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Color-selective photodetection from intermediate
colloidal quantum dots buried in amorphous-oxide
semiconductors
Kyung-Sang Cho1,2, Keun Heo2,3, Chan-Wook Baik1,2, Jun Young Choi3, Heejeong Jeong1,5,

Sungwoo Hwang1,2 & Sang Yeol Lee4

We report color-selective photodetection from intermediate, monolayered, quantum dots

buried in between amorphous-oxide semiconductors. The proposed active channel in

phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-

tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the

color-selective properties of quantum dots. A remarkably high detectivity (8.1 × 1013 Jones) is

obtained, along with three major findings: fast charge separation in monolayered quantum

dots; efficient charge transport through high-mobility oxide layers (20 cm2 V−1 s−1); and gate-

tunable drain-current modulation. Particularly, the fast charge separation rate of 3.3 ns−1

measured with time-resolved photoluminescence is attributed to the intermediate quantum

dots buried in oxide layers. These results facilitate the realization of efficient color-selective

detection exhibiting a photoconductive gain of 107, obtained using a room-temperature

deposition of oxide layers and a solution process of quantum dots. This work offers promising

opportunities in emerging applications for color detection with sensitivity, transparency, and

flexibility.
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The detection of light has historically been one of the most
fundamental and academic subjects behind various opto-
electric applications1–11. At present, the development of

photodetectors, which convert incident photons to electrical sig-
nals, has confronted significant challenges regarding the realiza-
tion of efficient and sensitive detection with low noise for the
ultraviolet (UV)3, 4, visible5–9, and infrared regimes10, 11 of
electromagnetic spectrum. Furthermore, a strong demand for
complementary metal-oxide semiconductor (CMOS)-compatible,
monolithic integration with a low-cost and simple fabrication
process has arisen, which may not be achievable using epitaxially
grown III–V semiconductors for photoconductors, avalanche
photodiodes, and photomultipliers. Such devices have dis-
advantages related to material growth conditions, high-voltage
operation, and bulkiness, including increased fabrication cost and
complexity. However, colloidal quantum dots (QDs), often
referred to as semiconductor nanocrystals, are easily processible
for integration onto various substrates using a low-cost, solution-
coating method. They have unique optical properties, such
as bandgap energies tunable by adjusting their sizes, narrow
emission bandwidths, broad absorption spectrum, and high
photoluminescence quantum efficiencies. These outstanding
advantages have incited considerable research efforts toward the
development of QD photodetectors1–11, which now target the
performance of conventional state-of-the-art photodetectors.

One of the figures of merit characterizing photodetection is
the normalized detectivity (D*), expressed in units of Jones
(cmHz1/2W−1), equal to the square root of the optically active
area divided by its noise equivalent power (NEP). Konstantatos
et al.5 have demonstrated visible and near-infrared (NIR)10

photoconductive detectors using PbS colloidal QDs, and reported
D* values of 5 × 1012 and 1.8 × 1013 Jones, respectively. Their
achievement in the visible spectrum is comparable to the results
for conventional silicon photodiodes ( ~ 4 × 1012 Jones)2, because
of the relatively high mobility (10−2 ~ 1 cm2 V−1 s−1) of the
functionalized PbS QDs caused by the large wavefunction over-
lap. Lee et al.6 have reported visible photoconductors consisting
of CdSe colloidal QDs capped with an In2Se3 metal chalcogenide
complex, and achieved a D* of 1 × 1013 Jones, contributed by the
high-mobility (16 cm2 V−1 s−1). The purpose of that study was to
obtain high mobility via ligand exchange, due to the intrinsically
low mobility of QDs (10−6 cm2 V−1 s−1) for visible detection12, 13.

