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Chapter 9
Structure of the MCM2-7 Double Hexamer 
and Its Implications for the Mechanistic 
Functions of the Mcm2-7 Complex

Yuanliang Zhai and Bik-Kwoon Tye

Abstract  The eukaryotic minichromosome maintenance 2–7 complex is the core 
of the inactive MCM replication licensing complex and the catalytic core of the 
Cdc45-MCM-GINS replicative helicase. The years of effort to determine the struc-
ture of parts or the whole of the heterohexameric complex by X-ray crystallography 
and conventional cryo-EM produced limited success. Modern cryo-EM technology 
ushered in a new era of structural biology that allowed the determination of the 
structure of the inactive double hexamer at an unprecedented resolution of 3.8 Å. 
This review will focus on the fine details observed in the Mcm2-7 double hexameric 
complex and their implications for the function of the Mcm2-7 hexamer in its dif-
ferent roles during DNA replication.
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9.1  �Introduction

Of the three macromolecule-synthesizing machines that synthesize proteins, 
mRNAs and DNA, respectively, the crystal structures of the ribosome (Ramakrishnan 
2010; Steitz 2010; Yonath 2010) and RNA polymerase (Kornberg 2007) have been 
determined at atomic resolution, and Nobel prizes were even awarded for these 
achievements. However, the replisome and many of its integral components have 
been recalcitrant to crystallization, and structural determination of the replisome has 
lagged behind. The replisome is a complex machine with multiple engines including 
a DNA-unwinding helicase at the front end and one leading-strand and two lagging-
strand DNA polymerases chugging along at the back end. The size, asymmetry, 
flexibility, and multipartite nature of the replisome have posed difficult challenges 
for structural biologists on the mission to unravel its anatomical secrets. However, 
the prospects for unraveling the atomic structure of the replisome soon will change 
because of the advent of the cryo-EM revolution that took place in 2013 (Fernandez-
Leiro and Scheres 2016). To date, two major structures that are critical for unravel-
ing the anatomy of the helicase component of the replisome have been determined 
at near-atomic resolution. The first is the inactive MCM double hexamer determined 
at an overall resolution of 3.8  Å (Li et  al. 2015). The unprecedented resolution 
achieved in this study lays a strong foundation for structural work on the helicase 
component of the replisome and will serve as a template for subsequent atomic 
modeling of all MCM-associated DNA replication complexes. The second is the 
CMG helicase resolved at a slightly lower resolution by two groups (Abid Ali et al. 
2016; Yuan et al. 2016). In this chapter, we will focus on the structure and structure-
informed functions of the MCM double hexamer. In the following chapter, the struc-
ture of the CMG helicase and the architecture of the replisome will be reviewed.

The Mcm2-7 hexameric complex is the core of the inactive MCM replication 
licensing complex (Tye 1999a; Donovan et al. 1997; Chong et al. 1995; Thommes 
et al. 1997) and the catalytic core of the Cdc45-MCM-GINS replicative helicase 
(Labib et al. 2000; Moyer et al. 2006; Gambus et al. 2006; Ilves et al. 2010). Three 
of the MCM subunits (Mcm2, Mcm3, and Mcm5) were initially identified in a yeast 
mutant hunt for proteins that regulate the initiation step of DNA replication (Tye 
1999a). This screen utilized the maintenance of minichromosomes as an assay and 
hence the name (Maine et al. 1984; Tye 1999b). Paralogs of these Mcm proteins 
were subsequently identified in the yeasts and other eukaryotes from screens not 
necessarily related to DNA replication functions (Moir et al. 1982; Johnston and 
Thomas 1982; Bae et al. 2009). There is a total of eight Mcm paralogs. Mcm8 and 
Mcm9 are only found in metazoans, and their functions are less well known 
(Maiorano et al. 2005; Gambus and Blow 2013; Lutzmann et al. 2005; Nishimura 
et al. 2012; Traver et al. 2015). Mcm2, Mcm3, Mcm4, Mcm5, Mcm6, and Mcm7 
form a hexameric complex that is involved in replication initiation and elongation in 
all eukaryotes (Bochman and Schwacha 2009). However, purified Mcm2-7 com-
plexes show little or no helicase activity unless provided with the accessory factors, 
the tetrameric GINS and Cdc45 (Bochman and Schwacha 2008; Ilves et al. 2010). 
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In contrast, in archaebacteria, a single Mcm protein forms a homohexameric ring 
that displays robust helicase activity (Kelman et al. 1999; Chong et al. 2000). An 
alignment of the Mcm2, 3, 4, 5, 6, 7 amino acid sequence with their archaeal homo-
logue shows that the CTD catalytic core and NTD core are highly conserved 
(Fig. 9.1a). Each of the Mcm2-7 subunit has its own characteristic CTE, NTI, and 
NTE that suggest subunit-specific functions.

