This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AR E
4€‘j i) |EEE TRANSACTIONS ON ELECTRON DEVICES
S

A Physical Model for Metal-Oxide Thin-Film
Transistor Under Gate-Bias and
lllumination Stress

Jiapeng Li*, Lei Lu

, Rongsheng Chen

, Hoi-Sing Kwok, Fellow, IEEE,

and Man Wong, Senior Member, IEEE

Abstract— A negative shift in the turn-on voltage of a
metal-oxide thin-film transistor under negative gate-bias
and illumination stress has been frequently reported. The
stretched-exponential equation, predicated largely on a
charge-trapping mechanism, has been commonly used to
fit the time dependence of the shift. The fitting parameters,
some with unsubstantiated physical origin, are extracted by
curve fitting. A more physically based model is presently
formulated, incorporating the photogeneration, transport,
and trapping of holes. The model parameters of generation
energy barrier, hole mobility, and trapping time constant are
extracted from the measured gate-bias dependent turn-on
voltage shift. It is theoretically deduced and experimentally
verified that the degradation kinetics is either generation
or transport limited. The model can be further applied to
explain the attenuated shift under positive bias and illumi-
nation stress, if the screening of the electric field emanating
from the gate bias is also accounted for. From the effects
of asymmetric source/drain bias applied during stress, it is
deduced that the trappingis localized along the length of the
channel interface. The turn-on voltage of a transistor after
such stress is constrained by the portion of the channel
exhibiting the smallest shift.

Index Terms— Asymmetric stress, bias illumination
stress, generation or transport limited, indium—gallium-zinc
oxide (IGZ0), reliability, thin-film transistor (TFT).

I. INTRODUCTION

ITH their relatively lower process temperature, higher
field-effect mobility, lower leakage current, and higher
transparency [1], metal-oxide—semiconductors such as zinc
oxide and its variants are being pursued as promising
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alternatives to amorphous silicon for the construction of
thin-film transistors (TFTs) in the next-generation flat-panel
displays. However, reliability issues of metal-oxide TFTs, par-
ticularly those related to gate-bias stress under illumination [2],
and their underlying mechanism must be better understood and
resolved before the technology is ready for wider industrial
adaptation [3].

Among the variants of zinc oxide, indium-gallium-zinc
oxide (IGZO) has been most intensely studied. TFTs based
on IGZO have been reported to suffer the severest degradation
under negative gate-bias and illumination stress (NBIS) [4], as
revealed by the dependence of the shift (A V,y,) of the turn-on
voltage (Von) on the stress duration (¢) [5]. The negative
AVon during NBIS is usually attributed to the trapping
of positive charges at or adjacent to the channel/insulator
interface [6], [7].

Much has been reported on the analysis of the charge-
trapping process by fitting the ¢-dependence of AV, with
a stretched-exponential equation [2], [8], [9] that is para-
meterized by an extrapolated “saturation” AV, at t = oo,
a characteristic trapping time constant 7z, and a stretched-
exponential factor £ [10]

AVon = Avoo[1—e—(‘?)ﬁ]. (1)

However, being a phenomenological fit rather than a physical
model, the equation sheds little light on the rich character of
the physical processes taking place during stress [4], [10], [11].
Examples of the diverse instability behavior include the dif-
ferent dependence of AVy, on illumination with different
wavelengths [11], on the magnitude of the bias, and on positive
bias and illumination stress (PBIS) [4]. It is likely such
limitation arises from an emphasis only on the charge-trapping
dynamics, but ignoring the kinetics of the photogeneration and
transport of the responsible charge carriers.

In this paper, IGZO TFTs with thermally induced
source/drain (S/D) regions [12] were fabricated to investigate
device stability against bias and illumination stress.
A simple 1-D “generation-transport-trap” model is proposed
for NBIS-induced instability, accounting for the photogenera-
tion and transport of holes across the thickness of the channel,
and their eventual trapping at or near the channel/gate-
insulator (GI) interface. Model parameters such as energy
barrier for generation (g¢), generation rate prefactor (go),
hole mobility (up), and interfacial trapping time constant (zs)
are extracted from the measured dependence of AV, on ¢
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and the gate bias (V) during stress. The effects of drain
bias (V4) on NBIS-induced instability were also studied. It is
deduced that the hole trapping during stress is localized along
the length of the channel interface. Consequently, the overall
Von of the transfer characteristics after stress is constrained
by the portion of the channel suffering the least amount of
trapping, thus exhibiting the smallest A V.