In contrast to photoconductor devices, phototransistors pro-
vide a wider degree of photocurrent control, which is achievable
by adjusting the gate voltages (VG) as well as the source-drain
voltages and incident light intensities. Recently, QD-hybrid
phototransistors have been introduced for use in combination
with high-mobility materials, e.g., amorphous-oxide semi-
conductors (AOSs)7–9, 14, graphene11, and 2-D materials15, 16.
PbS colloidal QDs on mechanically exfoliated graphene flakes, for
example, have exhibited device D* values as high as 7 × 1013

Jones, with a responsivity (R) of 107 AW−1 11), the ratio of the
generated photocurrent to the incident optical power. The high
electron mobility (c.a. 1000 cm2 V−1 s−1) of graphene contributes
to the fast hole transfer, while the electrons remain in trap states.
However, interface control between QDs and graphene remains
an issue2, 17.

On the other hand, AOS materials with wide bandgap energies
have attracted particular attention in the fields of electronics and
optoelectronics4, 18–23. The advantages of AOS films are their
high transparency, low processing temperature, smooth surface
with no grain boundary, and high electron mobility regardless
of the degree of film disorder18–21. The application of the
majority of AOS materials to visible wavelength region remains
challenging, because of their intrinsically wide bandgaps. That is,
the use of AOSs for photodetection is, in principle, limited to

UV energy band4, 22. However, continuous attempts have been
made to use AOSs in image sensors or phototransistors, in
parallel with the development of active-matrix thin-film transis-
tors (TFTs) for use in display devices18, 23, to replace amorphous
or poly silicon. Recently developed AOS films as channel mate-
rials in TFTs demonstrated high electron mobilities of more
than 30 cm2 V−1 s−1 18). For example, In-Ga-Zn-O (IGZO) and
Ge-doped In-Ga-O (Ge-IGO) layers have been used as high-
mobility channels in conjunction with CdSe QDs located on
either the top or bottom surfaces of the oxide layers7–9. In the
channel configuration of QDs on oxide (QO), i.e., QDs on IGZO,
R reached an order 104 AW−1 in UV range, while a photocurrent
saturation was observed for an input light intensity of more than
300 μWcm−2 7). In this case, the charge separation from QDs to
AOS is considered to be dependent on the degree of contact
between QD and-AOS. In addition, phototransistors with PbS
QDs on IGZO demonstrated a photoresponsivity of 106 AW−1 in
NIR range14. Thus, the demonstration of photodetection using
QDs with AOS offers promising opportunities, including poten-
tially promising multispectral photodetection in visible spectrum,
but has yet to yield high R and D*.

Here, we propose a hybrid QD-AOS phototransistor composed
of an oxide-QD-oxide (OQO) layered channel, in which the
intermediate QDs are buried in between the top and bottom
oxide layers. This may provide a fast charge separation from QD
to AOS layer by the increase of interface area between QD and
AOS. Amorphous SIZO (Si-doped In-Zn-O) films are chosen to
allow room-temperature, radio-frequency (RF) sputtering and
low-temperature, annealing processes20, 21. We employ CdSe,
CdSeS, and CdS QDs for red (R), green (G), and blue (B) color
detection, respectively, using their particular absorption char-
acteristics. As an example of color-selective detection, we
demonstrate a logic circuit comprised of an electro-optical NOT
gate using different wavelength illuminations. This hybrid OQO
configuration is expected to achieve highly sensitive photodetec-
tion because of fast charge separation induced by the large
interfacial areas of QDs buried in the oxide layers, along with the
fast carrier transport caused by the high mobility of the oxide
layers. In particular, a rigorous characterization of D* with respect
to the noise spectrum is conducted as a function of modulation
frequency for the proposed hybrid OQO phototransistors.

