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HIV is a highly mutable virus, and over 30 years after its discovery, a
vaccine or cure is still not available. The isolation of broadly
neutralizing antibodies (bnAbs) from HIV-infected patients has led
to renewed hope for a prophylactic vaccine capable of combating
the scourge of HIV. A major challenge is the design of immunogens
and vaccination protocols that can elicit bnAbs that target regions
of the virus’s spike proteins where the likelihood of mutational
escape is low due to the high fitness cost of mutations. Related
challenges include the choice of combinations of bnAbs for therapy.
An accurate representation of viral fitness as a function of its pro-
tein sequences (a fitness landscape), with explicit accounting of the
effects of coupling between mutations, could help address these
challenges. We describe a computational approach that has allowed
us to infer a fitness landscape for gp160, the HIV polyprotein that
comprises the viral spike that is targeted by antibodies. We validate
the inferred landscape through comparisons with experimental fit-
ness measurements, and various other metrics. We show that an
effective antibody that prevents immune escape must selectively
bind to high escape cost residues that are surrounded by those
where mutations incur a low fitness cost, motivating future appli-
cations of our landscape for immunogen design.
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After over three decades of effort, there is now renewed hope
for an effective vaccine against HIV. This is because of the

isolation of broadly neutralizing antibodies (bnAbs) that are ca-
pable of neutralizing diverse HIV strains in vitro and progress
made toward inducing them by vaccination (1–7), and reports of
protection against infection for macaques immunized with a T cell-
based vaccine (8, 9). However, much progress still needs to be
made to realize the goal of deploying an effective vaccine, and also
to develop rational strategies for optimizing immunogens and
vaccination protocols. A related issue is the choice of combinations
of bnAbs for passive therapy of infected persons, an approach that
has shown promise in humans and macaques (10–12).
Because HIV is highly mutable, one key challenge is that the

virus can evolve mutations that abrogate the binding of anti-
bodies to HIV’s envelope proteins or T cell receptors to peptides
derived from viral proteins, while also preserving fitness (the
ability to properly assemble the virus, replicate, and propagate
infection). This allows HIV to escape from human immune re-
sponses. On the other hand, some parts of the viral proteome are
vulnerable to mutations because they result in a severe loss of
fitness. Vaccination strategies aimed at targeting these parts of
the proteome and not the ones that readily allow escape might be
effective. The design of effective vaccination strategies would
therefore benefit from knowledge of the fitness landscape of
viral proteins—that is, knowledge of the fitness of the virus as a
function of its amino acid sequence.

A conventional approach to estimate the fitness landscape of a
virus is to assume that the fitness of a sequence is directly related
to the extent to which the amino acids at a residue are conserved
in circulating viral strains; more conserved residues are ones
where mutations are predicted to result in a larger fitness penalty.
This approach was used to obtain a landscape experimentally for
the HIV envelope protein, gp160 (13), and computationally for
other HIV proteins (14, 15). However, it ignores epistatic cou-
pling between mutations at different residues, which is known to
be an important factor for viral fitness (16–18). For example, if a
mutation that allows the virus to evade an immune response
occurs at a particular relatively conserved residue, it is likely to
significantly impair viral fitness. However, if another mutation at
a different residue has a compensatory effect, the fitness cost
incurred by making the primary immune-evading mutation can
be partially restored. Because HIV is highly mutable and also
exhibits a high replication rate, such compensatory mutations
can be accessed in vivo, and have been found to be a significant
factor in determining viral fitness and mutational escape path-
ways (16–19). Thus, to define the mutational vulnerabilities of a
virus like HIV in vivo, and thus guide the design of vaccination
strategies, the desired fitness landscape must include the effects
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of coupling between mutations at different residues. Unfortu-
nately, despite continuing progress (13, 20, 21), experimentally
obtaining a fitness landscape that includes coupling information
for the majority of proteins in HIV is infeasible, because the
number of experimental fitness values that need to be measured
is prohibitively large. For example, there are on the order of 107

experimental fitness values that would need to be measured for
gp160 (Fig. 1), the polyprotein that comprises the HIV spike that
is targeted by antibodies.
One approach that has been successful in obtaining the fitness

landscape of HIV proteins, including the effects of couplings, has
relied on inferring this information from the sequences of circu-
lating strains [a multiple sequence alignment (MSA)] (19, 22–25).
First, a maximum-entropy–based computational approach (SI
Appendix, Text 2.1) was used to infer a “prevalence landscape”
from the sequence data, taking into account couplings between
residues; the prevalence landscape describes the probability of
observing a virus with particular protein sequence in circulation
(Fig. 2A). Theoretical analyses and tests against in vitro and
clinical data (19, 22, 26) suggest that, because of the evolutionary
history of HIV and the diversity of (largely ineffective) immune
responses that the HIV population has been subjected to, the
prevalence landscape is a reasonably good proxy for the fitness
landscape. This approach has been applied and validated for
various internal proteins of HIV (19, 22–25). Similar methods
have also been employed to predict the fitness effects of mutations
in bacterial proteins (27). However, a fitness landscape for
gp160 has not been previously obtained, despite its importance as
a target of antibody responses. This is because the inference
problem is far more challenging. In particular, the gp160 primary
sequence is more than twice as long as any other HIV protein, and
it is also among the most variable. This leads to an explosion in the
number of model parameters to be estimated (Fig. 1). Standard
inference approaches, such as those based on gradient descent
algorithms [commonly referred to as Boltzmann machine-learning
(BML) methods] or Markov chain Monte Carlo-based simulation
methods (22, 28) are intractable for the gp160 protein.

To address this issue, we introduce a computational frame-
work (Fig. 2B) that efficiently and accurately calculates the pa-
rameters of a maximum-entropy model for the gp160 fitness
landscape. We validate the inferred fitness landscape by testing
predictions of fitness against in vitro measurements of the fitness
of nearly 100 HIV strains bearing mutations in gp160, testing
predictions of protein contacts against structural data, and
showing that our fitness landscape is consistent with known es-
cape mutations. The fitness landscape that we report can help
guide the design of immunogens aimed toward eliciting bnAbs,
the choice of bnAb combinations for passive therapy, and the
choice of immunogens for the T cell component of a vaccine.

