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In this domain we consider the Schréodinger equation with a potential g:
Ly(z,D)ju=(A4+qu=0 inQ. (1)

Let T be a non-empty arbitrary fixed relatively open subset of 92. Consider the
Neumann-to-Dirichlet map Nq ¢ with partial data on I" defined by

Nq,f : f — u|1:, (2)

where

. ou ou
(Atgu=0 im0, 05 =0, Sl =7 3)

with domain D(N, 7) C L2(T'). Without loss of generality we may assume that 9Q \ T
contains a non- empty open set. By uniqueness of the Cauchy problem for the Schrédinger
equation the operator NV o F is well defined since the problem (3) has at most one solution

for each f € L2(T). Thanks to the Fredholm alternative, we see that D(N, ) = D(N, )

q,I"
and L2(T') \ D(N o) is finite dimensional for any potential ¢ in HY(Q).

The goal of thlé article is to prove uniqueness of the determination of the potential ¢
from the Neumann-to-Dirichlet map N i given by (2) for arbitrary subboundary T. More
prec1sely7 we consider all Neumann data supported on an arbitrarily fixed subboundary
T as input and we observe the Dirichlet data only on the same subboundary T. This map
arises in electrical impedance tomography (EIT) where one attempts to determine the
electrical conductivity of a medium by inputting voltages and measuring current at the
boundary. After transforming (1) to the conductivity equation, we can interpret u|x and
% ;= respectively as the voltage and the multiple of the current by values of the surface
conductivity. In practice, we can realize such inputs and outputs by applying current
to electrodes on the boundary and observing the corresponding voltages. The current
inputs are modeled by the Neumann boundary data % and the observation data are
modeled by Dirichlet data. See e.g. Cheney, Issacson and Newell [11] for applications
to medical imaging of EIT. Moreover it is very desirable to restrict the supports of the
current inputs as small as possible. To the authors’ best knowledge there are few works
on the uniqueness by such a “Neumann-to-Dirichlet map” with partial data. In Astala,
Péivirinta and Lassas [3], the authors consider both the Dirichlet-to-Neumann map and
the Neumann-to-Dirichlet map on an arbitrarily subboundary to establish the uniqueness
of an anisotropic conductivity modulo the group of diffeomorphisms which is the identity
on the boundary where the measurements take place.

The case where the measurements are given by the Dirichlet-to-Neumann map has
been extensively studied in the literature. This map is defined in the case of partial data
by

ou .
Apig— $|f‘? (A+q@u=0 inQ, ulper=0, ulg=g.
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We give some references but the list is not at all complete. In the case of full data
I = 0%, this inverse problem was formulated by Calderén [10]. In the two-dimensional
case, given a Dirichlet-to-Neumann map Aq,f on an arbitrary subboundary f, uniqueness
is proved under the assumption ¢ € C?**(Q) by Imanuvilov, Uhlmann and Yamamoto
[15] and for the uniqueness for potentials ¢ € Wpl(Q), p > 2 see Imanuvilov and Ya-
mamoto [20]. For other uniqueness results by the Dirichlet-to-Neumann map on an
arbitrary subboundary f, we can refer also to Imanuvilov, Uhlmann and Yamamoto [16,
18]. Also see Imanuvilov and Yamamoto [19] for uniqueness results for elliptic systems.
In Guillarmou and Tzou [13], the result of [15] was extended on Riemannian surfaces.
In particular, for uniqueness in determining a two-dimensional potential with full data:
A4 .00, we refer to Blasten [4], Blasten, Imanuvilov and Yamamoto [5], Bukhgeim (8] and,
Sun and Uhlmann [26], and for systems in Albin, Guillarmou, Tzou and Uhlmann [1]
and Novikov and Santacesaria [24]. For the case of full data, in [4] and [20], it was shown
that Aq 00 uniquely determines ¢ in the class piecewise Wpl(Q) with p > 2 and C%(Q),
a > 0, respectively. As for the related problem of recovery of the conductivity in EIT,
Astala and Péivérinta [2] proved uniqueness for conductivities in L°>°(2), improving the
results of Nachman [23] and Brown and Uhlmann [7]. Moreover for the case of dimen-
sions n > 3 with the full data Sylvester and Uhlmann [27] proved the uniqueness of
recovery of a conductivity in C?(€2), and later the regularity assumption was improved
(see e.g. Brown and Torres [6], Piivirinta, Panchenko and Uhlmann [25] and Haberman
and Tataru [14]). The case when voltages are applied and current is measured on differ-
ent subsets was studied in dimensions greater than two in Bukhgeim and Uhlmann [9],
Kenig, Sjostrand and Uhlmann [22] and in Imanuvilov, Uhlmann and Yamamoto [17] for
the two-dimensional case. See also the reviews by Imanuvilov and Yamamoto [21], and
Uhlmann [28].