Results
Photoresponse of hybrid QD-AOS phototransistors. A sche-
matic of the proposed hybrid OQO phototransistor is shown in
Fig. 1. The OQO layer is located between the source and drain
electrodes, to absorb the incident light, generate photocarriers,
and to transport the carriers to the electrodes under the control of
the back-gated voltages. The transmission electron microscopy
(TEM) image (Fig. 1a, inset) shows the spin-coated QD layer
buried in between the top and bottom SIZO layers. We chose
SIZO as a channel material because it exhibits high mobility in
the amorphous phase via controlled doping of silicon in the IZO.
An electron mobility greater than 20 cm2 V−1 s−1 is provided
by the room-temperature RF-sputtered SIZO layers, following a
150 °C annealing process20. In contrast, an annealing temperature
of more than 300 °C is typically required for other oxide mate-
rials, e.g., In-Ga-Zn-O, Zn-Sn-O, and In-Ga-O18. We measured
the mobilities of the OQO films for R, G, and B QDs buried in the
SIZO layers and for different QD layer thicknesses, along with
that of a 40-nm SIZO layer without QDs (see Supplementary
Table 1). Hence, we found that the Ds buried in the SIZO layers
might not affect the SIZO channel mobility. Figure 1b shows the
photocurrent mapping of the OQO phototransistor, indicating
that the photocarrier generation occurs across the entire OQO
area, not from the electrodes or their edges. Figure 1c, d show the
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transfer characteristics, together with the R behaviors of a single-
layered SIZO transistor and a monolayered-red-QD OQO (1RQ-
OQO) transistor, respectively, under dark and light irradiation.
In the SIZO-single-layered device, there is almost no absorption
of input light at 487-nm wavelength because of the wide bandgap
energy of 3.2 eV24) (see Supplementary Fig. 2). On the contrary,
the measured photocurrent of the OQO device increases
dramatically via photocarrier generation owing to the QD light
absorption, as depicted in Fig. 1d. The R of the SIZO-single-
layered device without QDs is less than 100 AW−1; however, this
value increases to more than 6000 AW−1 in the 1RQ-OQO
device, where R= (ISD, light − ISD, dark)/Plight (AW−1), where ISD,
light is the drain current under irradiation of light, ISD, dark is the
drain current under dark, and Plight is the irradiation light power2

(see also Supplementary Fig. 3 as depicted in linear scale).

Photocarrier generation and transport. The energy-band dia-
gram and the operating principles of the OQO phototransistors
are shown in Fig. 2a, b, respectively. The bandgap and band
positions of the QD and SIZO are determined from the

measurement of ultraviolet/visible (UV/Vis) absorption spec-
trum, UV photoelectron spectroscopy, electron energy loss
spectrum, and Kelvin probe method21. The QD Fermi level, 4.4
eV, is slightly higher than that of SIZO, 4.2 eV, which allows
charge separation via QD light absorption. The photocarriers
generated by the charge separation flow with respect to the
potential difference (VD) between the source and drain electrodes
under the control of VG, as illustrated in Fig. 2b. Figure 2c shows
the color spectral R trends of phototransistors with 4-layered-red-
QD OQO (4RQ-OQO), 6-layered-green-QD OQO (6GQ-OQO),
and 6-layered-blue-QD OQO (6BQ-OQO) configurations (see
also, Supplementary Fig. 4). The photocurrent response for each
color follows the QD absorption, as shown in Fig. 2d. This implies
that the photoresponse of the OQO phototransistors comes from
the RGB photoexcitation of the QDs, rather than the defect-level-
mediated carrier excitation of the SIZO. Because the SIZO
bandgap energy (3.26 eV) is larger than that of the QDs for visible
spectrum, various kinds of QDs are applicable to the proposed
OQO structure. Although QDs mostly have broad absorption
spectrum, their color-dependent photoresponse provides spectral
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information as well by appropriate signal processing method25.
Therefore, our OQO phototransistors can be usefully imple-
mented in color-selective photodetection.

Characteristics in monolayered-QD OQO configuration.
Figure 3a shows the fluorescence decay curves of three different
monolayered-red-QD films (QD on glass, QD on SIZO, and

SIZO/QD/SIZO, i.e., OQO). The fluorescence decay time of the
QD on SIZO is shorter than that of the QD on glass, because of
the fast charge separation from the QDs to the SIZO film. The
charge separation rate is calculated to be approximately 0.5 ns−1.
Furthermore, the charge separation rate of the OQO film
increases up to 3.3 ns−1, corresponding to more than six times
that of the QD-on-SIZO film (see Supplementary Method 2).
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This remarkable improvement stems from the increment of the
effective interfacial area for the QDs buried in the amorphous
SIZO films, i.e., the OQO structure, compared with the single-
side contact experienced by the QDs on the SIZO film.
The detailed discussion on the interfacial area is presented in
Supplementary Fig. 5 and Supplementary Note 1. We further
prepared and compared the photocurrent response of
QO devices, i.e., monolayered-red-QD QO (1RQ-QO) photo-
transistors. They did not show a remarkable increase of R
compared to OQO configuration (see Supplementary Fig. 6).