Computational Method
The fitness landscape is specified as a probabilistic model, cho-
sen as the model having the maximum entropy (i.e., the model
least biased by intuition), subject to the constraint of reproducing
the single- and double-mutant probabilities observed in the MSA
(SI Appendix, Eq. S5). For a given length-L amino acid sequence
x= ½x1, x2, . . . , xL�, where xi can take on any of the 20 naturally
occurring amino acids or gap in the MSA, this maximum-entropy
model assigns the probability (22):

ph,JðxÞ= exp½−EðxÞ�P
x′ exp½−Eðx′Þ�

,   EðxÞ=
XL
i=1

hiðxiÞ+
XL
i=1

XL
j=i+1

Jij
�
xi, xj

�
,

[1]

where, in analogy with statistical mechanics, we refer to E(x) as the
energy of sequence x. The parameters hiðxiÞ and Jijðxi, xjÞ, referred
to as fields and couplings, respectively, can be obtained by solving
the following convex optimization problem (SI Appendix, Text 2.1):

ðhp, JpÞ= arg min
h, J

KL
�
p0k  ph,J

�
, [2]

subject to the single- and double-mutant probabilities match-
ing those in the MSA (SI Appendix, Eq. S5). Here, p0 denotes
the patient-weighted sequence probability distribution from the
MSA (SI Appendix, Text 2.1), and KLðp0k  ph,JÞ denotes the
Kullback–Leibler divergence between p0 and ph,J (SI Appendix,
Eq. S7). This problem can be solved in principle by BML algo-
rithms; however, such algorithms require computing a gradient
function that involves an exponential number of terms in L,
thereby making direct computation infeasible for the gp160 pro-
tein. A solution to this challenge is provided for other HIV pro-
teins by use of a cluster expansion approach along with BML (24,
29, 30). However, achieving reliable statistical inference for
gp160 is difficult due to the large parameter space (Fig. 1) and
the relatively small number of sequences available for gp160 (SI
Appendix, Text 1). The method described here addresses these
issues via three main steps (Fig. 2B and SI Appendix, Text 2).
The most important of these is the introduction of a computation-
ally efficient algorithm that produces accurate initial estimates of
the fields and couplings. This method is augmented by the refine-
ment of these estimates using BML, which, due to the accuracy of
the initialization, converges quickly, and the application of a
variable-combining method for reducing the effective number of
parameters, which is more systematic than past such approaches.
Our approach for providing an initial estimate of the field and

coupling parameters is based on the principle of minimum
probability flow (MPF) (31), which was successfully applied to
different applications such as deep belief networks and in-
dependent component analysis (31), although to our knowledge
it has yet to be used for the analysis of protein sequence data. We
first describe the general idea of MPF as applied to our
maximum-entropy problem, and then discuss some distinctions
with related work. The MPF principle leads to replacing ph,J in

Fig. 1. For different HIV proteins, the number of parameters, average site
entropy, and protein length are shown. gp160 has orders of magnitude more
parameters than the majority of the other HIV proteins, the longest length,
and one of the largest average site entropy. Note that, to obtain a landscape
purely based on experiments, the number of required in vitro experimental
fitness values is proportional to the number of parameters. The amino acid
MSA for each protein was downloaded from the Los Alamos National Labo-
ratory (LANL) HIV sequence database (https://www.hiv.lanl.gov/).
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the optimization problem (Eq. 2) with an alternate (related)
distribution that is simpler to optimize, and which is expected to
yield an accurate approximation to the desired maximum-
entropy solution. Specifically, the maximum-entropy form (Eq.
1) is viewed as the equilibrium distribution of a Markov process
with appropriately specified deterministic dynamics (SI Appen-
dix, Text 2.3) that evolves the empirical data distribution p0 to-
ward ph,J. Based on these dynamics, the original optimization
problem (Eq. 2) is replaced with the alternative problem:

�
hMPF, JMPF�= arg min

h, J
KL

�
p0k  ph,J;t

�
, [3]

where ph,J;t (SI Appendix, Eq. S13) represents the distribution
obtained by running the dynamics for time t. While this distribu-
tion, as well as the associated KL divergence in Eq. 3, is still quite
complicated, it is greatly simplified for small values of t. Specif-
ically, for small t, the KL divergence is well approximated by a
linear function of t (SI Appendix, Text 2.3):

KL
�
p0k  ph,J;t

�
≈ tKh,J,

where Kh,J is a simple function of the field and coupling param-
eters h, J (see SI Appendix, Eq. S16 for the explicit formula). The

parameters that minimize this function can then be easily found
using a standard gradient descent algorithm. Importantly, choos-
ing small t to facilitate an expansion of the KL divergence (Eq. 3)
results in an efficient objective function Kh,J, which involves only
a quadratic number of terms in L (SI Appendix, Eq. S15), as
opposed to the original problem (Eq. 2), which was exponential
in L. The estimates obtained by minimizing Kh,J are also statis-
tically consistent (31): if the data are drawn from the maximum-
entropy model (Eq. 1), then the parameter estimates become
arbitrarily accurate given a sufficiently large number of samples.
Of direct relevance to our problem, the MPF procedure was

previously applied to learn Ising spin-glass models (31), which
have the form of the maximum-entropy distribution (Eq. 1), but
restricted to modeling only two amino acids per residue. Our
approach (SI Appendix, Text 2.3) extends that procedure to make
it suitable for the gp160 problem. First, we allow for arbitrary
numbers of amino acids per residue, which is essential due to the
large sitewise amino acid variability observed in the MSA. Sec-
ond, we introduce regularization to control sampling noise (SI
Appendix, Eq. S17 and Text 2.3), which is required due to the
large number of parameters and limited sequence data for
gp160. The regularization parameters are chosen such that the
model parameters yield a suitable balance between statistical
overfitting and underfitting, based on a previously defined metric