Our main result is as follows

Theorem 1. Let q1, g2 € W, () for some p > 2. If D(N, 7) € D(N,, ) and N, (f) =
N, =(f) for each f from D(Nq1 &), then q1 = q2 in €.

Notice that Theorem 1 does not assume that €2 is simply connected. An interesting
inverse problem is whether one can determine the potential in a domain with holes by
measuring Nq,f only on some open set T in the outer subboundary.

Let ©, G be bounded domains in R? with smooth boundaries such that G C Q. Let
I' C 09 be an open set and ¢ € W (2 \ G) with some p > 2. Consider the following
Neumann-to-Dirichlet map:

Nq,f“ f = u‘f,

where

uwe H'(Q\G), (A+q@u=0inQ\G, 5|8Gu(39\f):07 $|f:f'
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Then we can directly derive the following from Theorem 1.

(zorollary 2.~Let a,q2 € WHQ\G) wz’fh some p > 2. If D(]\N/'th:) C D(N,, ) and
N, v(f) =N, 5 (f) for each f from D(N, ), then q1 = g2 in Q\ G.

For the case of EIT, if the conductivities are known on f, then we can apply our
theorem to prove uniqueness of the determination of conductivities in W;’(Q)m > 2
from the Neumann-to-Dirichlet map.

The remainder of the paper is devoted to the proof of Theorem 1. The main technique
is the construction of complex geometrical optics solutions whose Neumann data vanish
on the complement of L.

Throughout the article, we use the following notations.

Notations. We set Ty = 00 \ i i =+—1, 21,220 € RY, 2 = 21 + ix9, Z denotes the
complex conjugate of z € C. We identify x = (71, 22) € R? with z = o1 + iz € C and
§= (£1a£2) with ¢ = &1 +1a. 0. = %(aam _iamz)v 0; = %(8171 +ia$2)7 D = (%aﬂ?u %asz)a
O = (8¢, — i0g,), 9 = 1(0¢, + i0¢,). Denote by B(z,8) a ball centered at z of
radius 0. For a normed space X, by ox(%) we denote a function f(7,-) such that
1f(r,9)]lx = o(s) as |r] = 4oc. The tangential derivative on the boundary is given
by 0z = 1/2% -1 %, where v = (v1, 112) is the unit outer normal to 9. The operators
07! and 9! are given by

— 1 g((az) — —1-
o lg=—= =L deadéy, 0 'g = 071G
”Q/C :

We call b(x) antiholomorphic if (b(z)) is holomorphic. In the Sobolev space H'(Q) we
introduce the following norm

1
lull e @) = (lullF @) + 71wl 22g9)) %
2. Proof of Theorem 1
Let @ = ¢ + i) be a holomorphic function in © such that ¢, ¢ are real-valued and

®cC?Q), Imd

ry; = O7 I'y CC FS F; 75 89, (4)

where I'{ is some open set in 0f). Denote by H the set of the critical points of the
function ®. Assume that

