Physics Letters B 755 (2016) 348-350

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Soft $A_4 \rightarrow Z_3$ symmetry breaking and cobimaximal neutrino mixing

Ernest Ma^{a,b,*}

^a Physics & Astronomy Department and Graduate Division, University of California, Riverside, CA 92521, USA

^b HKUST Jockey Club Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong, China

ARTICLE INFO	ABSTRACT
Article history: Received 2 January 2016 Received in revised form 5 February 2016 Accepted 15 February 2016 Editor: A. Ringwald	I propose a model of radiative charged-lepton and neutrino masses with A_4 symmetry. The soft breaking of A_4 to Z_3 lepton triality is accomplished by dimension-three terms. The breaking of Z_3 by dimension- two terms allows cobimaximal neutrino mixing ($\theta_{13} \neq 0$, $\theta_{23} = \pi/4$, $\delta_{CP} = \pm \pi/2$) to be realized with only very small finite calculable deviations from the residual Z_3 lepton triality. This construction solves a long-standing technical problem inherent in renormalizable A_4 models since their inception. © 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licensee/by/4.0/). Funded by SCOAP ³

For the past several years, some new things have been learned regarding the theory of neutrino flavor mixing. (1) Whereas the choice of symmetry, for example A_4 [1–3], and its representations are obviously important, the breaking of this symmetry into specific residual symmetries, for example $A_4 \rightarrow Z_3$ lepton triality [4,5], is actually more important. (2) A mixing pattern may be obtained [6] independent of the masses of the charged leptons and neutrinos. (3) The clashing of residual symmetries between the charged-lepton, for example $A_4 \rightarrow Z_3$, and neutrino, for example $A_4 \rightarrow Z_2$, sectors is technically very difficult to maintain [7]. (4) The essential incorporation of *CP* transformations [8,9] may be the new approach [10–15] which will lead to an improved understanding of neutrino flavor mixing.

In this paper, a model of radiative charged-lepton and neutrino masses is proposed with the following properties. (1) The masses are generated in one loop through dark matter [16], i.e. particles distinguished from ordinary matter by an exactly conserved dark symmetry. This is the so-called scotogenic mechanism. (2) The symmetry $A_4 \times Z_2$ is imposed on all dimension-four terms of the renormalizable Lagrangian with particle content given in Table 1. (3) Dimension-three terms break $A_4 \times Z_2$, but all such terms respect the residual Z_3 lepton triality. (4) Dimension-two terms break Z_3 , which is nevertheless retained in dimension-three (and dimension-four) terms with only finite calculable deviations. This solves the problem of clashing residual symmetries. (5) The proposed specific model results in cobimaximal [15] neutrino mixing $(\theta_{13} \neq 0, \theta_{23} = \pi/4, \delta_{CP} = \pm \pi/2)$, which is consistent with the present data [17,18]. It is also theoretically sound, because the

E-mail address: ma@phyun8.ucr.edu.

Table 1

Particle content under $U(1)_D \times Z_2 \times A_4 \times Z_2$.

Particles	Dark $U(1)_D$	Dark Z_2	Flavor A_4	Z_2
$(v, l)_L$	0	+	3	+
l _R	0	+	3	-
(ϕ^+,ϕ^0)	0	+	1	+
$N_{L,R}$	1	+	3	+
(η^{+}, η^{0})	1	+	1	+
χ+	1	+	1	_
$(E^0, E^-)_{L,R}$	0	_	1	+
F_{I}^{0}	0	-	1	+
S	0	_	3	+

Fig. 1. One-loop generation of charged-lepton mass with $U(1)_D$ symmetry.

residual Z_3 is protected, unlike previous proposals. Cobimaximal mixing becomes thus a genuine prediction, robustly supported in the context of a complete renormalizable theory of neutrino mass and mixing.

The dark $U(1)_D$ and Z_2 symmetries are assumed to be unbroken. The other Z_2 symmetry is used to forbid the dimension-four Yukawa couplings $\bar{l}_L l_R \phi^0$ so that charged leptons only acquire masses in one loop as shown in Fig. 1. Whereas this Z_2 is re-

http://dx.doi.org/10.1016/j.physletb.2016.02.032

0370-2693/© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

^{*} Correspondence to: Physics & Astronomy Department and Graduate Division, University of California, Riverside, CA 92521, USA.