A

B

Fig. 2. (A) The general framework used for inferring a fitness landscape for gp160. Protein sequence data, in the form of a multiple sequence alignment (MSA),
is used to infer a maximum-entropy, or least-biased, probability distribution of sequences, subject to recapitulating the observed one- and two-point mutation
probabilities. This distribution is termed the sequence prevalence landscape (SI Appendix, Text 2.1). Based on past work on other HIV proteins, we assume that
protein fitness is directly proportional to sequence prevalence. As shown in a schematic depiction (Right), the fitness landscape traces out fitness values over the
space of possible protein sequences and highlights several features expected of the gp160 landscape: HIV often escapes even in the presence of bnAbs, suggesting
that many mutational pathways may have small fitness costs (i); other escape pathways may lead to a large decrease in fitness (ii); but compensatory mutations
can restore fitness (iii). (B) Our computational framework includes three steps to solve the maximum-entropy problem. Step 1 involves reducing the number of
mutants from the original MSA (SI Appendix, Text 2.3). The bar chart shows the single-mutant probabilities for one particular residue (highlighted in gray in the
MSA depicted in A). Infrequent amino acids are combined together and treated as a single mutant (“post-combined”). Step 2 involves solving a modified
minimum probability flow (MPF) objective function involving the KL divergence between the empirical distribution and a short-time evolved distribution (Eq. 3),
to include regularization and arbitrary number of mutants (SI Appendix, Text 2.3). Step 3 involves refining the parameters from step 2 using a Boltzmann
machine-learning (BML) algorithm (SI Appendix, Text 2.3), which produces the field (hf) and coupling (Jf) parameters of the landscape.
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(32). This is achieved by appropriately biasing the estimated sin-
gle- and double-mutant probabilities through regularization, to
faithfully capture real mutational variability and ignore variability
resulting from finite sampling (SI Appendix, Eq. S18 and Text 2.4).
By solving a proxy optimization problem, the MPF inference

procedure yields a set of inferred model parameters that serve as
approximations to the desired optimal maximum-entropy pa-
rameters (Eq. 2). These parameters are then refined using a
gradient descent-based BML algorithm, referred to as RPROP
(33), with an additional regularization term (SI Appendix, Text
2.4). While BML algorithms are intractable when applied to the
gp160 maximum-entropy problem with arbitrary initialization
(Eq. 2), such algorithms can converge quickly when accurate
initial parameters resulting from the MPF-based inference pro-
cedure are provided.
Multiple amino acids are observed at each residue of gp160 in

the MSA. Here, we restrict the number of amino acids explicitly
modeled in the inference procedure to decrease the computa-
tional burden (30). We propose a general data-driven approach
to combine the least frequent mutants (nonconsensus amino
acids) together. Combining such mutants also makes sense sta-
tistically since the low-frequency mutants are particularly sensi-
tive to sampling noise, and their corresponding parameters are
more challenging to meaningfully estimate. This approach, ap-
plicable to any protein, can substantially decrease the number of
parameters to be estimated. To achieve this, as in the past (30),
for residue i we model only the ki most frequent mutants, while
grouping the remaining qi − ki + 1 mutants together, where qi
denotes the number of mutants at residue i as observed in the
MSA. Here, ki is chosen such that, upon grouping, the entropy at
residue i is at least a certain fraction ϕ of the corresponding
entropy without grouping. The design question is to choose an
appropriate value of ϕ. In previous work (19, 22, 30), this factor
was chosen arbitrarily. However, for a protein like gp160, which
has a significantly larger number of parameters than the other
HIV proteins (Fig. 1), a more judicious choice of ϕ may have
considerable benefits. A lower value will combine more mutants
together, thus decreasing the number of parameters to be esti-
mated and reducing the computational burden. However, com-
bining too many mutants can result in a loss of useful information
regarding amino acid identities. These quantities can be quantified
in the form of a statistical bias (SI Appendix, Text 2.2).
To balance these competing issues systematically, we in-

troduce a method for selecting ϕ based on the sequence data (SI
Appendix, Text 2.2). It is described briefly as follows. For any
given ϕ, for each residue i we can specify ki as indicated above.
Letting fiðaÞ denote the frequency of amino acid a at residue i,
this leads to a modified (sparsified) model in which the fre-
quencies of the modified model are now as follows:

fiðaÞ=
8<
:

fiðaÞ if   a< ki + 1
fi if   a= ki + 1
0 if   a> ki + 1

, [4]

where fi =
Pqi

a=ki + 1fiðaÞ represents the frequency of the coarse-
grained amino acid. The squared error/bias of this model
(i.e., for the specific ϕ) at residue i is then estimated asPqi

a=1½ fiðaÞ− fiðaÞ�2, while the total variance of the amino acid
frequencies at residue i is estimated as

Pqi
a=1fiðaÞ½1− fiðaÞ�=P.

Our aim is to select a level of coarse-graining that corresponds
to the fractional entropy captured, ϕ, such that these quantities
are commensurate. Intuitively, this approach seeks to select the
sparsest model (i.e., choosing ϕ giving the most coarse-grained
combining) such that the resulting errors caused by combining do
not generally exceed the statistical fluctuations in the estimated
amino acid frequencies from the MSA. A significant advantage
of such variable selection approach is that it can substantially

reduce the number of maximum-entropy parameters to infer
(i.e., reducing the number of fields and couplings in Eq. 1),
thereby simplifying the parameter estimation problem, but with-
out sacrificing the predictive power of the inferred model.
To this end, denoting the ratio of fractional error to variance

in the amino acid frequencies in the data (see above) as βiðϕÞ and
letting hβiðϕÞi be the average of βiðϕÞ taken over all residues i, we
select ϕ by numerically searching for a value that yields hβiðϕÞi
close to 1.

Results
We applied the computational framework to a MSA of HIV-1
clade B gp160 amino acid sequences downloaded from the Los
Alamos National Laboratory (LANL) HIV sequence database
(https://www.hiv.lanl.gov/). The MSA was processed to ensure both
sequence and residue quality (SI Appendix, Text 2.1), resulting in L =
815 residues and 20,043 sequences belonging to 1,918 patients.
These sequences were highly variable, involving an average pair-
wise Hamming distance of 0.1824, normalized by L.