HAD, 020(:)£0, VzeH, HNL =0 (5)

and
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/1da —0, T = {2 =b(x) = 0, € OO\ T} (6)
J

Let ©; be a bounded domain in R? such that Q@ cC ©; and C be some smooth
complex-valued function in €2 such that

8(3

az Cl (Iﬁ) -+ ZCQ(’I) in Ql, (7)

where C1, Cy are smooth real-valued functions in 2 such that

oC; 00, .
a—xl + — 8,’172 = 1 mn Ql. (8)

The following proposition is proved as Proposition 2.5 in [18].
Proposition 1. Suppose that g € L>=(Q), the function ® satisfies (4), (5), and the function

C satisfies (7), (8) and v € H*(). Then there exist 7o and C(N) independent of v and
T such that

gH?aﬁeerNCH%?(Q) + T||/5€W+NCH%2(Q) + ||/17€W+NCH§{1(Q)
+ 72||| |U TN )
< gl DYBE N 0+ CONYTIEE NG, DTN B o ooy (9
for all 7 > 179(N) and all positive N > 1.
Let v € H?(Q) satisfy

ov
“—|r; = 0.

ov

Using Proposition 1, we can show the following.

Proposition 2. Suppose that ® satisfies (4), (5) and g € L (). Then there exist 7o and
C independent of v and T such that

B N oD _
7[5e7 120y + 157 I o) + 7M1l 5 10677

8116

<c (|Lq<x,D>%eW|%z<m T rf@ere, (10)

Wy

for all T > 19 and for allv € H?*(Q) and %ha =0.
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Proof. Let {e;}}2, be a partition of unity such that e; € C5°(B(z;,0)) where z; are
some points in Q,

M Oe;
Zej(z) =1 onQ, a—j
- v

rs =0 Vje{l,..., M},

and let § be a small positive number such that B(z;,d) NIy # 0 implies B(z;,6) N0 C
I'§. Denote w; = e;v. Let suppw; N (OQ\T') = 0. Then Proposition 1 implies that there
exists 79 such that for all 7 > 7y

N c c c
§H23zwj6w6N ”%2(9) + 7[|lwjeT? N ”%2(9) + [wjere N ”%-11(9)

+ T2H| |wj W+NC||L2(Q

T 8w
< Oy, Dyuye™ N2y + O wyes, PBE0N 2 e

Next let supp w; N (902 I') # (). We cannot apply directly the Carleman estimate (10) in
this case, since the function w; may not satisfy the zero Dirichlet boundary condition.
To overcame this difficulty we construct an extension. Without loss of generality, using if
necessary a conformal transformation, we can assume that suppw; N Q C {2 > 0} and
supp w;NONY C {2 = 0}. Then using the extension w;(z1, z2) = w;(z1, —x2), ¢(x1, 22) =
q(z1, —x2) and p(x1,x2) = @(x1, —x2), we apply Proposition 1 to the operator Ly(z, D)
in O = suppe; U{z|(x1, —x2) € suppe;}. We have the same estimate (11). Therefore for
all 7> 79

~ ~ ~ 0d
912 := T\|UBW+NC||%2(Q) + HWWJFNCH?{l(Q) + 72|||£|UBW+NC||%2(Q)

M
<> lvel2
j=1

M

8w
< CZHL (, D)yw;e™*N||72 ) + C(N)||(w; j

)”Hl T(r‘ XLZ(F)

M= 1

Il
-

< O ([18e;5e™ N s q) + [120:€;0:0e™ V|12 g

J
— N||0z(Ve;)e™ TN 2o ) + | Lg(z, D)o ™ N 1a ()

ave

+ C(N)|(ve™, (12)

)HHl (D) x L2(T)

Fixing the parameter N sufficiently large, we obtain from (12)
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o] < () (II%T‘”Nclizm) + | Lg(x, D)oe™ N 25 g

o, OVETE
16 TN o ey ) (13)
The first term on the right-hand side of (13) can be absorbed into the left-hand side for
all sufficiently large 7. Since N and C are independent of 7, the proof of the proposition
is finished. O

The Carleman estimate (10) implies the existence of solutions to the following bound-
ary value problem.