The assembly and activation of Mcm2-7 helicases at replication origins are strictly 
regulated during each cell division cycle, ensuring replication initiation to occur at 
each origin no more than once (Diffley et al. 1994; Siddiqui et al. 2013). Several labo-
ratories have been able to reconstitute the DNA replication system using purified 
yeast proteins (Georgescu et al. 2015; Yeeles et al. 2015). These laboratories have 
taken the approach to look at in vitro assembled replication complexes by negative 
staining EM and cryo-EM (Remus et al. 2009; Costa et al. 2011, 2014; Sun et al. 
2013, 2014, 2015; Yuan et al. 2016; Abid Ali et al. 2016). An alternative approach is 

Fig. 9.1  Structural organization of the MCM2-7 subunits. a Schematic illustration of domain 
organization and subunit-specific features of MCM2-7 subunits, with comparison to the archaeal 
MCM (SS, Sulfolobus solfataricus). Numbered regions correspond to numbered extensions and 
insertions highlighted in (d–i). “-” symbols denote corresponding regions with reliable densities to 
trace the main-chain direction, but not sufficient for atomic modeling. “--” symbols denote 
sequences with highly disordered densities. (b, c) A protomer of the crystal structure of a chimeric 
archaeal MCM hexamer structure (PDB code 4R7Y) was used as the template for modeling with 
its subdomains divided and colored. The archaeal MCM was aligned globally (b) or domain-based 
flexibly fitted (c) to the atomic model of Mcm2. (d–i) Side-by-side structural comparison of 
MCM2-7 proteins, with Mcm3-7 globally aligned to the atomic model of Mcm2. The well-resolved 
insertions and extensions of each MCM subunit (d–i) are numbered and colored in red (Reproduced 
from Li et al. 2015)
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to purify endogenously assembled DNA replication complexes that may have a better 
chance of preserving fidelity but may compromise on the yield of such preparations.

In yeast, the soluble form of the Mcm2-7 complex is a single hexamer, and the 
chromatin-bound form of the complex is a double hexamer. Tye and collaborators 
purified the soluble single hexamer (SH) from an overexpression strain and the 
double hexamer (DH) from native chromatin and examined their structures by cryo-
EM (Li et al. 2015). After much effort, they were unable to get a respectable 3-D 
structure of the SH because of its flexibility and instability. In contrast, the double 
hexamer was clearly much more stable. After only two sessions of data collection, 
a refined 3-D structure of the DH was obtained with a resolution of about 4.4 Å for 
the more flexible exterior and a better than 3.2 Å for the interior core (Fig. 9.2). The 
high quality of this EM density map allowed the assignment of each of the MCM 
subunits unambiguously without the help of conventional tagging strategy 
(Figs. 9.1d–i and 9.3c–e). The crystal structure of the conserved core region of the 
chimera of Sulfolobus solfataricus NTD and Pyrococcus furiosus CTD (Fig. 9.1b) 
(Miller et al. 2014) was used for the atomic modeling. Rigid body domains of the 
chimera were divided into four segments (NTD-A, OB-fold, ZF, and CTD) and fit-
ted onto the electron density map with manual adjustments according to predicted 
secondary structures (Fig. 9.1b–i). For regions without a known template, the model 
relied on predicted secondary structure and tracing of the main chain based solely 
on densities. As a result, an atomic model of the DH for ~80% of its sequence, 
including most of the subunit-specific extensions and insertions, was built.