The Computational Method Is Fast and Accurately Captures the
Observed Sequence Statistics. When applied to the MSA of
gp160, our computational framework took only 2.5 d of CPU time
(12 h for MPF, 2 d for convergence of the subsequent BML) on a
16-core node with 128-GB RAM and 2.7-GHz processing speed.
This is significant given the large number of parameters that
needed to be estimated (∼4.4 million). The computational effi-
ciency was aided by the initial variable selection phase, which re-
duced the number of parameters by a factor of 6. The inferred
model accurately reproduced the single- and double-mutant
probabilities observed in the MSA (Fig. 3 A and B), as required.
The fast convergence of the BML algorithm in our framework was
due both to the significant reduction in parameters achieved with
the initial selection phase, as well as the high accuracy of the
initialization parameters estimated by MPF (Fig. 3 A and B).
Nonetheless, the BML refinement led to a better fit of the single-
and double-mutant probabilities, while also yielding a clear im-
provement in terms of connected correlations (Fig. 3C). Finally,
while the model was designed to explicitly reproduce single- and
double-mutant probabilities, the inferred parameters also cap-
tured higher order statistics (Fig. 3D). This information was not
reflected by the model produced by MPF, emphasizing the im-
portance of the subsequent BML estimation phase.

Inferred Fitness Landscape Accurately Predicts in Vitro Replicative
Fitness Measurements. To assess the ability of the inferred
model to capture the fitness of different strains of gp160, we
compared predictions based on this model to in vitro measure-
ments of HIV fitness. We compiled 98 fitness measurements
from in vitro experiments using competition (16, 17, 34, 35) or
infectivity assays (18, 36). Strains used in these experiments were
constructed by engineering single, double, or higher order mu-
tations on a CCR5-tropic strain. However, there was no explicit
consideration given to choosing higher order mutants that ex-
hibit epistatic coupling, known to be important in vivo (Discus-
sion). The metric of fitness in our model is the energy, E in Eq. 1.
Larger values of E correspond to less-fit strains. Based on the
values of E computed using our fitness landscape, we predicted
the relative fitness of the experimentally tested strains. We then
determined the rank correlation [based on a weighted Spearman
correlation measure (SI Appendix, Eq. S19 and Text 3)] between
these values of E and the measured fitness values (Fig. 4A). As
anticipated, we found a strong weighted negative correlation (SI
Appendix, Eq. S19), given by ρ=−0.74 between model energies
and viral fitness (see SI Appendix, Fig. S1 and Text 3 for results
for each individual experiment). These results demonstrate the
ability of the inferred landscape to discriminate the relative in-
trinsic fitness of different HIV strains with mutations in gp160.
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We note that the predicted combining factor ϕ = 0.95, estab-
lished at the initial variable combining phase, produced a land-
scape that achieved the strongest correlation with fitness values
compared with other values of ϕ (SI Appendix, Table S3).

Inferred Couplings Predict Contact Residues. We expect that
strongly interacting pairs of residues should be associated with
strong couplings. For example, we previously showed in other
HIV proteins that strong couplings are associated with com-
pensatory mutations or those that interact synergistically to make
the double mutant especially unfit (22, 24, 25). We used the
couplings inferred for gp160 to predict residues that are likely to
be in contact in the protein’s native state, which can be de-
termined from crystal structures. The rationale is that residues
that are in close spatial proximity in the protein’s native state
should have a greater influence on each other, and this effect can
be quantified by a measure dependent on the corresponding
couplings (37, 38). Similar approaches were originally developed
to predict residues in contact in the 3D protein structure on the
basis of their inferred interactions, and have recently been ex-
tended to identify sets of interacting proteins on the basis of
strong inferred couplings (39, 40). As our model is inferred from
in vivo data, we anticipate that the model should capture con-
tacts in the gp160 trimer that constitutes the functionally im-
portant HIV spike, not just contacts between residues in
monomers of gp120 or gp41. To test this, we compared the top
predicted contacts (a function of our model couplings) with
known contacts based on a crystal structure of SOSIP (41), a
synthetic mimic of the native gp160 trimer [Protein Data Bank
(PDB) ID code 5D9Q]. The results (Fig. 4B) demonstrate that
the couplings in our inferred model are predictive of protein
contacts for the gp160 trimeric spike of HIV. We found similar
results for nine other crystal structures (SI Appendix, Fig. S3).

Although our inferred couplings can predict contacts well,
apparent false positives are still observed. To examine this fur-
ther, we considered the top 20 residue pairs that have the largest
average product correction–direct information (APC-DI) scores,
in which 8 of these are not predicted to be in contact (SI Ap-
pendix, Table S4). With the exception of one residue pair, these
residues are located in the V2 or V4 loop, or are CD4 contacts.
For the residues in the V2 loop or those that are CD4 contacts, a
possible reason for these residue pairs having a high APC-DI
score is due to the conformational changes that occur when
gp160 interacts with CD4 and other coreceptors, which is not
captured in the protein structures. Indeed, conformational
changes due to gp160–CD4 interaction have been well docu-
mented for the V2 loop (42). These conformational changes may
favor or disfavor certain pairs of mutations. For the 389–
417 residue pair in the V4 loop, it is not clear why this pair has a
high APC-DI score, although we note that these residues are
located near the base of the loop.

Observed Mutations in Footprints of CD4 Binding Site bnAbs Have
Low Fitness Costs. As further validation of our landscape, we in-
vestigated whether its predictions explain why certain mutations
that change the binding of bnAbs are observed in circulating
virus strains, and others are not. Based on crystal structures, we
first determined the residues on gp160 that were in contact with
a number of CD4 binding-site bnAbs (listed in SI Appendix, Text
8). The CATNAP online tool (43) is a database of experimental
IC-50 measurements between panels of bnAb–virus pairs. To
determine whether mutations in gp160 residues that were in
contact with the bnAbs affected binding, we used a feature in
CATNAP that uses Fisher’s exact test to identify viral amino
acids that are statistically associated (P < 0.05) with either high
or low IC-50 scores. This analysis allowed us to determine a set