Proposition 3. There exists a constant 79 such that for |t| > 79 and any f € L*(Q2),
s H%(FS), there exists a solution to the boundary value problem

0
Ly(z,D)u= fe™ inQ, a—:j\po =re’¥ (14)
such that
1
lull )/ VTl < Ol llz20) + [Tl Il 22me) + 171 4 ) (15)

The constant C is independent of T.

The proof of this proposition uses standard duality arguments, see e.g. [15].
We define two other operators:

1 5 3 l @ ?
R,g = 567(‘1’—‘1’)821(96“‘1’_@))7 Rrg = 567@_@)321(967(@_@))- (16)

Observe that

0 7O _ 70 2 TP _ T 2
28z(e Rrg) =ge™™, 232 (e™Rrg) = ge Vg € L°(Q). (17)

Let a € C%() be some holomorphic function in Q such that

Ima

rs =0, lgrrléa(z)/|zfé|100:0, Ve HNT. (18)
Moreover, for some z € H, we assume that
a(Z)#0 and a(z)=0, VreH\{z} (19)

The existence of such a function is proved in Proposition 9 of [19]. Let polynomials
M;(z) and M35(z) satisfy
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(0z'q1 — My)(@) =0, (07 'q1 — M3)(Z) =0. (20)

The holomorphic function a; and the antiholomorphic function b; are defined by
formulae al(z) = alvl(z) + CLLQ(Z) + al,g(z) and bl(Z) = b171(5) + b172(2) + b173(2) where
0171,b171 S Cl(ﬁ) and

X, X, ]

za—;pam(z) — za—fbm(z)
_ Oa+a)  Oad;'q - M) ovad;'q — M) "
T V'er 100 o 10.0 on To (21)

and aj o(2,7),b12(2,7) € CY(Q) for each T are holomorphic and antiholomorphic func-
tions such that

1 (1 — iug)a(aglql — Ml)eT(‘I’_‘f)
b172(5’77'):7§ (6_2)8 (I) dO’
o ¢

and

1 (1/1 + iug)é(ﬁglql — Mg)e‘r(é_@)

%m (¢ —2)0:

do.

al’Q(Z,’T) = —

Here the denominators of the integrands vanish in H NT'§, but thanks to the second con-
dition in (18) integrability is guaranteed. We represent the functions aj 2(z, 7), b1,2(Z, 7)
in the form

a12(2,7) = a121(2) +a122(2,7), b12(Z,7) = b12,1(2) + b122(Z,7),

where
_ 1 (l/1 — iug)a(aglql — Ml)
b1,2,1(2) = *—/ —— o,
81 (C — Z)aC(I)
rs
( ) 1 / (Vl + iyz)a(aglql — Mg)
a )= —— — ag.
1,2,1 oy - z)agq)
s

By (18), the functions by 21, a1,2.1 belong to C1(Q2). By (6) we have
||b1,2,1('77_)HL2(Q) + H(l172)1(',7')”[‘2(9) —0 as T — +oo.

Finally a1 3(2,7),b1,3(2,7) € H'(Q) for each 7 are holomorphic and antiholomorphic
functions respectively such that



586 O.Yu. Imanuvilov et al. / Advances in Mathematics 281 (2015) 578-593

. .0 _
i——a13(2,7)— za—lﬁblﬁg(z, T)

ov
71 —
o 81/1 a(ag q1 — M)\ er(@-®)
“orow ) % ( ac® C—5 Bk
Q
0w 00— MS) T s r; 22
——ﬂa—/ = )5251 on I'j (22)
Q
and
lla1,s(, T)llz2) + [161,3( 7))l z2() = o(1) as T — +o0. (23)

