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Abstract. We present explicit reconstruction algorithms for fully anisotropic unknown elas-
ticity tensors from knowledge of a finite number of internal displacement fields, with applications
to transient elastography. Under certain rank-maximality assumptions satisfied by the strain fields,
explicit algebraic reconstruction formulas are provided. A discussion ensues on how to fulfill these
assumptions, describing the range of validity of the approach. We also show how the general method
can be applied to more specific cases such as the transversely isotropic one.
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1. Introduction. We consider the reconstruction of a fully anisotropic elasticity
tensor C' = {Cjri }1<i,j.k,1<3 from knowledge of a finite number of displacement fields
{u(J )} jes, which are solutions of the system of linear elasticity

(1) V- (C:(Vu+ (Vu)T)) =0 (X), ulpx =g (prescribed).

Applications for such a theory include the medical imaging modality called elas-
tography. Elastography is concerned with the reconstruction of the elastic properties
in biological tissues. It has been observed experimentally that certain biological tis-
sues (e.g., muscle fiber [19] or white matter inside the brain [18]) display anisotropic
mechanical properties, and the present paper aims at giving access to these anisotropic
features. The present approach to elastography consists of two steps. The first is the
reconstruction of the internal elastic displacements, which are accurately modeled as
solutions of the above system of linear elasticity. Two different methods are typi-
cally used to reconstruct such displacements. One such method, called ultrasound
elastography, consists of probing the elastic displacements by sound waves. We re-
fer the reader to [20, 32, 33, 34] for more details on the method. A recent analysis
of such reconstructions from ultrasound measurements is performed in [11]. A sec-
ond method, called magnetic resonance elastography, leverages the displacement of
protons by propagating elastic signals to reconstruct the elastic waves by magnetic
resonance imaging [21, 22, 30].
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In this paper, we assume the first step done and consider the quantitative re-
construction of elastic coefficients from knowledge of such elastic displacements. For
references on this quantitative step of elastography, we refer the reader to [15, 6, 27].
Here, we generalize earlier work performed for scalar second-order equations [13, 12]
to the case of systems, and we generalize recent work on the Lamé system [6, 24] to
the fully anisotropic setting. Other hybrid inversions for elliptic systems can be found
in the case of Maxwell’s system in [8, 14] and in a more general framework in [5].

The approach consists of deriving explicit algebraic formulas reconstructing the
unknown parameters locally, based on hypotheses of linear independence (or rank
maximality) of functionals of the measurements and their partial derivatives. A dis-
cussion then follows on what regularity or property (e.g., the Runge approximation
property) is required a priori on the unknown parameters so that the hypotheses of
reconstructibility may be fulfilled. The idea of constructing local solutions fulfilling
certain maximality conditions, which are then controlled from the boundary of the
domain via Runge approximation, was also used in the context of reconstruction of
conductivity tensors from knowledge of so-called power density functionals [29] or
current density functionals [9].

The above problem of reconstruction of coefficients in partial differential equations
from knowledge of internal functionals is sometimes referred to as a hybrid inverse
problem; see [2, 3, 4, 5, 23, 35] for hybrid inverse problems in other imaging modalities.
Note that we do not consider here the inverse boundary elasticity problem, for which
Lipschitz stability estimates may be obtained only when the Lamé coefficients are
piecewise constant; see, for instance, [16] for recent information on this topic.

We now give the main results of the paper in the next section and give an outline
of the remainder of the paper.

2. Main results.

Preliminary notation and definitions. In what follows, we denote by M3(R) the
vector space of 3x 3 real matrices with inner product A : B:=tr (ABT)= Z?,j:l AijBij,
with respect to which we recall the orthogonal decomposition M3(R) = S3(R)® A3(R),
where the first (second) summand denotes (skew-)symmetric matrices.