Fig. 3. (A and B) Scatter plot of the MPF/MPF-BML
vs. MSA single (double)-mutant probabilities, veri-
fying that the inferred fields and couplings for both
MPF and final model with additional BML refine-
ment, labeled MPF-BML, can accurately reproduce
the single (double)-mutant probabilities. (C) Scatter
plot of the connected correlations (covariances),
demonstrating the benefits of BML refinement over
MPF alone. (D) Probability of number of mutations,
verifying that the inferred fields and couplings after
BML, but not after MPF alone, accurately reproduce
higher order statistics beyond the single- and
double-mutant probabilities (which were not inputs
to the inference procedure).
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of residues in gp160 contained in the footprints of CD4 binding-
site antibodies that are statistically associated with a change in
IC-50 for at least one mutant amino acid. These residues have at
least one amino acid substitution pathway that changes the
binding affinity to bnAbs. We analyzed only viral strains ob-
served in the MSA that correspond to viable viruses.
At the identified set of residues, we further classify specific

amino acid mutations as either “observed,” defined as those
mutations associated with a change in binding to bnAbs in the
CATNAP data and observed in the MSA, or “unobserved,”
defined as mutations that are not in the CATNAP data (irre-
spective of whether they are observed in the MSA). We found
that roughly 90% of these unobserved mutations are absent from
the MSA (SI Appendix, Fig. S5A), and therefore are likely to be
unviable. Furthermore, the largest frequency for an amino acid
mutation present in the MSA but absent from CATNAP is small
[i.e., less than 5% (SI Appendix, Fig. S5B)], while the amino acid
mutations observed in the CATNAP data are representative of
those observed in the MSA (SI Appendix, Fig. S5C). We expect,
therefore, that observed mutations would be associated with
lower fitness costs than unobserved mutations, since they are
associated with viable viruses, and hence they are expected to
escape the immune pressure with the least effect on the ability to
propagate infection.
To assess whether the predictions of our fitness landscape are

consistent with these expectations, we employed a measure that
has been used before to predict the fitness cost of a mutation
averaged over all sequence backgrounds (24). Specifically, we
compute the change in energy associated with the mutation av-
eraged over a Monte Carlo sample of diverse sequence back-
grounds obtained using our fitness landscape to approximate:

ΔEi,hf ,Jf ðaÞ=
X
x, xi=0

h
Ehf ,Jf

�
x′
�
−Ehf ,Jf ðxÞ

i
phf ,Jf ðxÞ, [5]

where hf and Jf represent the final parameters after BML re-
finement, and the summation is over all sequences x having the
consensus amino acid (“0”) at the ith residue. Here, x′ is identical
to x, except with the amino acid at residue i replaced by a. This
measure quantifies the typical change in fitness upon introducing
this mutation at the residue across various sequence backgrounds
in circulating viruses. A positive fitness cost implies a decrease in
fitness (22, 24). As predicted, the observed mutations at the
residues that affect IC-50 are predicted to incur a lower average
fitness cost compared with amino acid mutations that were not
observed (Fig. 5A).

The difference in mean fitness cost between observed and un-
observed mutations is due to the presence of some observed
mutations with very low fitness costs, coupled with high fitness
costs for many unobserved mutations. The existence of the low-
fitness cost pathways that also likely abrogate binding implies that
even canonically broad and potent bnAbs are imperfect. In pa-
tients who develop bnAbs upon natural infection, the viral qua-
sispecies readily evolves escape mutations (1); escape mutations
also eventually arise when bnAbs are administered passively (44),
even when multiple bnAbs are used in concert (44, 45).
To further test our fitness landscape, we next focused on the

gp160 residues in CD4 binding site antibody footprints that are
not statistically associated with changes in IC-50 according to the
analysis using CATNAP. We first examined whether the amino
acid mutations at these residues that are observed are bio-
chemically similar to each other and to the consensus amino acid
at the residue. To determine this, for each residue, we calculated
the biochemical similarity between the nonconsensus amino acid
and the respective consensus amino acid, averaged over all se-
quences in the panels with nonconsensus amino acid at that
residue (SI Appendix, Eq. S25). The similarity matrix (46) assigns
to each pair of amino acids a similarity score ranging from 0 to 6,
with matching amino acids assigned a value of either 5 or 6,
where 6 is assigned to the more rare, unique amino acids (F, M,
Y, H, C, W, R, and G) to reflect this. Mismatched amino acids
are assigned values from 3 to 0 based on their polarity, hydro-
phobicity, shape, and charge (47). For each residue, the average
biochemical similarity calculated above was compared with a
simulated null model in which the nonconsensus amino acids
observed in the bnAb–virus panels were randomly selected from
all nonconsensus amino acids at that residue (SI Appendix, Fig.
S5D). The average similarity was above the fifth percentile of the
respective null model for 53% of the residues (SI Appendix, Fig.
S5D), indicating that, on average, the amino acids sampled at
these residues are more biochemically similar to the consensus
amino acid than a uniformly selected random sample. The fact
that the observed mutations are biochemically similar may ex-
plain why they did not significantly alter binding characteristics
of the bnAbs. We then computed the fitness cost for the ob-
served mutations at these residues and compared them with the
mutations that were not observed as before. We expect that the
latter mutations to biochemically different amino acids may have
affected IC-50, but did not arise in viable viruses because of their
high fitness costs; that is, the fitness cost associated with evolving
escape mutations was prohibitive. Consistent with this expec-
tation, our fitness landscape predicts that the fitness cost for the

A BFig. 4. (A) Normalized logarithm of fitness vs. nor-
malized energy for all seven experimental datasets
collected from the literature for a combining factor
of ϕ = 0.95. References for the datasets are shown in
the legend. Normalization is performed by sub-
tracting the mean of each dataset and dividing by
the SD. A strong weighted correlation (SI Appendix,
Eq. S25) is observed (see also SI Appendix, Fig. S1 for
individual experiments). (B) Fraction of contacts in
the top x predicted pairs which are actually in con-
tact [true-positive rate (TPR)] vs. the top x predicted
pairs as determined by a high value of the coupling
constant (black line). True contacts are calculated
from a crystal structure of the SOSIP trimer (5D9Q).
These data show that the pairs with high predicted
values of the coupling constants predict true contacts
observed in the crustal structure of the SOSIP trimer.
Also graphed is the total number of contacts (ob-
served in the crystal structure) divided by the total
number of pairs (horizontal blue line), which represents the probability of choosing a pair in contact purely by chance. Only pairs that are more than five
residues apart in sequence space are considered, and out of these pairs, two residues are assumed to be in contact if they are <8 Å apart. PDB ID code 5D9Q.
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observed mutations are lower than those for the unobserved
mutations (Fig. 5B).