The inequality (23) follows from the asymptotic formula

a(@-_lql - M1) 67'(@*5)
0 ¢ _ désd
/ << X i : Eadéy

Q

1
H?2(Tg)

a q1 — MS) 67(67‘1))
/8 ( — ) — déadéy =o(l) asT— +4oo. (24)

¢

H3 ()

In order to prove (24) consider the function e € C§°(£2) such that e = 1 in some neigh-

8 1 Ml 7'
borhood of the set H\T'§. The family of functions [, ed¢ ( = f’(i<1> )> i ;) d&adéy €

C*°(99), are uniformly bounded in 7 in C?(9€2) and by Proposition 2.4 of [1 [ 5] this func-
tion converges pointwisely to zero. Therefore

a(@glql — M)\ er(@-9®)
/eac B.® iz d€ad&y =o0(l) asT — +oo. (25)

Q H1(50)

Integrating by parts we obtain
a(ajl(h — M)\ or(@—®)
1—¢)d S —————déad

_ (13_ e)8 <a(8zlq61 - Ml)) JRECE))
O i 70, P

1 —e¢) a(aglql — M)\ er(@-9)

Thanks to (4) and (18), we have
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1- ea a’(82_1Q1 — Ml) eT(@—@)
0,P 70,

=o(l) as T — 4oo. (26)
1 (r5)

The functions 0¢ ( (M)> e™(®=®) are bounded in LP(€) uniformly

<<I>

a(o
in 7. Therefore by Proposition 2.2 of [15], the functions [, 8(( 3 0¢ <(Z;Ml)> X

Tf ¢))d§2d§1 are uniformly bounded in W, (€2). The trace theorem yields
l-c, (0= q1 — M)\ er(e-®)
0 = déad =o(1
/C< < Oc® (—z $2d1 L o(1)
H2(Tg)
as T — +00. (27)

By (25)—(27) we obtain (24).
We note that by (18) the function 5% € C?(09). We define the function U; by the
formula

— 1 ~
Ui(z) =e™®(a+a1/7) +e™®(@+ by /1) — §eT¢RT{a(8glq1 - M)}
e R {a(0 \qr — Ms)}. (28)
Integrating by parts, we obtain the following:

e R {a(0; 'q1 — M)}

1 _ TP jl _ M
B <2b1,zefq’ y alle ar o M)
T

20,

e™?® a(aglfh — M)\ er(@-9)
+ o /84 ( 8<Q> Z— E dfgdfl (29)
Q

and
eT‘iRT{&(@Z_lql — M3)}

1 e ?a(0; 1 — M)
= 2| 2a;5e™® +
T( 2 20;P

er® a0 g1 — My)\ (@)
+ %/a{. ( 5.5 =y déadey . (30)

Q

We claim that
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—ir a0 qy — My)\ r(@-3)
: /6<< - -] = dé2d&:

2T 8,;@ C —Z
2 L2(Q)
QiTY d(@glql — M3)\ (r(@-®)
+ o /85 855 = déa2d&y —0 as7— +oo. (31)
o0 L2(Q)

We prove the asymptotic formula (31) for the first term. The proof of the asymptotic
a(d- g1 —M 5

for the second term is the same. Denote r,(§) = O¢ %) e™(®=®) By (5), (19)

and (20), the family of these functions is bounded in LP(£2) for any p < 2. Hence by

Proposition 2.2 of [15] there exists a constant C' independent of 7 such that

e~ iTY a(ﬁglql — Ml) eT(@—‘f)
< (.
o /5< ( 9.® R d&ad&y <C (32)
Q

LY Q)

By (5), (19) and (20), for any z # Z; + iZ9, the function 7,(¢)/(¢ — Z) belongs to
L'(Q). Therefore by Proposition 2.4 of [15], we have

672’7'1# a a(aglql — Ml) e'r(<1>75) d d O . Q 33
o / e 8<<I> Z—Z Eodé] — a.e. 1m . ( )
Q
From (32), (33) and Egorov’s theorem, the asymptotic for the first term in (31) follows
immediately.
We set
it —iTe ey —1
gr=q(ear/T+e by/T — 5 Rr{a(0; '¢1 — M1)}

6717'1/)

—ReAa(0 a1 — Mo)}).