We measured the R of the proposed OQO structure vs. VG with
respect to the QD layer thickness, as depicted in Fig. 3b. The QD
layer thickness varied from zero to six layers. In this figure, the
“0.1 L” and “0.5 L” QD layers are sub-monolayered QD films,
with areal coverages of 10% and 50% monolayered-QD films,
respectively, (see Supplementary Figs. 7 and 8 for TEM and
scanning electron microscope images for QD films). When the
thickness increases up to one (mono) layer, i.e., the areal coverage
becomes 100%, the R increases steadily at fixed VG; however,
it begins to decrease once multiple layers are added. As illustrated
in the inset of Fig. 3b, where R is replotted against the QD layer
thickness, the monolayered-QD OQO device exhibits the highest
R. In our hybrid OQO phototransistors, the photoresponse
mechanism can be described as follows: photocarrier generation
via QD light absorption; charge separation from the QDs to the
top and bottom SIZO layers; and carrier transport through the
SIZO films to the electrodes. The photocurrent generation, which
is proportional to the number of QDs, dominates up to
monolayered-QD film structures; however, the charge separation
rate and the carrier transport become important factors for 2-, 4-,
and 6-layered QDs. In other words, the charge separation rate

may not change, because the interfacial area between the QDs and
their surrounding SIZO films does not effectively increase for
structures with more than one-layer QD thickness. In particular,
the photocarrier transport from QDs to the SIZO layers is
thought to be disturbed significantly by the increasing number of
charge trap sites in the multiple QD layer structures as discussed
in the previous studies26–30. These have revealed low electronic
conductivity in semiconductor nanocrystal arrays because of large
concentrations of surface dangling bonds given by trap sites.
More details are discussed in Supplementary Note 2. The above
results show that the proposed hybrid OQO structure is superior
to other configurations, when monolayered QDs are buried
between the top and bottom amorphous SIZO layers.

Device performance of monolayered-QD OQO phototransistors.
Figure 4a, b show the transfer characteristics and R behavior of
1RQ-OQO devices as functions of Plight at 487-nm wavelength.
The on-off ratio (Ilight/Idark) at VG= −22 V is approximately
4 × 106 (66 dB), as shown in Fig. 4a. We successfully detected a
wide range of incident light powers, corresponding to a range of
three orders of magnitude (5 nW–5 μW). Note that the 1RQ-
OQO configuration does not exhibit photocurrent saturation,
even at 5 μW (i.e., 255-mW cm−2 light intensity). This is one of
the advantages of fast charge separation in OQO configuration.
(see Supplementary Note 3). In contrast, a previous study of
phototransistors with QDs on IGZO has reported saturation at a
significantly lower light intensity of 300 μWcm−2 7). In Fig. 4b,
R is as high as 9800 AW−1 at 60-V VG, for a 5-nW incident light
power (i.e., 255-μWcm−2 light intensity). This result confirms the
highly sensitive response of the OQO device. We also found the
inverse relation between R and the incident light power, which
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may be explained by filling of the lowest-lying, longest-lived trap
states that provide the highest photoconductive gain (Gmeas) at
low light intensities, as shown by Konstantatos et al.5.