bnAbs That Target the CD4 Binding Site Contact Select Residues
That Are Predicted to Be Associated with a High Fitness Cost upon
Mutation. We computed the fitness cost associated with making
mutations at all gp160 residues by carrying out Monte Carlo
simulations to obtain an ensemble of sequences, all of which
contained the consensus amino acid at a chosen residue. This
ensemble of sequences was used to estimate the fitness cost for
each particular mutation from consensus to a nonconsensus
residue, as in Eq. 5 above. The results were then averaged over
the mutant amino acids (24) to weight more likely mutations
more highly as shown below:

ΔEi =

P~qi
a=1ΔEi,hf ,Jf ðaÞexp

�
−ΔEi,hf ,Jf ðaÞ

�
P~qi

a=1 exp
�
−ΔEi,hf ,Jf ðaÞ

� [6]

where ~qi is the number of mutants at residue i after mutant
combining (SI Appendix, Text 2). Eq. 6 provides us with an aver-
age fitness cost of evolving mutations at a particular residue, i,
averaged over all sequence backgrounds in which the mutation
might arise and over all mutant amino acids. We then super-
imposed this predicted residue-level fitness costs onto the SOSIP
crystal structure. This can be visualized in a heat map depicting

the fitness costs of residues that we determined to be accessible
on the surface of SOSIP (Fig. 6A) (SI Appendix, Text 6). These
results show that the map is very rugged, composed of a mixture
of closely spaced low- and high-fitness cost residues. To obtain a
clearer picture of whether low-fitness cost residues are predom-
inant in any region of the size of a typical antibody footprint, we
calculated the fitness cost (SI Appendix, Eq. S24) averaged over
all surface residues within 12.5 Å of the chosen residue (the
radius of a typical antibody footprint, as estimated from analyz-
ing various bnAb–gp160 crystal structures). The corresponding
heat map shows that fitness costs averaged over the antibody
footprint are smooth over the entire surface on this scale (Fig.
6B). Ab-footprint–sized regions are typically dominated by low-
fitness cost residues. Thus, most Ab responses that arise may be
escaped via mutations. Even though the CD4 binding site has
one of the largest fitness costs when averaged over a typical
antibody footprint size (Fig. 6B), there still exist several residues
associated with low fitness costs for mutations. Hence, if muta-
tions at these residues lead to abrogation of Ab binding, then
they present relatively easy escape pathways for the virus, con-
sistent with the previous observation based on CATNAP data.
We note that two other regions in Fig. 6A appear to have large
numbers of high-escape cost residues: (i) the α0 and β�1 motifs of
the C1 region of gp120, located in the trimer core near the
intertrimer interfaces as well as the gp120–gp41 interface (48),
and (ii) a region of gp41 containing portions of the H2 and
membrane-proximal external region (MPER) motifs (49–52), al-
though much of the MPER region is truncated in the 5D9Q
crystal structure, including the epitopes for MPER-directed
bnAbs 2F5 and 4E10 (51). However, the first region is sterically
inaccessible to antibodies, while the second region contains a
few highly variable residues that dominate the averaging in Eq.
6, and thus on the scale of a footprint it is not very conserved.
We next examined the residues in the CD4 binding site region

that are most strongly associated with the binding of the VRC01
class of antibodies. Li et al. (53) created an extensive set of alanine
scanning mutants on a background of JRCSF, a CCR5-tropic
clade B gp160 strain. For each alanine mutant, the authors mea-
sured binding affinity of full-length gp120 monomer to VRC01
relative to the wild-type virus. This assay led to the identification
of residues where mutation to alanine led to significant decrease
in VRC01–gp120 binding. The authors additionally conducted a
neutralization assay in which whole mutant pseudoviruses are in-
cubated with live target cells, and loss of infectivity is measured as
a function of concentration of added CD4–Ig, a synthetic con-
struct in which the CD4 domains 1 and 2 are fused to human IgG1
Fc domain. CD4–Ig competes with target cells to bind to the
CD4 binding site of the pseudovirus, thus hindering infection of
target cells. In this assay, if lower concentrations of CD4–Ig are
required to inhibit infection, a decreased ability of the alanine
mutant to infect via CD4-mediated interactions is indicated. In
other words, a viral strain with a low CD4–Ig value has a low
replicative fitness. The portion of these data corresponding to the
gp160 residues in contact with VRC01 can be determined from
crystal structures (SI Appendix, Table S5).
Of the residues on gp160 that were determined to be impor-

tant for binding to VRC01, seven of these result in significant
loss of binding (<33%) to gp120 upon mutation to alanine.
While three of these seven (367, 368, and 457) are predicted by
our landscape to have high fitness cost upon mutation, the
remaining four (279, 371, 467, and 474) have much lower pre-
dicted fitness cost. This is seemingly at odds with the apparent
high fitness cost of mutation to alanine for all seven residues, as
measured experimentally (loss in sensitivity to CD4–Ig neutral-
ization). This discrepancy can likely be explained by examining
these residues at the amino acid level. For the four residues in
question, the most common nonconsensus amino acid accounts
for a large fraction of sequences in the MSA (SI Appendix, Fig.