9.2  �Asymmetry of the Double Hexamer

The double hexamer is a rigid, head-to-head double ring structure that is slightly 
tilted, twisted, and offset with respect to each other, similar to that described previ-
ously for in vitro purified DH (Sun et al. 2014). The relative positions of the subunits 

Fig. 9.2  The density map 
of the MCM2-7 double 
hexamer (sharpened) is 
shown in two views for the 
outer and inner surfaces. 
The map is color-coded to 
indicate the range of the 
local resolution
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were also in the precise predicted order determined by low-resolution cryo-EM 
except that the assignment of the CTD relative to the NTD was different. In the atomic 
model, the CTD is almost vertically aligned with respect to the NTD (Fig. 9.3) rather 
than the sharp anticlockwise displacement in the earlier model. The top view from the 
CTD shows a compact closed ring with an open channel wide enough for dsDNA to 
pass through without the obstructions of the CTE reported in Sun et al. (2014). These 
observed differences could result from in vitro versus in vivo assembly.

The tilted arrangement of the two SHs forms a 14° wedge in between (Fig. 9.3). 
The Mcm2/Mcm6/Mcm4 subunits from both SHs are all positioned at the thick edge. 
Although the very long NTEs from Mcm2, Mcm4, and Mcm6 (Fig. 9.1a) appear too 
disordered to produce observable electron density, their bulkiness is believed to be 
the cause of the tilted conformation of the DH. The localization of these three sub-
units at the thick edge of the DH wedged site allows an increased opening between 
the two hexamers and thus a solvent exposure of their NTEs. Notably, they are side 
by side on one SH and head-to-head on the DH (Fig. 9.3), and hence, a large surface 
area on top of six NTEs from two hexamers virtually forms a docking platform for 
regulatory kinases such as DDK during helicase activation. Consistent with this 
notion, the NTEs of Mcm2 (Lei et al. 1997), Mcm4, and Mcm6 (Sheu and Stillman 
2006; Randell et al. 2010) are known substrates of DDK, and the DH, but not the SH, 
is the preferred substrate for DDK (Sun et al. 2014). In vitro assembly assays indicate 
that phosphorylated DH supports initial recruitment of Sld3 and Cdc45 (Deegan 
et al. 2016), followed by GINS and further phosphorylation by CDK, to form a func-
tional CMG helicase for DNA unwinding (Yeeles et al. 2015; Heller et al. 2011). 
Low-resolution EM studies showed that DDK phosphorylation neither triggers the 

Fig. 9.3  Overall structure of the MCM2-7 double hexamer. (a–c) Side (a, b) and top (c) views of 
the cryo-EM map of the MCM2-7 DH purified from native chromatin (Reproduced from Li et al. 
2015). The map is superimposed with the atomic model. Unsharpened map (a) is displayed from 
the twofold axis, and sharpened map (b) is displayed with indicated rotations relative to a along the 
cylinder axis. The tilted and twisted arrangements of the two single hexamers are illustrated in the 
side panels of (a, b)
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uncoupling of the DH nor causes conformational change in its overall structure (On 
et al. 2014; Sun et al. 2014). However, subtle alterations in DH structure induced by 
DDK may be critical for the transformation of the inactive DH into the active CMG 
helicases via Mcm2/Mcm5 gate opening and/or DH uncoupling. High-resolution 
structure determination of the phosphorylated DH using advanced cryo-EM analysis 
may provide insight into this intricate pivotal mechanism.

9.3  �Tight Junction at the NTDs

Archaeal homohexameric MCM complex can form DH in solution directly through 
head-to-head interactions between zinc finger motifs from opposite hexamers 
(Chong et al. 2000; Brewster et al. 2008). In contrast, the eukaryotic heterohexa-
meric Mcm2-7 can only be assembled into a dimer of hexamers on duplex origin 
DNA (Remus et al. 2009; Evrin et al. 2009). Furthermore, this assembly process is 
tightly controlled in a stepwise manner. The Mcm2-7 hexamer is recruited to the 
ORC-Cdc6-binding site during the G1 phase one at a time (Ticau et al. 2015; Sun 
et al. 2014). Once assembled, the Mcm2-7 hexamers form a topologically stable, 
inactive head-to-head double hexamer that encircles duplex origin DNA (Remus 
et al. 2009). The assembly of the double hexamer is an energy-consuming process 
requiring the hydrolysis of ATP by both ORC-Cdc6 and Mcm2-7 during the loading 
of the first and the second hexamer (Coster et al. 2014; Kang et al. 2014). Similar to 
archaeal DH formation, interactions among ZF motifs from Mcm2-7 subunits con-
tribute to the stabilization of DH. However, unlike the simple head-on interactions 
between ZFs from two archaeal SHs, the inter-ZF interactions of eukaryotic Mcm2-7 
appear to be more versatile, forming additional interactions with NTEs and β turns 
of the opposing hexamer in some cases (Fig. 9.4). This elaborate intertwining and 
extensions of NTEs into the opposite hexamers suggest that formation of the head-
to-head tight junction is an ATP-consuming process that requires partial unfolding 
of the NTDs before forming the rigid interlocked structure.