Note that Gmeas is one of the important figures of merit. This
property is estimated from the ratio of the collected photocarrier
rate at the electrodes and the incident photon flux, as given by
Gmeas= R · hυ/eη, where R corresponds to the measured results
shown in Fig. 4b, h is the Planck constant, υ is the frequency of
light, e is the electron charge, and η is the quantum efficiency.
Figure 4c indicates that the Gmeas for 1RQ-OQO phototransistors
is in the 102–104 range at VG= 60 V, with 487-nm illumination.
However, we must also consider an inherent photoconductive
gain (Ginher), which includes the net absorption in the OQO
channels, by eliminating the reflection (Rlight) and transmission
(Tlight) of the devices31. Thus, Ginher=Gmeas/(1−Rlight−Tlight),
because the majority of the photon flux is transmitted by the
monolayered-QD configuration. Here, we obtained a Ginher of
105–107 for a light power of 5 μW–5 nW (see Supplementary
Note 4). This implies that the photocarrier generation is highly
efficient, even for a tiny amount of incident photons. We further
investigated and compared the photoconductive gains using the
photoresponse decay time (τlifetime) and the carrier transit time
(τtransit) of the OQO device, where Gτ= τlifetime/τtransit. The
measured decay time can be represented by two components with
fast and slow decays using a two-exponential fitting method, as
shown in Supplementary Fig. 11 (see also Supplementary Note 5).

Furthermore, τtransit= L2/μ · VSD, where L is the length between
the source and drain electrodes, μ is the channel mobility,
and VSD is the voltage difference between the electrodes. Here,
τtransit= 5.0 × 10−7 s, obtained using L= 50 μm, μ= 10 cm2 V−1 s−1,
and VSD= 5V. Our prediction for Gτ is located in the
1.2 × 104–2.2 × 105 range, as indicated by the empty and filled
triangles in Fig. 4c, for an irradiation power of 5 μW, for example.
Therefore, this estimation of the upper and lower bounds of Gτ

using the fast and slow decay times indicates that the use of Ginher,
considering the net absorption, is both practical and accurate for
our OQO configuration, because Ginher is situated midway
between the upper and lower bounds of Gτ.

Based on these results, we prepared three different OQO
phototransistors with monolayered QDs for R, G, or B colors.
We chose 403- (near UV) and 487-nm (sky blue) illumination
wavelengths as sample cases, to investigate the color-selective
detection of the three devices. Figure 4d shows that the 403-nm
irradiation on the 1RQ- and 1GQ-OQO phototransistors yields
higher R than the 487-nm illumination; this is because of the
larger absorption, as discussed with regard to Fig. 2d. The R of the
1GQ-OQO phototransistor reaches 14,900 AW−1 at a VG of 60 V.
The response of the 1BQ-OQO device is notable in that it is
activated at 403-nm wavelength, but there is almost no response
for the 487-nm illumination; this is because of the lack of
absorption. This result suggests highly sensitive RGB-color-
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photoresponse is only observed for the 1RQ-OQO devices. b Stacked configuration of 1RQ- and 1GQ-OQO phototransistors prepared on transparent glass
substrates for logic inverters. c Electro-optical NOT gate circuitry and resultant logic table. d Time-domain measurement of Vout at alternated 500- and
570-nm illumination wavelengths
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selective detection when the R threshold levels are chosen
appropriately at the desired wavelength of illumination.