A

B

Fig. 5. Distribution of fitness costs for residues in the footprints of CD4bs-
directed bnAbs. The footprint residues for a set of CD4bs-directed bnAbs
(listed in SI Appendix, Text 7) were determined using crystal structures (as
described in SI Appendix, Text 7). Next, the CATNAP online tool (43), a da-
tabase of experimental IC-50 measurements between panels of bnAb–virus
pairs, was used to identify amino acids within these footprints that are
statistically associated with either high or low IC-50 for the bnAb–virus pairs
tested. The footprint residues were separated into two sets of residues: the
first set (A) consists of those residues for which at least one amino acid is
statistically associated with a change in IC-50; the second set (B) consists of all
other residues in the footprint where no such statistical associations with IC-
50 were found. For both graphs, the fitness costs are calculated over all
amino acids present in the CATNAP bnAb–virus panels (observed) and all
amino acids not present in these CATNAP panels (unobserved). For the res-
idues in A, the means of the observed and unobserved fitness cost distri-
butions are 3.86 and 4.17, respectively (P < 0.001); for the residues in B, the
means of the observed and unobserved fitness cost distributions are
3.61 and 5.42, respectively (P < 0.001); the P values were estimated by sim-
ulating from a null model in which the amino acids that were observed or
unobserved are randomly permuted for each residue in the footprint.
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S6), and it is not alanine. Thus, mutation to the most common
nonconsensus amino acid is unlikely to result in a high fitness cost.
Furthermore, in the CATNAP panel described in the previous
section, neither the consensus nor the most common mutant
amino acid is significantly associated with change in IC-50. Rather,
the distributions of IC-50s for sequences containing either the
consensus or the most common mutant amino acid are in-
distinguishable by two-tailed t test (SI Appendix, Fig. S6). This
evidence suggests that mutation to the most common mutant
amino acid may be insufficient to abrogate binding to VRC01.
Our predicted fitness costs are likely artificially low, since Eq. 6
tends to weight low-fitness cost amino acid mutations highly
during the averaging procedure and we infer that mutation to the
most common nonconsensus amino acid does not incur a high
fitness cost. If we instead calculate the fitness costs for these
residues specifically to alanine, we predict much higher values
(3.7, 4.2, 2.7, and 4.7, for residues 279, 371, 467, and 474, re-
spectively). In contrast, for the three residues with high predicted
fitness cost, the frequency of the most-common mutant amino acid
was at most 0.2% in the MSA. Thus, although alanine was not the
most-common mutant, the experimental fitness measurements
made using alanine mutants were representative of typical escape
costs at these residues. Most convincingly, 9 out of the top
10 residues with largest predicted fitness cost had an undetectable
CD4–Ig value (SI Appendix, Table S5), further suggesting that our
landscape provides an accurate measure of intrinsic fitness.
These results show that, consistent with observations regarding

the VRCO1 class of antibodies, our fitness landscape predicts that
bnAbs that target the CD4 binding-site region selectively bind to
those residues associated with the largest fitness costs. They fur-
thermore highlight the importance of describing fitness at the amino
acid level of detail, not just residues—a fact that further highlights
the importance of the fitness landscape that we have inferred.

Discussion
HIV is a highly mutable virus, and the design of both T cell and
antibody arms of an effective vaccine would benefit from a
knowledge of its mutational vulnerabilities as this would identify
targets on the HIV proteome and viral spike where potent im-
mune responses should be directed. Determining the fitness of
the virus (ability to assemble, replicate, and propagate infection)
as a function of the sequence of its proteins would help in this
regard. Because of the significance of compensatory or delete-
rious coupling between mutations at multiple residues, in de-
termining such a fitness landscape, it is important to account for
the effects of coupling between mutations. Past work has been
reasonably successful in determining such a fitness landscape for

diverse HIV polyproteins by inferring the same from sequence
data and testing predictions against in vitro experiments and
clinical data (19, 22–25). This has not been true for the gp160
Envelope polyprotein that forms the virus’s spike and is targeted
by antibodies. This is due to the large diversity and size of gp160
(Fig. 1). We have reported a computational approach, based on
the maximum-entropy method (19, 22), which includes a data-
driven parameter reduction method, an initial estimation of the
prevalence landscape parameters based on the principle of MPF,
followed by a BML procedure to refine the parameters (Fig. 2).
We applied this framework to infer the fitness landscape of
gp160 from available sequence data. Predictions of the resulting
model compare very well with published experimental data, in-
cluding intrinsic fitness measurements, protein contacts in the
SOSIP trimer, and known escape mutations that arise to evade
antibodies that target the CD4 binding site.
A natural question, equally valid for any viral protein, is why

one may see a strong relation between prevalence and fitness,
and what are the fundamental processes underpinning this re-
lationship. Motivated by this question, for internal HIV proteins
that are targeted by cytotoxic T lymphocytes (CTLs), a mecha-
nistic explanation has been proposed on the basis of simulation
studies of HIV evolution and associated theory (22, 23, 26).
Three key factors were identified for HIV proteins: (i) Because
of the huge diversity of HLA genes in the population, very few
regions of the HIV proteome are targeted by a significant frac-
tion of humans. (ii) If a mutation is forced by the immune re-
sponse of a particular individual and it incurs a fitness cost, then
upon infection of a new patient who does not target the same
region, during chronic infection the first mutation will revert.
(iii) Unlike influenza, the HIV population has not been sub-
jected to a few effective classes of natural or vaccine-induced
immune responses by a significant fraction of humans across
the world. Therefore, it has not evolved in narrowly directed
ways to evade effective herd memory responses. (iv) Further-
more, the effects of phylogeny are ameliorated due to high rates
of recombination (54). For these reasons, over reasonable mu-
tational distances, HIV proteins are in a steady state and so
amenable to inference of fitness landscapes using maximum-
entropy approaches applied to sequence data. This is decidedly
not true for the influenza population, which is driven far out of
equilibrium (55, 56). The first of the above arguments, however,
does not translate directly to gp160, which is primarily targeted
by antibodies (57). While it is tempting to draw high-level anal-
ogies with the CTL-based phenomena on the basis that the di-
versity of antibodies generated against HIV is large, there are
clear distinctions. For example, it is known that the V2 loop of

A B

Fig. 6. Fitness costs superimposed on SOSIP Env gp160 trimer (PDB ID code 5D9Q). High-fitness cost residues (red) are more difficult for the virus to mutate,
while low-fitness cost residues (blue) tend to be highly variable and easy to mutate. Residues in black are considered hypervariable and are not included in our
model. (A) Fitness cost for each residue is averaged over all possible sequence backgrounds and amino acids at that residue. (B) Additionally averaged over
surface residues within 12.5 Å of the residue. In both A and B, the regions circled in black, from Top Left to Bottom Right, correspond to the CD4bs, the α0 and
β�1 motifs of the C1 region of gp120, and a region of gp41 containing portions of the H2 and MPER motifs, respectively.
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gp160 is estimated to be immunogenic in 20–40% of infected
patients, while the V3 loop induces antibodies in essentially all
infected patients (58). This would seem to promote more directed
evolution compared with the internal proteins under CTL pres-
sure. However, it is possible that different individuals evolve an-
tibodies that target different residues in the V2 and V3 loops. It is
also true that peptides derived from gp160 are targeted by CTLs,
and that antibody responses are often directed toward debris from
the fragile HIV spike. These reasons may underlie why we see
excellent correspondence between our inferred model for gp160
and experimental measurements. Nonetheless, the mechanistic
reasons remain unclear for gp160. Resolving these basic principles
governing the strong prevalence–fitness correspondences identi-
fied in this paper for gp160 is worthy of future study.
We also considered an optimized model using the fields only,