Let us fix X C R? as a bounded domain with smooth boundary for the remainder

of the paper. An elasticity tensor C is a fourth-order tensor satisfying the symmetries
Cijrr = Cjint, Cijrt = Cijik, Cijrr = Chuij, 1<4,5,k,1 <3,

characterized by 21 independent components (instead of 81), where the latter sym-
metry corresponds to the assumption that C' is hyperelastic. We assume below that
C' is uniformly pointwise stable over X [26, Chap. 6, Def. 1.9] in the sense that there
is a k& > 0 such that

1

(2) §GIC(X)262/€626 VxeX, VeeS3R).

For C' = {Ciju}ijk; an elasticity tensor and e € S3(R), we denote C' : € =
{25, Cijki€riti-

In some sections following, the tensor C' will be represented in the nontensorial
Voigt notation, an Se(R)-valued function ¢ = {cap}1<a,s<6, where the correspondence
of elements c,g in terms of the coefficients Cyjp; is obtained via the double index
mapping 11 — 1, 22 — 2, 33 — 3, 23,32 — 4, 13,31 — 5, and 12,21 — 6 (for
instance, ¢11 = Ch111, and so on). Hooke’s law, relating stress o to strain tensors e
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via the relation o = C': €, now reads in Voigt notation oy = ¢ €y, where we define

T T
(3) ey = (€11, €22, €33, 2€23, 2€31, 2€12) ", oy = (011,022,033, 023,031, 012)" .

Most often, we will drop the subscript “V” below, as the context will tell us naturally
what representation to pick. For (e(V),...,¢®) in S3(R), we define

(4) d‘gt(e(l),...,e(e‘)) :C%Q%t(ei,l),...,eﬁf)).

A crucial fact for further derivations is the following.
LEMMA 2.1. Under assumption (2), there exists k' > 0 such that

(5) dete(x) >r VxeX.

Main results. Provided with linear independence conditions that can be satisfied
locally and checked directly on the available measurements, we first provide an explicit
reconstruction algorithm for fully anisotropic elasticity tensors. Here and below, a
typical displacement field is denoted u : X — R3, with corresponding strain tensor
€: X — S3(R) with components ¢;; = $(8;u; + d;u;), or, in coordinate-free notation,
e=1(Vu+ (Vu)?).

We now formulate our main hypothesis in order to set up our reconstruction
procedure. This hypothesis, based on algebraic redundancies of various elasticity
solutions, force the unknown tensor to lie on the orthogonal of a space generated by
a rich enough set of data. The hypothesis below formulates how some functionals of
the data set can be made to generate a hyperplane of Sg(R), a normal of which can be
explicitly constructed and proved to be proportional to C, the proportionality factor
being reconstructed at the end. As seen below, fulfilling this agenda requires 6 + N
solutions, where N > % and d denotes the number of scalar components of C' (the
factor 3 accounts for the fact that each additional solution after the sixth provides
three orthogonality constraints on C').

HyPOTHESIS 2.2. Let Q C X.

A. There exist siz solutions u® ... u® of (1), whose strain tensors form a

basis of S3(R) at every x € Q. This condition can be summarized as (dety is
defined in (4))

(6) 12?z d‘(/et(e(l)(x), o €9x) > ¢ >0 for some constant co.
B. Assuming A is fulfilled, there exists N additional solutions u®tl, .. . uSt¥V

gwing rise to a family M of 3N matrices, whose expressions are explicit in
terms of {€9),0,eW), 1< a <3, 1<j<6+N} (see (12) for details) and
such that they span a hyperplane of S¢(R) at every x € Q. This condition can
be summarized as

(7) irelgz Z NM'): N(M')> ¢y >0 for some constant c1,
M/'CM, #M'=20
where N is an operator generalizing the cross-product, defined in (13).
Remark 2.3. It should be noted that this hypothesis is stable under
smooth perturbation of the boundary conditions generating the displacement fields
u®, .. ul®+N) This is because Hypothesis 2.2A-B is expressed in terms of func-
tionals which depend polynomially on the components of displacement fields and
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their derivatives up to second order, which are in turn continuous functionals of their
boundary conditions (see, e.g., section 5.2.1 for appropriate topologies).

Remark 2.4. In Hypothesis 2.2B, the number N depends on the type of isotropy
of the tensor C. In the most general, 21-parameter case, spanning a hyperplane
of Ss(R) with 3N additional constraints suggests N > 7, and the total number of
displacement fields needed is then 6 + 7 = 13.