Logic inverter using color-selective detection. Figure 5 shows
the logic circuit of an electro-optical NOT gate (inverter) as a
simple embodiment of color-selective detection. Taking into
consideration the flexibility in the control of parameters such as
the QD absorption energy band, the illumination wavelength with
power, and VG, we employed 1RQ- and 1GQ-OQO photo-
transistors for color-selective detection. Each transfer curve was
measured at two different illumination wavelengths, 500 and 570
nm, as depicted in Fig. 5a. From these curves, an operating
condition for a NOT gate that outputs a voltage representing the
opposite logic level to its input can be chosen. We selected
the gate voltages (VG1= 10 V and VG2= 12 V) indicated by the
colored circles and filled dots. Figure 5b shows a stacked con-
figuration of 1RQ- and 1GQ-OQO phototransistors (T1 and T2,
respectively), which has the advantage of transparent OQO
channels (see Supplementary Note 6) for light illumination.
When devices are illuminated with light of 500- or 570-nm
wavelength, the read-out voltage (VOUT) outputs high or low
levels between the source and drain electrodes of each device,
respectively. At 500-nm irradiation, the voltage drop across T1 is
larger than that across T2, because of the higher impedance of T1,
as shown in Fig. 5a. On the contrary, VOUT at 570 nm becomes
low because of the small impedance of T1, which is due to the
large photo-induced charges in the T1 channel. These results are
summarized in the table included in Fig. 5c and correspond to a
standard NOT gate. Therefore, we successfully demonstrated the
on-and-off switching characteristics of VOUT using two different
illumination wavelengths in the time domain, as shown in Fig. 5d.
We may further improve the response time using fast-switching
optical sources, because here we employed optical parametric
oscillator (OPO) laser system (Opolette HR 355, OPOTEK)
requiring 2.3 ~ 2.4 s for switching the wavelengths in high accu-
racy. This kind of logic circuits for color-selective detection
provides opportunities for color-filterless photodetection. CMOS
image sensors, for example, have a critical problem of light
crossover between adjacent subpixels, due to the presence of color
filters. However, our color-filterless, stacked configuration may
solve this problem, through the use of highly transparent
monolayered-QD OQO phototransistors. These devices can also
be applied to high-resolution image sensors without lateral sub-
pixels for colors, which is made possible by the realization of this
vertically stacked RGB-tandem structure.

Noise and detectivity. On the other hand, noise is another
important figure of merit that must be carefully characterized.
Therefore, we measured the noise power spectral density (SI) and
D*, as shown in Fig. 6, using an SR570 low-noise current
amplifier and a HP89441 vector signal analyzer. The OQO
phototransistors for noise measurement and D* were designed to
have a square shape (50 × 50 μm2). Among the various kinds of
noise, shot noise, Johnson noise, and 1/f noise are dominant in
phototransistors5, 10, 32, 33. The shot noise limit is expressed as
<I2SN> ¼ 2qIDΔf and the Johnson noise is 4kTΔf =RD, where q
is the electron charge, ID is the dark current, Δf is the
noise bandwidth, k is the Boltzmann constant, T is temperature,
and RD is the detector resistance under dark conditions. We chose
three different VG values representing the subthreshold (A),
ohmic (B), and near-saturation (C) regimes (see Supplementary
Fig. 13a).

In Fig. 6a, the flicker 1/f noise, SI~1/f increases with respect
to increasing drain current levels, as indicated by A, B, and C
for the 1GQ-OQO phototransistors. The shot noise limit at
each current level is also plotted in dotted lines. We do not
consider the Johnson noise, because this component is one
order of magnitude lower than the shot noise in our devices
(see Supplementary Note 7). In the subthreshold regime (A),
the measured SI is closer to the shot noise limit at high
frequencies of modulation than in other operating regimes.
This implies that we can achieve extremely low noise levels by
controlling VG, which is a unique advantage of phototransistors.
Based on this noise analysis, the photodetector sensitivity can
be explicitly expressed using the D* parameter. D* can be
rewritten as D� ¼ ffiffiffiffiffiffiffiffiffi