obtained by fitting only the single-mutant probabilities. We ob-
serve a modest gain in using the model with couplings, compared
with the fields model; that is, the fields model has a correlation
of ρ = −0.69 compared with the correlation of ρ = −0.74 using
our computational framework.
The reason the comparison with in vitro fitness measurements

is not much worse for the model with fields only is because the
coupling matrix is relatively sparse, and so unless fitness mea-
surements are carried out with only the subset of mutants with
large couplings, the fields are dominant. No such preselection
was done in the data on in vitro fitness that we compared our
predictions against. The value of the coupling parameters is seen
in several contexts. For example, protein contacts simply cannot
be predicted without the couplings because the physical inter-
actions between these residues induce a correlated mutation
structure. More importantly, the fitness consequences of the
couplings can be very significant for the evolution of HIV in vivo
(the situation of ultimate interest), as described below.
Barton et al. (24) studied a cohort of HIV-infected individuals

and used the inferred fitness landscapes of HIV proteins (other
than gp120) to predict how long it took for the virus to escape
from the initial T cell immune pressure in individual patients.
When using single-residue entropy alone (i.e., fields only), there
was only a 15% correlation between single-residue conservation
and escape time. However, when they carried out dynamic simu-
lations of the evolution using the fitness landscape that includes
coupling parameters, this correlation was 72% and statistically
significant. The reason for this dramatic increase in performance
upon including the couplings is that evolutionary trajectories in
vivo can sample many potential compensatory pathways that may
aid escape due to the high rate of replication and mutation of
HIV. Therefore, pathways characterized by particularly strong
compensatory couplings can be accessed. Similarly, Barton et al.
(24) showed that dramatic differences in escape time for patients
targeting the same epitope could be explained by differences in
the background mutations contained in the sequence of the virus
strains that infected these patients. For example, if the background
mutations had strong negative couplings with the ultimate escape
mutation, the escape mutation took much longer to evolve and
take over the population. Therefore, in the context of the real in
vivo situation of interest, including the couplings is very significant.
This point has also been emphasized in other contexts where
compensatory mutations have been observed (16–18, 59, 60).
While our method was developed to address the specific

challenges posed by the gp160 protein, the approach is general
and may be applied to other high-dimensional maximum-entropy
inference problems. For example, it may be directly applied to
estimate the prevalence landscape of other HIV proteins, or
proteins of other viruses. As an example, we applied the
framework to p24, a relatively conserved internal protein of
HIV. The landscape with ∼80,000 parameters was inferred very
quickly (∼2.3 h for MPF and 1.2 h for the subsequent BML), and
predictions from this landscape compared favorably with ex-

perimental fitness values (19), returning a strong Spearman
correlation of −0.8 (SI Appendix, Fig. S2). For p24, along with
other HIV proteins, similar correspondences between preva-
lence and fitness have been obtained through other maximum-
entropy inference methods (19, 22–24).
We showed that the fitness landscape of the surface-accessible

parts of the ENV trimer is very rugged where a few residues that
incur a large fitness cost upon mutation (including the effects of
couplings between mutations) are surrounded by residues with a
low fitness cost upon mutation (Fig. 6). Even for the relatively
“conserved” CD4 binding-site region, only mutations at some
residues are predicted to incur large fitness costs upon mutations.
This is consistent with the coarse-grained models of antibody–
virus binding employed in models of affinity maturation with vari-
ant antigens by Wang et al. (61) and Shaffer et al. (62). In contrast,
in a related study, Luo and Perelson (62, 63) assumed that variant
antigens contain epitopes composed of only conserved or only
variable residues. Our observation about the spatial distribution
of escape costs on the surface of HIV envelope suggests that
antibody footprints will in general contain both conserved and
variable residues. It is likely that these conserved residues need
to be the principal targets of effective antibody responses that
are difficult for the virus to evade. For this reason, the avail-
ability of our fitness landscape of HIV’s envelope proteins is
expected to aid the rational design of immunogens that could
potentially induce bnAbs upon vaccination (1–7), as well as guide
the choice of combination of known bnAbs that would prevent
escape in humans undergoing passive antibody therapy (10).
Specifically, our fitness landscape can be clinically useful in the

future for the selection of combination bnAb therapy. Much like
in the realm of antiretroviral drugs, the use of multiple different
bnAbs has the potential to prevent or delay escape mutations, as
the viruses in the host must evolve escape mutations in combi-
nations of binding sites of the bnAbs administered. Two bnAbs
with epitopes that have many detrimental couplings between them
in all possible sequence backgrounds are likely to delay escape
in diverse patients with different virus strains due to the added
difficulty of introducing simultaneous escape mutations in both
epitopes. Furthermore, bnAbs that target epitopes containing
residues wherein escape mutations can be easily compensated by
other mutations should be avoided. The importance of consider-
ing the fitness landscape in an analogous context of antiretroviral
drugs has been previously shown for protease by Butler et al. (25).
An additional application that is clinically relevant is the selection

of variant antigens (e.g., variants of SOSIP) for use in a candidate
HIV vaccine designed to elicit bnAbs. The induction of bnAbs via
vaccination will likely require immunization with multiple variant
antigens that share some conserved residues, but whose variable
regions contain distinct mutations compared with each other. The
fitness landscape inferred in this work can provide insight into which
residues within these antigens should be mutated within candidate
immunogens such that the induced bnAbs are cross-reactive to di-
verse circulating viral strains with different sequences.

Materials and Methods
SI Appendix, Text includes detailed descriptions of the data preprocessing (SI
Appendix, Text 1), computational framework (SI Appendix, Text 2), fitness
verification (SI Appendix, Text 3), residue contact prediction (SI Appendix,
Text 4), comparison with other methods (SI Appendix, Text 5), and appli-
cation of the landscape for characterizing the fitness cost of escape muta-
tions from bnAbs (SI Appendix, Text 6–8). The landscape, processed MSA,
and implementation of the computational framework are freely available
on the following website: https://github.com/raymondlouie/MPF-BML.
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