[I. MODELING AND EXPERIMENTS

TFT fabrication started with the sputter deposition and
patterning of ~80-nm molybdenum (Mo) as the bottom gate
electrode on an oxidized silicon wafer. A GI stack con-
sisting of 50-nm silicon nitride topped with 75-nm silicon
oxide (SiOx) was deposited in a plasma-enhanced chemical
vapor deposition (PECVD) reactor before ~20-nm IGZO was
deposited by sputtering from a target with a molar ratio
of Inp03:Gar03:ZnO = 1:1:1. The active island was sub-
sequently patterned and capped with 300-nm gas-permeable
SiOx passivation layer (PL) deposited in the same PECVD
apparatus. After the S/D and gate contact holes were opened,
gas-impermeable S/D metal electrodes consisting of a stack
of sputtered aluminum (Al) on Mo were patterned to partially
overlap the gate electrode. The TFT was then “activated”
at 400 °C for 4 h in an oxygen atmosphere to thermally induce
the formation of the highly conductive S/D regions [13].
Shown in Fig. 1(a)—(c) are, respectively, a schematic of the
resulting IGZO TFT, the cross section of the region of the
TFT used in numerical simulation, and the coordinate system
used to set up the model equations.

The TFTs were subjected to a variety of stress condi-
tions, including pure illumination stress (IS) without bias,
negative/positive bias stress (N/PBS) without and with green
(~532 nm) or blue (~485 nm) illumination (green-NBIS or
blue-N/PBIS). The intensity of the illumination was fixed at
0.4 W/m?, measured using a calibrated photodiode. For both
N/PBS and N/PBIS, the V, during stress was —20/ + 20 V,
with the S/D electrodes grounded (Vs = Vg = 0 V). The
transfer characteristics were measured in the dark after each
illumination session using an Agilent 4156C Semiconductor
Parameter Analyzer. The delay between the turning off of the
light source and the electrical measurement was less than 1 s.
Von is defined as the V, at which an exponential increase in
the drain current (Ig) is first observed.

It is clear from Fig. 2 that blue-NBIS was the only stress
configuration exhibiting a continuous negative shift in Vy,
with 7. The absence of any significant deterioration of the
pseudosubthreshold slope is a strong indication that no new
defect states in the bandgap were created during the stress [14].
Because of the invariant transfer characteristics obtained dur-
ing and after blue-IS and blue-PBIS, and in agreement with the
reported fast decay of photocurrent in IGZO [15], long-living
excess photogenerated electrons in the channel were elimi-
nated as the cause of the negative AV, [16] for blue-NBIS.
Furthermore, the minimally affected V,, after PBIS and PBS
reflects a good channel/GI interface relatively free of electron
trap states.

The negative AV,, under blue-NBIS has properly been
attributed to the trapping of photogenerated positive charges at
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Fig. 1. (a) Schematic of IGZO TFTs with thermally induced and
highly conductive S/D regions (cross hatched). (b) Cross section of the
portion of a TFT [box bound by dotted line in (a)] under simulation; the
electric field along the red line in the middle of the channel is simulated.
(c) Coordinate system used to set up the model equations.
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Fig. 2. Time evolution of the transfer characteristics of 1GZO

TFTs subjected to a variety of stress conditions including IS, N/PBS,
and N/PBIS.

or near the interface between the IGZO channel and the SiOx
GI [6], [7], [17], [18]. Both ionized (Vg ™) oxygen vacancy
(Vo) defects and holes (h™) have been proposed as possible
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Fig. 3. Energy band diagram describing the photoassisted generation
of ionized oxygen vacancies and holes. Eg and Ey are the respective
edges of the conduction and valance bands.

candidates for such positive charges. Deduced by combining
the Einstein relationship with the reported diffusion coefficient
and activation energy [19], the room-temperature mobility of
an ionized Vo is merely ~10727 ¢cm?/V - s. This is ~22
orders of magnitude smaller than the theoretically predicted
maximum gy, of ~1075 cm?/V-s [20]. Consequently, h rather
than Vé+/ * are the more likely species accounting for the
A Vg, under blue-NBIS.

Holes are photogenerated via a two-step process, as sum-
marized in (2) and (3), and shown schematically in Fig. 3.

1) Photoionization of Vg resulting in the promotion of
electrons (e~) to the conduction band and the for-
mation of V(2)+. This requires a photon energy of
~2.3 eV [11], [21].

2) h™ generation by the promotion of e~ from the
valance band to the V(Z;r state. This requires an energy
of ~2.8 eV [22], [23]

Vo +hv —> V5" +2e” )
V3F 4+ hv —> Vo + 2ht. 3)

A model is presently formulated for NBIS-induced AV,
based on the following sequence of events: 1) the generation
of h* by photoexcitation; 2) the transport of these h™ across
the channel; and 3) the final trapping of the h™ at the interface.
It is assumed that the population of photogenerated h* is small
compared to the background of field-induced charge carriers
so0 as not to materially change the electric field (E) established
in the channel by the V.

