75¢’

44n

with @ =1 —1/(2«a). Next we choose r = p~a . With this choice, going back to (60) we obtain

n dtn _
a3+ 0,1) k) < C [0 expl400p" 5 [[Ag, 50,0 = A5 ol + 972

To finish the estimate, we can choose p so that

4+n _
Pt expld00p & lAg, 416 — Agas0lle = P77

(62)

(64)
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In this case clearly there exists a y(n,&) > 0 so

~

% (67)

p > |log ||A¢Z1,’VY1,9 — Ngo 51,0
This gives us the estimate
”q”%—l((o,l)xR") < C'log ||Aq17’?1,9 - Aqm%ﬁ”*rv : (68)

Since we are additionally assuming that ||g;||zs ) < N, for and s that can be written as s = HT" + 2€,
by interpolation we have that there exists 7 € (0,1) such that

lar = 2llze@) <lla = @l 1gm . ) S llar — a2l Fr-1 (@) llar — a2l 57 - (69)

(&

Our desired result now follows trivially.
4.2. Case (b), vo C {|2’ —a| = R}

Without loss of generality a = (0,...,0,R) € R™ and 0 ¢ @. Following [18], [17], we employ the (partial)
Kelvin transform

2R\ >
y/ = <m) xlv Yo = o, (70)
whose inverse is
2R\ ?
x' = <|y_’|) Y, xo = Yo. (71)

Let @, 4, 50, 71 be the images of w, 7, v, 71 through this transform. Then 59 C {y, = 2R}, 91 =
AN {yn > 2R}, so the transformed domain & satisfies the conditions of case (a).
For a function u(z) we define

aly) = (%) (o). (72)
Note that

(%)W Ayiify) = Agula). (73)

If —Au+ qu =0, then

2R
1Y/

—Ni+Gi=0, §y) = < ) q(z(y))- (74)

Let f € (1), then there exists u € Ha (&) such that uls, = f, Au = 0. We notice that i|; = f and
AT = 0. Since (2R/|y’|)"? is a bounded positive function on @, there are constants C’,C"" > 0 such that

C'Mullzz@) < Nallgz@y < CMull2@)- (75)

So
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C'N Lty < Nl i0) < C M Nl (- (76)
Similarly, for any g € L?(¥1),
C'llgllz2 ey < Nallpzeiy < CMgllL2en)- (77)

It follows then that the norms [[Ag, 5,0 — Ags 5,0/« and ||A
are constants C’, C” > 0 such that

A Aq2’§179||* are equivalent, i.e. that there

Cl||Aql7’VY179 - qu,’hﬂ”* < ||Aq1,5y1,9 —A < C””Aqh%,e - Aqm’hﬂ”*' (78)

Q27;§’170||*

With this observation, we see that the stability estimate we have proved for case (a) implies the one for
case (b).
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