On an open subset 2 C X where Hypothesis 2.2A-B holds, we then derive an
explicit reconstruction algorithm, reconstructing C' over ). This is done as follows: in
Voigt notation, decompose the Sg(R)-valued function C as the product of a scalar
function 7 times a normalized anisotropic structure C such that ¢ = 7C (5 is
such that its Voigt counterpart ¢ has determinant 1, so 7 = (det&)s). Algebraic
manipulations allow us to obtain pointwise orthogonality constraints which, under
hypotheses (6)—(7), are numerous enough to reconstruct C' pointwise. Once C' is re-
constructed, an equation for Vlog 7 is derived over €2, leading to the reconstruction of
7 by solving either a transport or a Poisson equation. Finally, once C' = 7C' is known,
additional stability is recovered on certain components of C' by deriving equations
reconstructing the third-order tensor div C' (whose components may be written as
0;Cijri, 1 < j,k,1 < 3). Such components, although linear combinations of first-order
derivatives of the components of C', are reconstructed with the same stability as C
itself. Such stability improvements have already been observed in, e.g., [10, 9].

The approach just described yields unique and stable reconstructions over 2 in
the sense of the following theorem.

THEOREM 2.5. Suppose that over some open set Q0 C X, Hypothesis 2.2A-B
holds for two families of displacement fields {u(j)}?iiv and {u/(j)}?ifv corresponding
to elasticity tensors C and C'. Then C and C'" each can be uniquely reconstructed
over Q) from knowledge of their corresponding solutions, with the following stability
estimate for every integer p > 0:

N—+6
(8) HC — C/HWP,OO(Q) + ||leC — le C/HWPOO(Q) S K Z HG(J) — € (J)||Wp+1,oo(Q).
j=1

Remark 2.6. Note that if the elasticity tensor is split into the product of an
unknown scalar function 7 times a known anisotropic tensor, the stability of the
problem of reconstructing 7 from fields u) is better posed than when the anisotropic
structure is unknown, i.e., involves the loss of one derivative instead of two, according
to the statement

N+6

(9) |7 =T lwrroe ) < K Z [|e9) — e/(j)||wp+1,oo(9).
=1

In the context of this reconstruction approach, an elasticity tensor is then recon-
structible on some given open set 2 (or globally on X)) if there exist displacement field
solutions of (1) fulfilling Hypothesis 2.2A-B throughout Q. In this context, classify-
ing reconstructible elasticity tensors then consists of finding the situations in which
one can construct such displacement fields. Two such situations are described in the
following theorem: (i) a fully anisotropic tensor that is close to constant is globally
reconstructible from well-chosen displacement fields, whose traces are explicitly given;
and (ii) an elasticity tensor with smooth enough components which satisfies the Runge
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approximation property (see section 5.2.3; in particular, (39)) is, in principle, locally
reconstructible from knowledge of its displacement fields.

THEOREM 2.7 (reconstructibility of elasticity tensors). In either of the following
cases, there exists a nonempty open set of smooth enough boundary conditions gener-
ating displacement fields characterizing C' uniquely and stably in the sense of Theorem
2.5:

(i) C is C3-close to constant.

(ii) C is smooth (at least of class C®) and satisfies the Runge approzimation

property.

An application of particular interest is the reconstruction of transversely isotropic
(TT) elasticity tensors. Such tensors have, as of yet, the highest type of anisotropy for
which the Runge approximation has been proved (see [31]), so that they are covered
in case (ii) of Theorem 2.7. We also explain in section 5.1 how to generate explicit
boundary conditions reconstructing a constant TI tensor which, by case (i) of Theorem
2.7, can be used to reconstruct a near-constant TI tensor.

Outline. The rest of the paper is organized as follows. Section 3 covers the proof
of Lemma 2.1. Section 4 covers the reconstruction procedure as well as its stability
property (proof of Theorem 2.5). Section 5 covers the two ways described in Theorem
2.7 to fulfill Hypothesis 2.2A-B for certain classes of tensors, thereby establishing their
unique and stable (in the sense of Theorem 2.5) reconstructibility from displacement
fields.