Due to the tilted and twisted arrangement of the two SHs, the orientations of ZFs 
are completely different at two sides of the wedged interface of the DH: vertical at 
the thick Mcm2/Mcm6/Mcm4 side and horizontal at the thin Mcm5/3/7 side. This 
unique arrangement ensures intimate contacts among ZFs. In addition, according to 
the buried surface calculated at the hexamer interface, NTDs, NTEs, and NTIs from 
Mcm5/3/7 play significant roles in contributing to a stable DH (Fig. 9.4), which is 
even greater than ZF interactions. The involvement of NTEs of Mcm2/Mcm6/
Mcm4 in stabilizing DH remains unknown because of their highly disordered fea-
ture in the structure. More importantly, although N-terminal sequences of each 
MCM subunits are less conserved in higher eukaryotes, most of the NTDs, NTEs, 
and NTIs (mainly NTI of M7, NTE of M5, β-turn of M6) involved in inter-hexamer 
interactions are conserved, suggesting the inter-subunit interactions are most likely 
maintained in metazoans as well.
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The tight coupling of the double hexamer at the NTD raises the question of how 
the two hexamers uncouple upon helicase activation. In vitro reconstitution and 
genetic analysis show that separation of MCM DH in S phase involves the engage-
ment of other initiation factors such as Cdc45, GINS, and Mcm10 to unravel the 
entanglement between the NTDs and NTIs of M5, M3, and M7. Consistent with this 
idea, recent CMG structure showed that two α-helices of Psf2 interact with NTD of 
Mcm5 (Abid Ali et al. 2016; Yuan et al. 2016) which is contacted by the NTE of the 
opposite Mcm7 in the DH. Previous study also showed that Cdc45 can interact with 
Mcm5-N (N-terminus) and Mcm2-N and Psf2 with Mcm5-N and Psf3 with Mcm3-
N(Costa et al. 2011; Yuan et al. 2016; Abid Ali et al. 2016); in addition, Mcm10 has 
been shown to interact physically with MCM6 (van Deursen et al. 2012) and MCM7 
(Homesley et al. 2000). Presumably these factors work cooperatively to uncouple 
the MCM DH. The recruitment of all these factors requires the action of DDK and 
CDKs during S phase to ensure the sequential coupling and uncoupling of the MCM 
hexamers at separate stages of each cell division cycle (Heller et al. 2011; Yeeles 
et al. 2015). Again, the role of DDK phosphorylation in triggering the DH uncou-
pling is still unclear. A better understanding of this process will rely on the 
determination of the atomic structures of the intermediate replication complexes 
during helicase activation and the delineation of conformational changes induced 
by the uncoupling factors.

Fig. 9.4  Stabilization of MCM2-7 double hexamer contributed by NTEs and NTIs. (a–d) Side 
views of the MCM2-7 DH, with indicated rotations around the cylinder axis. Atomic structure is 
superimposed with the unsharpened map. The sequence elements involved in inter-hexamer inter-
actions are highlighted. (e–h) Zoomed-in views of the boxed regions from (b–d). Buried areas (Å2) 
of these interfaces in (e–h) are labeled. BS, buried surface (Reproduced from Li et al. 2015)
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9.4  �A Unique Side Channel at the Mcm2-Mcm6 Interface