AΔf
p

=NEP ¼ R
ffiffiffiffiffiffiffiffiffiffi
A=SI

p
, where A is the

effective area of the detector in cm2 and R is in AW−1, measured
under the same conditions as SI (see more details in Methods and
Supplementary Fig. 13b). Figure 6b represents the calculated
results for D* vs. the modulation frequency with respect to A, B,
and C. An inverse relationship between D* and ID is observed,
as expected. The D* of the 1GQ-OQO phototransistor reaches
8.1 × 1013 Jones at 20-Hz frequency in regime A. Such
ultrasensitive photodetection can be attributed to the proposed
OQO configuration with monolayered QDs, which facilitates
effective photocarrier control. This D* is approximately 17%
higher than the previous record for QD-graphene hybrid
phototransistors (7 × 1013 Jones)11. Moreover, D* can be further
enhanced by reducing the flicker 1/f noise, when the surface
defects of QDs are controlled to reduce trap sites or defects in the
channel.10
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Discussion
We demonstrated ultrasensitive photodetection using mono-
layered QDs buried in amorphous-oxide SIZO phototransistors.
The effectively large interfacial areas of the QDs buried in the
OQO configuration facilitates the observation of fast charge
separation and charge transport caused by the high-mobility
SIZO layers. Hence, we achieved RGB-color detection exhibiting
a Gmeas value as high as 107, which is obtained via room-
temperature deposition of the SIZO layers. By combining the
transparent and color-sensitive characteristics, a logic circuit for
color-selective detection was successfully demonstrated using
vertically stacked multi-color OQO phototransistors without
color filters. The concept proposed in this study also allows
monolithic integration with a CMOS-compatible process, which
presents a basis for myriad emerging applications in color
detection with sensitivity, transparency, and even flexibility.

Methods
Device fabrication. We synthesized three different species of red (CdSe), green
(CdSeS), and blue (CdS) QDs, of approximately 4.5 nm in diameter. More details of
the QD synthesis and purification are presented in the Supplementary Method 1.
Amorphous SIZO TFTs with a bottom gate and top electrodes were fabricated
using conventional photolithography. The bottom amorphous SIZO film was
deposited on a SiO2 (200 nm)/Si substrate using room-temperature RF sputtering
at 0.56-Pa pressure in mixed Ar/O2 gases. After spin-coating of the QDs, the top
amorphous SIZO film was deposited under the same conditions as for the bottom
SIZO film deposition. Then, a low-temperature, annealing process was conducted
at 150 °C. The bottom and top SIZO layers had thicknesses of 40 and 30 nm,
respectively. The channel widths and lengths were 250 and 50 μm, respectively,
expect for OQO phototransistors for noise and detectivity measurement. Regarding
the thickness of QD layers, we controlled the concentration of QD solution and the
speed of spin coating. For example, 1 wt% QD in cyclohexane solution with a
coating speed at 2000 rpm was applied for six-layered QD films.

Photodetection measurement. The photodetection measurement was conducted
using a custom-built confocal scanning microscope. All the measurements were
performed using monochromatic solid-state CW diode lasers of 487- and 403-nm
wavelength except for spectral R (responsivity) measurement as shown in Fig. 2c.
For such spectral R measurements (Fig. 2c) together with logic-inverter measure-
ment (Fig. 5), an optical parametric generator-amplifier (OPG-OPA) pulse laser
(Opolett HR355, OPOTEK) was used as a tunable light source (400–700 nm). The
spatial photocurrent images in Fig. 1b were obtained using laser beam scanning
through an objective lens (×50, 0.8 numerical aperture). The objective lens of the
microscope focused the beam to a diffraction-limited spot of 500 nm in diameter
on the device. The source-drain voltage is 5 V for all the measurement, i.e., transfer
curves, noise measurement, etc.

Detectivity measurement. The detectivity is related to the NEP by following
expression: D� ¼ ffiffiffiffiffiffiffiffiffiffi

AΔf
p

=NEP, where A is the photosensitive area of the device
and Δf is the detection bandwidth. The NEP is defined as the amount of incident
light power inducing a photocurrent equal to the noise current, which is given by:

NEP ¼
ffiffiffiffiffiffiffiffiffi
I2n
� �q

=R ¼ ffiffiffiffiffiffiffiffiffiffi
SIΔf

p
=R, where I2n

� �
is the time-averaged square of the total

noise current and R is the responsivity. Here, we measured the noise spectral
density (SI) of the drain current under dark conditions using an SR570 low-noise
current amplifier and a Hewlett Packard 89441 vector signal analyzer. The mea-
surement was conducted in an electrically and optically shielded probe station. The
OQO phototransistors for noise measurement were designed to have a square
shape (50 × 50 μm2) photosensitive area (A).

Data availability. The data that support the findings of this study are available
from the corresponding authors on request.
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