3. Proof of Lemma 2.1. Suppose the elasticity tensor C' satisfies (2). In the
study of elastic eigentensors in [28], it is established that C' can have at most six dis-
tinct eigencouples (e, A) such that the relation C : € = e is satisfied. The symmetries
of C and hypothesis (2) imply that the A’s are real and that all of them satisfy A\ > k.
It is also mentioned in [28] that the eigenvalues A are precisely the eigenvalues of the
Se(R)-valued representation of C' in the form

x()+x(5) 0 if i=1,2,

. 2,3,
o ={2F chsijce, where X(Z):{ 1 if i=4,5,6

) )

and where ¢;; denotes the Voigt representation of C' presented in the introduction. It
is then immediate that det ¢/ = 8 det c. Moreover, as mentioned above, all eigenvalues
of ¢’ match the eigenvalues of C' and therefore satisfy the estimate A > x. Therefore,

1 6
detc’ > ~

dete =
etc ) 8,

and hence (5) holds with &’ = %G.

4. Reconstruction algorithm and its stability. As seen in Theorem 2.5, the
left-hand side of (8) contains two terms, whose product forms the elasticity tensor
C, reconstructed as follows with stability estimates in different norms: we decompose
C into the product 7C, where C' contains the rescaled anisotropic structure of C,
defined by a normalizing condition (specifically, if ¢ describes C' in Voigt notation,
then det € = 1) and 7 is the remaining scalar factor. That this is possible comes from
estimate (5), which states that det c is uniformly bounded away from zero throughout
X. The next two sections focus on the successive reconstruction of C , then 7 upon
assuming that Hypothesis 2.2A-B holds.
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4.1. Reconstruction of the anisotropy. In this section, we will use the Voigt
notation, so that strain tensors will be represented as RS-valued functions € = ey. In
this notation, the elasticity tensor becomes an Sg(R)-valued function, characterized
by 21 scalar functions ¢ = {cag}1<a,s<6 satisfying c,3 = cgo and where Hooke’s law
is expressed as a regular matrix-vector product oy = ¢ ey, with (oy,ey) as in (3).
This makes the problem tractable via algebraic manipulations on matrices instead of
4-tensors.

Using the Voigt notation, the elasticity system (1) takes the form

o 0 0 0 05 0
(10) DV . (C 6) = O, DV = 0 (92 0 83 0 81 5
0 0 03 02 Oh O

where, for an Mg(R)-valued function A and a scalar function f, we have the identity

(11) Dy -(fA)=(Dvf) - A+ fDy-A

As the reconstruction approach is local (even pointwise for the anisotropic part),
we assume to have six elasticity solutions {U(J)}lgjgﬁ whose corresponding strain
tensors {G(V])(X)}lg j<6 form a basis of R® for every x of some subdomain 2 C X. Any
additional solution u?) with p > 7 is such that for x € Q, e®)(x) decomposes uniquely
into the basis above as

6
P(x) = ppi(x)e? (x),
j=1

dety (€M (x),...,eP(x),...,e0(x)) ,
where ;= dety (€D (x), ..., O (x)) » 1=5=6
Plugging this equality into the elasticity equation, we obtain that
6
0= Dy - ( ZDV umce(]) XQ Z DVMp] ce(j) + /ijDV . (ce(j)),
7j=1 j=1

which, since Dy - (ce¥)) = 0, implies that

6
Z Dvlum - Ce @) = = 0.
j=1

This last equation can be seen as three scalar orthogonality constraints on the tensor
c in the inner product structure of Sg(R), which we denote by A : B := tr (ABT) =

Z?_ j=1AijBij, where the matrices that are orthogonal to C' are directly known from
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available measurements. The last equation is equivalent to

c:M® —¢c: MP2=c. MP3 =0, where

6
MO =N (D141,5 00 0 D115 Dag) @ €,
j=1
(12) (p),2 : (4)
M®I2 =% (0 Dapap; 0 Dapiy 0 Drpug) @ €V,
j=1
6 .
M®3 =0 0 Oapuj Dapi; Ortip; 0) @ €V
j=1

Note that since c is orthogonal to Ag(R), one could replace the matrices M ()¢ with
their symmetrized versions. Notice that the components of these matrices are first
partial derivatives of rational functions of strain tensors.