By (29)-(31) we have

1
lgrllz20) = O(;) as T — +00. (34)
Short computations give
oU; 1
— oTY ; . ) il .
Li(xz,D)U; = €"%g, in ), £ Ir, =€ OH%(F_S)(’T) as 7 — 400. (35)

Indeed, the first equation in (35) follows from (28), (19) and the factorization of the
Laplace operator in the form A = 49;0,. In order to prove the second equation in (35)
we set % = Iy + I5 where



O.Yu. Imanuvilov et al. / Advances in Mathematics 281 (2015) 578-593 589

a _
Il = 8—]/((0, + alﬁl/T)eT(I) + ((_l + bl,l/T)GTCD)

. Oy oY 0
T -
¢ (W ov (a+a1,/7) —ir ov (@+b11/7) ov (

0
a+aq1/7)+ a(d + b1,1/7')>

C(a@ g = M) a0 g — M)\ o s L
(Zau 40,P You 40, er+e Ocl(rg)(T)- (36)

In order to obtain the last equality, we used (18) and (21). Then

0] 5 10 ~ _
IQ = a((alg + (1173)67—<I> + (b1,2 + bl,g)eT‘b) — 55(6‘“1)727{&(65 lql — Ml)}

+ e R {a(0; gy — Ms)})
3 -1 _ Td a(aflql—Mﬂ T(e—9)
) 1a<e a(0: g~ M) | e /&( : ]

20w 20, 2 I
Q

e™®a(d; gy — M. e™® a(0 g1 — My)\ m(@-2)
+ - a1 ) + /53( S — d&2d&,

Q
oY a(@;lql — Ml) eT‘fﬁ(@;lql — Mg) 1
- ow ( 0.9 19.3 Oty (- (37)

From (36) and (37), we obtain the second equation in (35).
Finally we construct the last term of the complex geometric optics solution e™*w, .
Consider the boundary value problem

Ly (z,D)(w,e™) = —g-€™¥ in Q, Wh‘o = f%. (38)
By (34) and Proposition 3, there exists a solution to problem (38) such that
ol 2@y = o(2) as 7 - +oo. (39)
Finally we set
u; = Uy + e"Pw,. (40)

By (39), (40), (23) and (28)—(30), we can represent the complex geometric optics solution
1 in the form

uy () = e ®(a+ (a11 + a121)/7) + €@+ (bry + br.21)/7)

(e0(0T g - M) 5a(97 ' — M) o 1
(e 470, te 479,P te OLZ(Q)(T)

as T — +00. (41)
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Since the Cauchy data (2) for the potentials ¢g; and g2 are equal, there exists a solution
us to the Schrédinger equation with potential go such that % = % on 0N and u; = ug
on I'. Setting u = u; — ug, we obtain

0
(A+gu=(g—q)u nQ ulp= 8—3\39 —0. (42)

In a similar way to the construction of u;, we construct a complex geometrical optics
solution v for the Schréodinger equation with potential ¢o. The construction of v repeats
the corresponding steps of the construction of u;. The only difference is that instead of
q1 and T, we use ¢z and —7, respectively. We skip the details of the construction and
point out that similarly to (41) it can be represented in the form

v(z) = e " (a+ (@1 +d121)/7) + e 7@+ (brg + broa)/7)

(07 g — M) 5a(9; " go — M) — 1
’ (6 Thow 0 waw )T el
0
as 7 — 400, —v\po =0, (43)

ov
where Ms(z) and My(z) satisfy

(0= 'g2 — M)(@) =0, (9:'q2 — Ma)(3) = 0.