The photogeneration rate g of h' is given by

—q¢+hv

kgT (4)

8§ = 8o¢

where go is a constant prefactor related to the density D
of V(z)+, q is elemental charge, ¢ is generation potential barrier,
h is Planck’s constant, v is the frequency of illumination, kg is
Boltzmann’s constant, and 7 is the absolute temperature. Note
that under illumination, the effective barrier against generation
is reduced by the photon energy (hv). Consequently, the
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Fig. 4. Schematic of the degradation mechanismin TFTs under (a) NBIS
and (b) PBIS.

Boltzmann factor alone contributes to a reduction of g
by ~10* (originating from a reduction in hv by ~0.24 eV)
at room temperature when switched from blue to green illu-
mination. The recombination rate r of h' is expressed by

r=— (5)
Th
where p is the concentration of h™ due to photogeneration
and ty, is the corresponding recombination time constant.
Given the much higher electron mobility (~10 cm?/V - S)
than up in IGZO [13], the photogenerated electrons can
be transported rather more quickly than holes across the
20-nm channel thickness (d). Therefore, the continuity
equation for only the holes needs to be considered during the
stress

dp
— =90 —7y — —— X~ gope BT — — _— — =0 6
a8 7 dy g0 - p/“hdy (6)

where J = qunEp is the h™ drift current density and
y is defined in Fig. I(c). Note that p is taken to be the
total h™ concentration due to the small intrinsic background
concentration of holes in IGZO.

It is reported that 7, ~ 1072 s [15], much shorter than the
stress duration of 10000 s. Therefore, the local p is capable
of quickly reaching steady state. For IS without bias, steady
state = g =r and J = 0. One deduces

—q¢+hv

kg T (7

P0 = 807he

where pg is the steady-state concentration of h™.

Under the action of E during NBIS, the photogenerated
h™ drift to and accumulate at the front interface between
IGZO and GI. They are eventually trapped in the interface
states. The total amount of trapped holes (P;) is determined
by a competition of the drift current density Jr being injected
at the front interface and the detrapping process as shown
in Fig. 4(a) such that

dp; _ Jr P

s _ s 8
dr q Tg ®
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where 75 is a time constant associated with the interfacial hole
traps. It is similar to 7 in (1) but different from j, in (5) for
the recombination of the photogenerated electrons and holes
in the bulk of the channel. Consequently

Jr ' '

P, = ;‘[S(l—e_?s) = unErprrg(1—e ) ©

where Ef and pr are, respectively, the electric field and the
h™ concentration at the front interface. A simple nonstretched
exponential behavior is thus obtained

q Ps Jr _t
AVop = — = l—e = 10
on Cox Cox Ts( ) (10)
—_——
AVeo

where Cox is the effective GI capacitance. Clearly, Jr is the
factor determining A V. Two regimes of behavior regarding
A Vo, are discussed in the following.

When the electric field gradient dE/dy is large, such that
r in (6) is negligible in comparison, the generated holes at
each location across the channel are removed predominately
by drift. Consequently, Jr is limited by generation. The
g-limited Jg; is given by

T = qdgoe BT (11
Thus
AVon = @eiig?}w Ts (l—e_TLS) (12)
ox
AVool

where AV, is the generation-limited A Vi, and AV is the
corresponding saturation value.

For the opposite limiting case of dE /dy being negligible in
comparison with r, p is dominated by the local equilibrium of
generation and recombination, governed by (7). Consequently

Jr = qunEspo. (13)
The transport-limited A Vyq2 is given by
E —q¢+hv t
AVom = we BT g (1_6—15) (14)
COX
AVoo2

where A Vo is the corresponding saturation value. Which one
of the two mechanisms dominates the t-dependence of AV,
under NBIS is determined by the relative magnitude of 1/t
and pundE/dy and ultimately the magnitude of V.

With the S/D electrodes grounded and the blue illumination
power density fixed at 0.4 W/m?, the dependence of NBIS
induced instability on the magnitude |V,| between 0 and 30 V
was investigated. Two distinct regimes can be observed (Fig. 5)
for the dependence of AV,, on V,. When [V,| is lower
than 8 V, the AVy, after t = 10000 s depends almost
linearly on V. In this regime, E is relatively small, thus
it is the limiting factor in regulating J¢. For |Vg| greater
than 8 V, a relatively constant AV, was obtained, despite
almost quadrupling | V| from 8 to 30 V. This is the regime in
which Ps is limited by the generation of holes.