If enough linear constraints of the form (12) are available from a rich enough set of
measurements, that is, if enough such matrices are available and form a hyperplane of
Se(R) at xg, then the tensor ¢(x¢), constrained to be perpendicular to this hyperplane,
will be determined up to a multiplicative constant. The reconstruction can be done
via a generalization of the cross-product, as used, for instance, in [29] for similar
purposes in the context of the conductivity equation. Define by {m;}?L, a basis of
Ss(R), and, given M = {M;}32, C Sg(R), define the operator A : S5(R)** — S5(R)
by expanding the formal determinant below with respect to its last row as follows:

M1:m1 M1:m21
1
(13) N(M) = : : :
det(ml, RN l’ngl) M20 tmy - M20 D Moy
ml e m21

N is a 20-linear, alternating map that does not depend on the choice of basis for
Se(R). N (M) is a vector that is normal to the hyperplane spanned by M when M is
linearly independent; zero otherwise. In particular, if M is a family of matrices known
to be orthogonal to a given matrix m’, then N'(M) is either zero (if dim span M < 20)
or proportional to m’ (if dimspan M = 20).

In light of this last comment, and assuming that a rich enough set of solutions
of the elasticity system (1) gives rise to a family of matrices M of the form (12),
with cardinality greater than 20 and spanning a hyperplane of Sg(R) at a given point
xo € X, for any given 20-tuple M’ C M, N(M’) is either zero or proportional to
c(xp). Normalizing €(x¢) = det(c(xo))%c(xo) and enforcing the condition ¢;; > 0
(this is because, in the proof of Lemma 2.1, we notice that the top-left 3 x 3 block of
¢ matches that of ¢/, which is a symmetric positive definite matrix, so one must have
c11 > 0, co2 > 0, and ¢33 > 0), we have the equality

(&) N(M') = (det(N (M) #&(x0),
for every 20-tuple M’ C M, where (&) is the sign of the top-left entry of N'(M’).

This equation is either trivial when M’ is linearly dependent, or reconstructs ¢(xg)
otherwise. Condition 7 ensures that at least one subfamily M’ is linearly independent,
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so we sum the last equation over all subfamilies and arrive at the formula

—1

(14)  &(xo) = ST (det(N(M)))E S BN,

M'CM, #M'=20 M’'CM, #M'=20

Remark 4.1. The explicitness of formula (14) is interesting in its own right and
makes the stability of the problem straightforward to assess. On the other hand, the
computation of 20 x 20 determinants can be expensive, and methods constructing
a normal to a hyperplane without implementing (14) might reveal a more practical
approach. For a 20-tuple M, an example of a potentially faster method for finding a
scalar multiple of N (M) is to form a 20 x 21 matrix whose rows are the elements of
M, and to find a vector in the nullspace of that matrix via Gaussian elimination.

Now that the anisotropic structure C' (or, equivalently, €) is reconstructed, we
explain how the multiplicative scalar 7 can be reconstructed via a standard transport
equation.

4.2. Reconstruction of the scalar factor 7. We now switch back to 4-tensor
notation. Plugging the decomposition C' = 7C' into the elasticity equation, where C'
is assumed to be known from the previous step, we obtain, for each elasticity solution
considered,

(15) (C:e)VlogT = —div (C : €),

where (C : €) € S5(R) is not necessarily invertible. However, under the assumption
that {eV)}9_, is a basis of S3(R), by virtue of (5), so is {C : ¢ }9_,. Therefore, the
identity tensor I3 decomposes into this basis by means of some functions p;(x) such
that

6
I3 = Zuj(x) C: e,
j=1

If we denote D;; := (C: D) (C:eD) for 1 <i,j <6, the Sg(R)-valued function
D = {D,;} is known and invertible (as the Grammian matrix of the basis {C :
Y )}?:1)7 and the entries of its inverse are denoted by D% . In this case, the functions
; take the explicit form