The archaeal MCM helicase is made up of six identical subunits, which form a ring 
with six identical interfaces (Bochman and Schwacha 2009). The atomic model of 
the archaeal MCM helicase built from the crystal structure of the near-full-length 
protomer of the ssoMCM by applying a sixfold symmetry showed six side channels 
at the neck region of the ring (Brewster et al. 2008). The size of the side channels 
large enough for ssDNA to pass through raised speculations that dsDNA may pass 
through the central channel at the CTD and unwound by extrusion of one strand 
laterally at the side channel. This configuration would favor the strand extrusion 
model for DNA unwinding. Throughout the years, this model has been disfavored 
based on in vitro biochemical studies using bulky chemical crosslinks on the leading 
and lagging strands (Fu et al. 2011). The CMG helicase efficiently bypasses a road-
block embedded on the lagging strand more efficiently than that embedded on the 
leading strand, arguing against the translocation of CMG helicase on dsDNA. Most 
recently, the structure of the apo CMG helicase has been determined by cryo-EM 
(Yuan et al. 2016). The WH domain of Mcm5 restricts the main channel of the CMG 
helicase to the extent that only ssDNA can be accommodated. The positions of the 
ssDNA associated with the CMG are consistent with the steric exclusion model in 
which duplex DNA is unwound by the translocation of the CMG on ssDNA.

The observation that the yeast MCM double hexamer contains a central channel 
that can accommodate dsDNA and a side channel between Mcm2 and Mcm6 wide 
enough to accommodate ssDNA (Fig. 9.5a) encourages a revisit of the strand extru-
sion model. Despite all the evidence against this model, it is worthwhile to reevalu-
ate the evidence. First, the in vitro roadblock bypass experiment showed only a bias 
in the efficiency of bypass rather than a clear-cut bypass on the lagging strand but not 
the leading strand. Also, the latching of the Mcm2-Mcm5 gate by GINS and Cdc45 in 
the CMG helicase structure suggests that the gate is only loosely fastened and may 
not be closed shut or irreversibly latched on during translocation (Costa et al. 2011, 
2014). As for the threading of the artificial Y-shaped DNA substrate through the 
in  vitro assembled CMG helicase, it may not correctly represent how DNA is 
threaded in a CMG helicase assembled de novo at replication origins. Most interest-
ingly, a recent model for the architecture of the in vitro assembled core replisome 
suggests that DNA polymerase epsilon is placed ahead of the helicase on the leading 
strand (Sun et al. 2015). Although the path of the DNA could not be traced, the posi-
tion of Polε would require a sharp U-turn in the threading of the leading strand from 
the NTD of the CMG helicase to the DNA polymerase if the steric exclusion model 
is correct (Fig.  9.5b). Indeed, without the evidence of an atomic structure of an 
endogenous replisome, one can easily come up with radical models that are more 
compatible with the positioning of Polε by using the unique side channel (Fig. 9.5c). 
In this model, the side channel would act like a plowshare to force apart the two 
strands as the helicase plows ahead. Whether the CMG helicase unwinds DNA by 
strand extrusion, steric exclusion or some other mechanisms remains to be verified 
by cryo-EM structures of CMG helicase assembled from replication origins.
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9.5  �ATPase Pockets in the Double Hexamer

Mcm2-7 forms the core of the replication-licensing complex that assembles the 
replication initiation complex at replication origins and the core of the replicative 
helicase that unwinds dsDNA at replication forks (Bochman and Schwacha 2009). 
In both capacities, ATP hydrolysis by the Mcm2-7 catalytic core is required to fuel 
the energy-consuming functions that it performs.

Fig. 9.5  A unique side channel between Mcm2 and Mcm6. a Outer surface representation of the 
Mcm2/Mcm6 interface. The boxed region is shown in a zoomed-in view (right) with individual 
components (H2I-N, EXT, PS1, and ACL) colored individually. A short piece of ssDNA is mod-
eled in the structure to indicate the size of this side channel large enough to act as a pore for strand 
extrusion from the central channel during DNA unwinding along with basic residues (Arg566, 
Lys557, and Lys564) of the EXT hairpin from MCM6. The H2I-N is partially disordered. (b, c) 
Threading paths proposed for leading- and lagging-strand DNA based on the architecture of the 
replisome (Sun et al. 2015) in the steric exclusion model (b) versus the strand extrusion model 
where the 3′-5′ strand extrudes through Mcm2/Mcm6 side channel (c)