AVon extracted in the g-limited regime at Vy, = —30 V
is plotted in Fig. 6. For + < 3000 s, the roughly linear
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Fig. 5. Dependence of AV, on Vg for IGZO TFTs subjected to NBIS
for different t.
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Fig. 6. Time evolution of AVon during NBIS at Vg = —30 V.

dependence of AV,, on t reflects the fact that the interface
traps are far from being saturated with captured holes; hence,
the corresponding saturation in Fig. 5 is a consequence of the
limitation by h* generation in the bulk of the channel. For
t > 3000 s, the time rate of shift reduces as more of the trap
states are filled, leading to a gradual saturation of AV,, when
¢ continues to increase.

NBIS at elevated temperature (7') up to 7 = 80 °C was
investigated, with Vj fixed at —21 V and using the same illumi-
nation condition. This is also commonly known as the negative
bias temperature and illumination stress (NBTIS). Shown in
Fig. 7 is the t-dependence of the resulting A V. Included also
are the analytical fits using the common stretched-exponential
form according to (1) and the g-limited simple exponential
form according to (12). Both fits are reasonable, with the cor-
responding average 7 fluctuating around ~6000 and ~7500 s
(inset of Fig. 7), thus indicating a relatively long-trapping time
constant.

7 extracted at different 7' is shown in Fig. 8(a), lacking a
clear dependence on 7. The corresponding relative fluctuation
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of 75(1 — e~/ %)), thus its contribution to AV, variation
according to (12), is shown in Fig. 8(b). The variation of
about ~50% for 7g ranging from 5000 to 9000 s is small
compared to the 400% increase of AV, when T was increased
from 25 °C to 80 °C. The larger variation should properly
be assigned to the ¢(~2¢+1/k8T) exponential term in A Vaor.
Consequently, the average 73 of 7500 s is used for the
extraction of the model parameters.

Shown in Fig. 9(a) is the T-dependence of AV,, after
10000-s NBTIS in linear scale and in Fig. 9(b) is the same
in Arrhenius plot. Higher temperature obviously enhances the
generation rate of holes [24]. From the slope of the plot in
Fig. 9(b), an energy barrier g¢ of 2.75 eV is obtained. This is
close to the reported energy difference of ~2.8 eV [22], [23]
between the valence band edge and the V(Z)+ level. Because of
the large g¢ compared with the thermal energy (~31 meV)
even at 80 °C, it is small wonder that AV, is negligible under
NBTS, as shown at the top of Fig. 8(a).

Since Von ~0 V, Ef can be approximated by assuming the
entire V, is dropped across the thickness (dox) of the GI due
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Fig.9. (a) Dependence of AVon on Tfor IGZO TFTs subjected to NBTS
and NBTIS. (b) In|AVon| as a function of 1000/T.

TABLE |
EXTRACTED PARAMETERS OF GENERATION—TRANSPORT-TRAP
MODEL BASED ON MEASURED RELIABILITY PERFORMANCE
OF FABRICATED IGZO TFTs

Parameters Unit Value
Generan.on energy oV 275
barrier q¢
Trap time constant 7 S ~7500
Holes mobility u;, cm*/Vs ~107
Generation rate pre-
P /em’s ~10"
factor g,
Generation rate g /em’s ~10"
Steady-state hole
o fom? ~10"
concentration p ,

to interfacial band pinning in IGZO, i.e
Ve ¢
Ef ~ _g 0X

~ (15)
dox €1GZ0

where eox and e1gzo are the respective effective dielectric
constants of the GI and IGZO. The same extraction procedure
is next applied to the set of AV,, obtained in the transport-
limited regime shown in Fig. 5, this time using (14). The
extracted model parameters are summarized in Table I.

The different behavior of N/PBIS was studied by estimating
the distribution of E across d (Fig. 10) using a commercial
device simulator and the schematic device cross section shown
in Fig. 1(b). The highly conductive S/D regions, with a low
resistivity of ~1072 Q- cm [4], were treated as conductors.
Other physical parameters and dimensions were unchanged.

Because of the change in the direction of E, photogen-
erated holes are transported to the IGZO/PL back interface
during PBIS. It is clear that |Ep|, the magnitude of the
electric field at the back interface during PBIS is significantly
attenuated (by ~500 times at | V| = 20 V) compared to | E¢|,
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the magnitude of the electric field at the front interface
during NBIS. The weak E}, leads to a slow migration, hence
collection, of holes, thus a significant attenuation in the PBIS
(Fig. 2)- and PBTIS-induced (Fig. 11) AVy, over ¢. The
different band-bending configurations during N/PBIS have
been schematically shown in Fig. 4. The simulated |Ef| ~
3 x 103 V/em is close to the theoretical approximate of
5.8 x 10° V/em given in (15).