The functions ai(z) = a1,1(2) + @1,2(2) and by(2) = 5171(2) —&—gl,g(z) are given by

O _ O~
—za—fal’l(z) + za—qul,l(z)
da+a) a0 'q— M) a0 g — My)
= 4y —F = 2 T2 = % on T,
ov ov 470,P ov 470,
51,1,51,1 e Ccl(Q) (44)

and 61’2’1(2),51,2’1(2) € C1(Q) are holomorphic functions such that

51,2,1(2) =

1 (v — iyg)a(aglqg — Mg)eT(‘b_‘f’)
— = d
8 / (- 2)0:P 7
s

and

do.

Ba1(2) = g- [ (11 + iv2)a(0; a2 — My)er @)
a z)=— -
PR 8 (¢ —2)0;®
s
Denote ¢ = g1 — g2. Taking the scalar product of equation (42) with the function v,
we have:
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/qulvdx =0. (45)

Q

From formulae (41) and (43) in the construction of complex geometrical optics solutions,
we have

0= /qulvdx

Q

+ - /q(a(am +ai21+bi1+bign)+ala +ai2 +g1,1 +51,2,1))d$
)

+ /q(ade%w + ade” ") dx

+_/< 23 qz*AMz_'_q_ga Q2M4)dx

0,®

1 20 g — My 07 q1 — My
= z d
ir < e T 0 v
Q
1
+o(=)=0 asT— +oo. (46)
T

Since the potentials ¢; are not necessarily from C?(€2), we cannot directly use the
stationary phase argument (e.g. Evans [12]). Let function § € C5°(2) satisfy §(z) = ¢(Z).
We have

/q Re(aae”™™)dr = /che(a&eZ”w)dx + /(q — §) Re(aae* ™) dz. (47)
Q Q Q
Using the stationary phase argument and (19), similarly to [15], we obtain

) ) ) 2\ (57 279 (T) 1
/é(aae271¢+a&672‘mw)dx: 7T(q|(l| )(I)Ref . +0<_> as T — 400. (48)
7|(det y")(@)[2 T

Q

For the second integral in (47) we obtain

/(q — (j)(adeQ”w + ac‘te_%w)dx
Q

_ o (Ve V)erT (Ve V)e 2T
_/(q_q> (““ 2ri[ Vg2 T 2ri| VP )dx

Q
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- /q (a&(vw’y)e%w — a&(vw’y)e%w> do
o0

2ri| VY2 2ri| V2

1 it " VY —ori 1 o= VY
— %Q {62 ’L/)dIV ((q—q)aaW> —e 2 wdlv ((q—q)aaw>}dfﬂ
(49)

Since 9|r, = 0 we have

/qa(_L ((v¢, V)e27'iw B (V'g[}, V)e_27i¢> do — / qaa (Vab, 1/)(627—7;1/) B 6_2Tiw)d0'.
o0

271| V|2 27| Vi)|? 27| Vi)|?

r

By (4), (6) and Proposition 2.4 in [15] we conclude that

[ ((W,u)ew (Vi v)e 7

d 0(1) as 7 — 400
— o=o(= T .
27| V|2 27| V)|? T

The last integral over € in formula (49) is o(%) and therefore

, 4 1
/(q — §)(a@e®™ 4 age ?"")dx = o(=) as T — +oo. (50)
T
Q

Taking into account that () # 0 and using (48), (50) we have from (46) that

2 (glal*)(Z)

Lmalalt i) _ o, 51
|(det ¢")(2)|2 oy

Hence ¢(Z) = 0. In [18] it is proved that there exists a holomorphic function ® such that
(4)—(6) are satisfied and a point T € H can be chosen arbitrarily close to any given point
in Q (see [15]). Hence we have ¢ = 0. The proof of the theorem is completed. O
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