9  Structure of the MCM2-7 Double Hexamer and Its Implications for the Mechanistic…
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Heterohexameric Mcm2-7 belongs to the AAA+ family of ATPases, whose 
ATPase active sites are formed at inter-subunit interfaces. One subunit contributes 
the Walker A and B motifs, while the other contributes the arginine finger. Thus, 
each Mcm subunit participates in two ATPase active sites, resulting in six distinct 
ATPase pockets. At each step of the assembly, starting from the single hexamers to 
the pre-RC and then from the pre-RC to the pre-IC, a different set of ATPases is 
called into action. Exhaustive mutant and biochemical analysis combined with 
in vitro reconstitution studies was able to identify which ATPase pocket is required 
for activity at each assembly step (Bochman and Schwacha 2008; Coster et al. 2014; 
Kang et al. 2014). Figure 9.6g (modified from Kang et al. 2014) summarizes the 
results of these elegant and intricate studies that show which ATPase pocket(s) is 
required at each stage. During this process, the 2:6 ATPase appears to play a role in 
the loading of the first SH. The 4:7, 6:4, 5:2, and 3:5 ATPases are required for the 
loading and head-to-head fusion of the second SH to form the DH. Up to this point, 
the only ATPase pocket that is not required for activity is the 7:3 pocket as if all of 
the energy consumed up to this point is to assemble this high-energy structure that 
is stable throughout G1 phase. Interestingly, in the high-resolution structure of the 
inactive DH, only the 7:3 ATPase pocket shows extra density indicating the possibil-
ity of ATP bound (Fig. 9.6a–f) (Li et al. 2015). It would be interesting to find out 
what exactly happens in the steps that follow. For example, is ATP hydrolysis by the 
7:3 pocket the first responder of DDK or CDK phosphorylation to initiate DNA 
melting at the G1-S phase transition, which in turn recruits Sld3 and Cdc45? 
According to the in  vitro reconstitution study, all of the ATPases except 6:4 act 
immediately after the CDK action to recruit GINS and RPA (Kang et  al. 2014). 
What seems remarkable is how the asymmetry of the MCM ATPase pockets directs 
the sequential assembly of the replication initiation complex to form the helicase 
engine of the replisome. However, to unravel which ATPase is called into action at 
which specific step would require the high-resolution structure of each staged 
assembly that shows the nucleotide-binding state of each ATPase pocket as achieved 
for the double hexamer (Li et al. 2015). The double hexamer is an unusually stable 
structure that can withstand washing by 0.5 M salt (Bowers et al. 2004; Remus et al. 
2009; Evrin et al. 2009) and therefore more amenable to structural analysis. It may 
be difficult to find stable conditions for each of the intermediate assembly structures 
for high-resolution structural analysis.

As a footnote to the importance of high-resolution structures, a previous study 
using negative staining EM suggested that the inactivation of the ATPase pocket in 
the DH is due to the uncoupling of the ATP hydrolysis motifs by the staggering of 
the CTD and NTD of each subunit (Sun et al. 2014). It should be pointed out that 
the model presented was based on the misassignment of the CTDs of the subunits 
that led the authors to these conclusions.
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9.6  �Central Channel and Model of Initial Origin Melting

Like many hexameric AAA+ machineries (Brewster et  al. 2010; Enemark and 
Joshua-Tor 2006), Mcm2-7 complex also has a central-pored chamber decorated by 
multiple layers of hairpin loops formed by the H2Is and β-turn motifs from the OB 
domains. These motifs are placed in axially staggered positions, resembling archaeal 
MCM structures in contacting with ssDNA and dsDNA (Miller et al. 2014). The 
atomic model for the DH suggests that MCM2-7 helicase employs a similar mecha-
nism in controlling the axial displacement of these loops to facilitate DNA translo-
cation and unwinding (Fig. 9.7a, b).

The most striking feature of the MCM2-7 DH structure is that the central channel, 
formed by these two staggered MCM rings, has four constriction points in the chan-
nel and a kink at the interface of the two rings (Fig. 9.7a, b). Modeling with dsDNA 
shows that these constriction points interact with the major and minor grooves of 
dsDNA consistent with observations that the DH complexes stably associate with 
linear dsDNA under physiological condition and only becomes mobile on dsDNA in 
high-salt buffer (Remus et al. 2009; Kumar and Remus 2016). These fine structures 
of the MCM2-7 DH provide insight into its function in DNA melting (Fig. 9.8). 
First, the kinked interface of the two rings would deform dsDNA (Fig. 9.7e), which 
could serve as a nucleation center for DNA destabilization. It has been shown that 
DNA bending that distorts hydrogen bonds between base pairs causes local DNA 
melting and facilitates DNA unwinding during transcription (Tang and Patel 2006). 
Second, the tight grip of duplex DNA by the two restriction points in the two SH 
chambers would further deform DNA at the nucleation point if rotated against each 
other. Third, possible rotations between ring structures formed by subdomains of 
each hexamer would lower the activation energy for DNA destabilization even fur-