I1l. EFFECTS OF ASYMMETRIC S/D BIAS

The forward and reverse families of transfer characteristics
upon reversal of the S/D bias of an IGZO TFT subjected to
NBIS with symmetrically grounded S/D regions are shown
in Fig. 12. As expected, the two families are similar, with
A Vo, showing indistinguishable z-dependence.

It is clear from the schematic device cross section shown in
Fig. 1(a) that E is generally nonuniform across the length of
the channel between the S/D regions. In fact, | E| would be the
smallest in the middle of the channel if both the S/D electrodes

Vgs = 5 V) and reverse (Right: Isq versus Vgq at Vgq = 5 V) transfer
curves subjected to NBIS with symmetric S/D blas
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Fig. 13.  Time evolution of the forward (Left lgs versus Vgs at

Vgs = 5 V) and reverse (Right: Igq versus Vg at Vgg = 5 V) transfer
curves subjected to NBIS with asymmetric S/I% bias.

were grounded during NBIS. It can be deduced from (14)
that AV, reduces with decreasing |E|. Since AV, <0V,
the turning on of a stressed TFT is thus controlled by the
portion along the channel with the smallest |AV,|. In the
case of a TFT subjected to symmetric NBIS with grounded
S/D electrodes, the point of minimum stress is located in the
middle of the channel.

The point of the minimum stress can be displaced from the
middle of the channel by breaking the symmetry of grounded
S/D during stress. With a grounded source Vs = 0 V but a
Va = —26 V during NBIS, the resulting forward and reverse
families of characteristics are shown in Fig. 13. The two
are still more or less identical, except AV, =~ 0 V. Since
V. was more positive than V4 during such stress, the drain
end was actually subjected to PBIS. Consequently, it is this
end that controls the turning on of the stressed TFT, hence the
small |[AVon| of ~ 0 V. This behavior can be nicely captured
using a circuit of serially connected TFTs shown in the inset
of Fig. 14, with the limiting TFT near the drain end exhibiting
a smaller AV .

Clearly, NBIS can be performed by setting Vg [5], [25]
over a range that changes the stress condition at the drain end
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Fig. 14. Dependence of AVon of TFTs under NBIS on the potential

difference Vyq from gate to drain. Inset: circuit schematic of serially
connected TFTs near the source and drain ends of the channel.

continuously from NBIS to PBIS. Such a detailed study has
indeed been carried out, and the results are shown in Fig. 14,
with V, and Vi fixed, respectively, at —21 and O V, but
Va changed from 0 to —26 V.

It can be seen that for a given ¢, |AV | increases contin-
uously as Vgg = Vy — Vy decreases from 5 to —35 V and
saturates beyond Vg ~ —10 V. This is consistent with the
two regimes of degradation kinetics reported in Fig. 5.

IV. CONCLUSION

The stretched-exponential equation, predicated largely on
a charge-trapping mechanism, has been commonly used to
fit the time dependence of the shift in the turn-on volt-
age of a metal-oxide TFT under NBIS. Constrained by its
emphasis on only the charge-trapping dynamics, the model
cannot be used to fully account for the rich character of the
physical processes taking place during the stress. A more
physically based model is presently formulated, incorporating
the photogeneration, transport, and trapping of holes. For
indium—gallium-zinc oxide, the respective model parame-
ters of generation energy barrier ~2.75 eV, hole mobility
~1072 cm?/V - s, and trapping time constant ~7500 s are
extracted from the measured gate-bias dependent turn-on
voltage shift. It is theoretically deduced and experimentally
verified that the degradation kinetics is either generation or
transport limited, depending on the magnitude and direction
of the local electric field inside the channel but normal to the
channel/interface during the stress. The model can be further
applied to explain the attenuated shift under PBIS, when the
screening of the electric field emanating from the gate bias
has been accounted for. From the effects of asymmetric S/D
bias applied during a bias illumination stress, it is deduced
that hole trapping is localized along the length of the channel
interface. The turn-on voltage of a transistor after such stress
is constrained by the portion of the channel exhibiting the
smallest shift. Since the model is developed to describe
an intrinsic degradation mechanism within the IGZO active

layer, it is believed that the proposed generation-transport-trap
model is equally suitable for describing similar degradation
in other structures built around similar active layers—if the
structure induced variation in the distribution of electric field
is accounted for.
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