Fig. 2. One-loop generation of neutrino mass from s.

spected by the dimension-four $\bar{l}_R N_L \chi^-$ terms, it is broken softly by the dimension-three trilinear $\eta^+ \chi^- \phi^0$ term to complete the loop. This guarantees the one-loop charged-lepton mass to be finite. Note that a dark $U(1)_D$ symmetry [19,20] is supported here with χ^+ , (η^+, η^0) , and $N_{L,R}$ all transforming as 1 under $U(1)_D$. The dimension-three soft terms $\bar{N}_L N_R$ are assumed to break A_4 to Z_3 through the well-known unitary matrix [1,21,22] U_{ω} , i.e.

$$\mathcal{M}_{N} = U_{\omega}^{\dagger} \begin{pmatrix} m_{N_{1}} & 0 & 0\\ 0 & m_{N_{2}} & 0\\ 0 & 0 & m_{N_{3}} \end{pmatrix} U_{\omega}, \tag{1}$$

where

$$U_{\omega} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^{2}\\ 1 & \omega^{2} & \omega \end{pmatrix}.$$
 (2)

In the A_4 limit, \mathcal{M}_N is proportional to the identity matrix. With three different mass eigenvalues, the residual symmetry is Z_3 lepton triality. Let the (η^+, χ^+) mass eigenvalues be $m_{1,2}$ with mixing angle θ , then each lepton mass is given by [19]

$$m_{l} = \frac{f_{L} f_{R} \sin \theta \cos \theta m_{N}}{16\pi^{2}} [F(x_{1}) - F(x_{2})], \qquad (3)$$

where $F(x) = x \ln x / (x - 1)$, with $x_{1,2} = m_{1,2}^2 / m_N^2$.

The dark $U(1)_D$ symmetry forbids the quartic scalar term $(\Phi^{\dagger}\eta)^2$, so that a neutrino mass is not generated as in Ref. [16]. It comes instead from Fig. 2, where the scalars $s_{1,2,3}$ are assumed real [10,23,24] to enable cobimaximal mixing, hence a separate dark Z_2 symmetry is required. There are three fermion mass terms to be considered. The allowed $m_E \bar{E}_L E_R$ Dirac mass for E, the allowed $(m_F/2)F_LF_L + H.c.$ Majorana mass for F, and the $m_D \bar{F}_L E_R$ mass-mixing term induced by ϕ^0 . With the assumption that $m_D < m_E, m_F$, each neutrino mass is given by

$$m_{\nu} = \frac{h^2 m_D^2 m_F}{16\pi^2 (m_F^2 - m_s^2)} [G(x_F) - G(x_s)], \tag{4}$$

where

$$G(x) = \frac{x}{1-x} + \frac{x^2 \ln x}{(1-x)^2},$$
(5)

with $x_F = m_F^2/m_E^2$, $x_s = m_s^2/m_E^2$. With m_F , $m_E \sim$ TeV, $m_s \sim 100$ GeV, $m_D \sim$ GeV, and $h \sim 0.01$, a very reasonable value of $m_v \sim 0.1$ eV is obtained. The dimension-two $s_i s_j$ terms are allowed to break Z_3 arbitrarily. However, since this mass-squared matrix is real, it is diagonalized by an orthogonal matrix O, hence the neutrino mixing matrix is given by [10,25,26]

$$U_{l\nu} = U_{\omega}\mathcal{O},\tag{6}$$

resulting in $U_{\mu i} = U_{\tau i}^*$, thus guaranteeing cobimaximal mixing: $\theta_{13} \neq 0$, $\theta_{23} = \pi/4$, $\delta_{CP} = \pm \pi/2$.

In a previous proposal [10], instead of Fig. 1, the radiative charged-lepton masses also come from scalars, i.e. $x_i^+ \sim \underline{3}$, $y_i^+ \sim \underline{1}, \underline{1}', \underline{1}''$ under A_4 . The $A_4 \rightarrow Z_3$ breaking is accomplished by rotating x_i^+ through U_{ω} so that $x_{1,2,3}^+$ now correspond to $y_{1,2,3}^+$

Fig. 3. One-loop generation of x_1x_2 term from s_1s_2 term.

Fig. 4. Two-loop $N_1 - N_2$ mixing from s_1s_2 breaking of Z_3 .

under Z_3 , and allowing the (x_1, y_1) , (x_2, y_2) , (x_3, y_3) sectors to have separate arbitrary masses. Now the quartic scalar coupling $(x_1^+s_1 + x_2^+s_2 + x_3^+s_3)(x_1^-s_1 + x_2^-s_2 + x_3^-s_3)$ is allowed under A_4 . If the s_is_j mass-squared terms break Z_3 as in Fig. 2, then the $s_1s_2(x_1^+x_2^- + x_2^+x_1^-)$ term from the above will induce a quadratic x_1x_2 term as shown in Fig. 3. Whereas this diagram is not quadratically divergent, it is still logarithmically divergent. This means a counterterm is required for $x_1^+x_2^- + x_2^+x_1^-$, thereby invalidating the Z_3 residual symmetry necessary to derive U_{ω} and thus Eq. (6).

In this proposal, the $A_4 \rightarrow Z_3$ breaking comes from $\bar{N}_L N_R$, with the Dirac fermions $N_{1,2,3}$ distinguished from one another by the residual Z_3 lepton triality through U_{ω} as shown in Eq. (1). The soft breaking of Z_3 by s_1s_2 induces only a finite two-loop correction to the $N_1 - N_2$ wavefunction mixing as shown in Fig. 4. Therefore this construction solves a long-standing technical problem in renormalizable theories of A_4 flavor mixing. To summarize, (1) A_4 is respected by all dimension-four terms; (2) Z_3 is respected by all dimension-three terms; (3) Z_3 is broken arbitrarily by dimension-two terms to allow cobimaximal mixing according to Eq. (6); (4) the s_is_j terms generate very small finite radiative corrections to Z_3 breaking in the dimension-three terms, justifying the use of U_{ω} to obtain Eq. (6).