Fig. 9.7  Central channel and its implication in origin melting. (a, b) Cutaway views of the density 
map (unsharpened) with two dsDNA fragments fitted in the central channel. Surface representation 
of the atomic models of ZFs from one single hexamer (c) and ZFs from both single hexamers (d). 
(e) A simplified diagram of the cryo-EM map of the MCM2-7 DH. The structural features that may 
involve in the initial melting step are labeled as indicated (Reproduced from Li et al. 2015)
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ther. Recent single-molecule analysis of DmCMG helicase showed that the CTD and 
NTD of the DmCMG helicase could rotate in opposite directions, clockwise and 
anticlockwise, during its engagement with DNA (Abid Ali et al. 2016). These spe-
cial features of the atomic model of the DH suggest that allosteric conformational 
changes following the activation of the MCM2-7 complex by cell cycle-regulated 
kinases might bring about DNA destabilization for initial DNA melting.

Another notable feature about the DH structure is that the overlapping of two 
central channels at the interface forms a narrowed main channel and two minor or 
exit channels. Interestingly, the main channel is formed mostly by two ZF pairs 
from the gate-forming subunits Mcm2 and Mcm5 (Fig. 9.7c, d). The size of the 
main channel is just wide enough to fit dsDNA. However, once the Mcm2/Mcm5 
gates are opened at the interface region, the three channels would join together to 
form a space large enough for strand separation (Fig. 9.8b). Strand separation is 
likely assisted by the MSSB motifs conveniently located on opposite sides of the 
enlarged chamber (Fig. 9.7e) (Miller et al. 2014). During this DNA melting step, if 
the two MCM hexamers fused at the NTDs translocate along dsDNA in opposite 
directions, they will effectively pump in dsDNA from both ends. The already 
deformed DNA at the kink region would be subsequently separated (Fig. 9.8b). The 
melted single-DNA strands that become accessible to the outside by looping out 
from the exit channels could be captured by helicase-activating factors to secure 
their separation (Fig. 9.8a). Several of the helicase-activating factors, such as Sld2, 

Fig. 9.8  A model for gate opening and initial DNA melting during helicase activation. Although 
many factors have been shown to be required for this process, it is unclear when and how they are 
involved in the actual gate opening and DNA melting events. See text for details
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Sld3, Cdc45, and Mcm10, have been shown to have ssDNA-binding property 
(Bruck and Kaplan 2011, 2013; Costa et al. 2014; Homesley et al. 2000; Eisenberg 
et al. 2009). At the final step, which is yet to be understood, the DH is uncoupled, 
and the lagging-strand DNA is excluded from each of the MCM hexameric ring 
(Yardimci et al. 2010; Fu et al. 2011).

9.7  �Looking Ahead

Despite the many hurdles that have held back fine-detailed structural studies of the 
DNA replication machinery, there is reason for optimism for unraveling this last 
macromolecule-synthesizing machine in the near future. Determining the near-
atomic resolution structure of the inactive MCM double hexamer is a crucial start of 
this endeavor. The Mcm2-7 complex is a major player throughout the entire process 
of DNA replication, from replication licensing to initial melting of origin DNA, 
progression of bidirectional forks, and finally replication termination (Bell and 
Labib 2016). In each step, the MCM complex appears to play a somewhat different 
role first as an inert assembly platform, and then a duplex DNA pump, a translocator 
on ssDNA, and finally, a disbander of the replisome. The recent advances in cryo-
EM promise that the determination of many of these MCM-associated structures is 
at hand. Combined with single-molecule studies and the in vitro reconstitution of 
the stepwise-assembled intermediates of the replisome, the next decade will witness 
the visualization of the workings of the replisome that is so vividly portrayed in 
textbooks from elegant biochemical and genetic studies of decades before.
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