As for dark matter, there are in principle two stable components: the lightest *N* with $U(1)_D$ symmetry and the lightest *s* with Z_2 symmetry. Note that *F* has a small mixing with *E* which is an $SU(2)_L$ doublet, hence it interacts with *Z* and is very constrained as a possible DM candidate. Whereas *N* has only the allowed $\bar{N}_R(\nu_L\eta^0 - l_L\eta^+)$ interactions, *s* has others, i.e. $s^2\Phi^{\dagger}\Phi$, $s^2\eta^{\dagger}\eta$, $s^2\chi^+\chi^-$, as well as $s(\bar{\nu}_L E^0_R + \bar{l}_L E^-_R)$. Their interplay to make up the total correct dark-matter relic abundance of the Universe and how they may be detected in underground direct-search experiments require further study.

An immediate consequence of radiative charged-lepton mass is that the Higgs Yukawa coupling $h\bar{l}l$ is no longer exactly $m_l/(246 \text{ GeV})$ as predicted by the standard model, as studied in detail already [27,28]. Because of the Z_3 lepton triality, large anomalous muon magnetic moment may be accommodated while $\mu \rightarrow e\gamma$ is suppressed [28].

In conclusion, cobimaximal neutrino mixing ($\theta_{13} \neq 0$, $\theta_{23} = \pi/4$, $\delta_{CP} = \pm \pi/2$) is achieved rigorously in a renormalizable model of radiative charged-lepton and neutrino masses. The key is the soft breaking of A_4 to Z_3 by dimension-three terms, so that the subsequent breaking of Z_3 by dimension-two terms only introduces very small finite corrections to the U_{ω} transformation needed to obtain cobimaximal mixing as given by Eq. (6).

This work is supported in part by the U.S. Department of Energy under Grant No. DE-SC0008541.

References

- [1] E. Ma, G. Rajasekaran, Phys. Rev. D 64 (2001) 113012.
- [2] E. Ma, Phys. Rev. D 66 (2002) 117301.
- [3] K.S. Babu, E. Ma, J.W.F. Valle, Phys. Lett. B 552 (2003) 207.
- [4] E. Ma, Phys. Rev. D 82 (2010) 037301.
- [6] [G.-H. Cao, A. Damanik, E. Ma, D. Wegman, Phys. Rev. D 83 (2011) 093012.
 [6] E. Ma, Phys. Rev. D 70 (2004) 031901(R).
- [7] G. Altarelli, F. Feruglio, Nucl. Phys. B 720 (2005) 64.
- [8] W. Grimus, L. Lavoura, Phys. Lett. B 579 (2004) 113.
- [9] R.N. Mohapatra, C.C. Nishi, Phys. Rev. D 86 (2012) 073007.
- [10] E. Ma, Phys. Rev. D 92 (2015) 051301(R).
- [11] P. Chen, C.-Y. Yao, G.-J. Ding, Phys. Rev. D 92 (2015) 073002.
- [12] A.S. Joshipura, K.M. Patel, Phys. Lett. B 749 (2015) 159.
- [13] H.-J. He, W. Rodejohann, X.-J. Xu, Phys. Lett. B 751 (2015) 586.

- [14] X.-G. He, Chin. J. Phys. 53 (2015) 100101.
- [15] E. Ma, Phys. Lett. B 752 (2016) 198.
- [16] E. Ma, Phys. Rev. D 73 (2006) 077301.
- [17] Particle Data Group, K.A. Olive, et al., Chin. Phys. C 38 (2014) 090001.
- [18] K. Abe, et al., T2K Collaboration, Phys. Rev. D 91 (2015) 072010.
- [19] E. Ma, Phys. Rev. Lett. 112 (2014) 091801.
- [20] E. Ma, I. Picek, B. Radovcic, Phys. Lett. B 726 (2013) 744.
- [21] N. Cabibbo, Phys. Lett. B 72 (1978) 333.
- [22] L. Wolfenstein, Phys. Rev. D 18 (1978) 958.
- [23] S. Fraser, E. Ma, O. Popov, Phys. Lett. B 737 (2014) 280.
- [24] E. Ma, A. Natale, O. Popov, Phys. Lett. B 746 (2015) 114.
- [25] K. Fukuura, T. Miura, E. Takasugi, M. Yoshimura, Phys. Rev. D 61 (2000) 073002.
- [26] T. Miura, E. Takasugi, M. Yoshimura, Phys. Rev. D 63 (2001) 013001.
 - [27] S. Fraser, E. Ma, Europhys. Lett. 108 (2014) 11002.
- [28] S. Fraser, E. Ma, M. Zakeri, arXiv:1511.07458 [hep-ph].