6 6

wi(x) = ZDU I3: (C:e?) = ZDU tr (C: ™).

i=1 i=1

Now taking a linear combination of (15) weighted by the functions yu;, we obtain

6
(16) Viegr ==Y p;(x) div (C: €.

j=1

The right-hand side of this equation is completely known, and therefore 7 can be
reconstructed via either (i) integration of (16), or, after taking divergence, (ii) solving
a Poisson equation on the domain €2 with known Neumann boundary conditions. As
discussed in [7], approach (ii) may be more robust to noise than the former, as the
integration of ODEs in the presence of noisy measurements may strongly depend on
the choice of integration path. Moreover, taking divergence of (16) has the advantage
of naturally removing the curl part of noisy right-hand sides in (16).
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4.3. Reconstruction of the tensor div C. Now that both C and 7 are re-
constructed, we explain how to gain stability on the reconstruction of the third-order
tensor div C' = 0;Cjji1 e; ® e, @ e;. Note that this tensor is symmetric in the pair of
indices (k,!). Now the elasticity equation can be rewritten as

(0iCijki )€t + CijriOiery = 0, 1< <3,
or, in contracted notation,
(17) (div O)J TEe= —Oijkl&-ekl, 1 <75 <3.

For every 1 < j < 3, (div C);.. can be seen as an S3(R)-valued function, and as
such, using again the assumption that {€))}%_, is a basis of S3(R), upon defining
Ejj =€ el for 1 < i,j <6, the Sg(R)-valued function E = {E;;} is uniformly
invertible over €2, and we denote by E% the components of its inverse. With such
notation, Cramer’s rule in S3(R) then reads

(div ©);.. = EPI((div C);.. : €P))el®, 1<5<3,
and combining this with (17), we obtain a reconstruction formula for the tensor div C,
(18) (div O);.. = —BP1(Cyja 8iey)) €9, 1< j<3.

4.4. Proof of Theorem 2.5.

Uniqueness. Equations (14), (16), and (18) give us algorithms to reconstruct ¢,
7, and div C' explicitly, with the only indeterminacy that 7 is defined up to a mul-
tiplicative constant. This is because multiplying the elasticity system by a constant
changes neither the equation nor its solutions. We can remove this indeterminacy by
assuming that 7 is known at a (boundary) point or by fixing its value at a point. The
constructive nature of the approach gives uniqueness.

Stability on C. The functional reconstructing ¢ is a rational function of strain
tensors and their first partial derivatives. If two sets of displacement fields {u/ )}gi{\f

and {u/(j)}?if/ both satisfy Hypothesis 2.2A-B over some 2 C X, the denominator

of the right-hand side of (14) never vanishes, and its rational expression in terms of
measurement components yields the local estimate

6+N

(19) IC = C' o) S K ) 1€ — € @iy
j=1

for some constant K > 0. More generally, if the strain tensors are in W?+1°°(Q) for
some integer p > 0, the reconstruction formula (14) can be differentiated p times to
yield stability estimates in smoother norms of the form

6+ N
(20) IC = C'llwreei@) S K D €D =€ D yoirmi@),  p>0,

j=1

where the constant K grows polynomially in terms of the maximum W71 (Q2) norm
of the strain tensors and the inverse of min(cy, c1,cf,¢y) > 0, where (¢, c1, ¢, )

are the constants defined in (6)—(7) corresponding to each system of measurements
[u@ and {u/ @04,
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Stability on the scalar factor 7. Equation (16) takes the form Vlogr = F(C, u),
with F' a rational function of the components of C' and its first derivatives, and of
strain tensors and their first partial derivatives, from which one deduces

(21)
6+N ) ) _ _

I = 7wy < K3 19 = €@ yppineay + K1C = C'llwrireays > 0.
j=1

We see that when C is known a priori, only one derivative is lost from the measure-
ments to the quantity 7. However, when considering joint reconstructions of (C, 1),
we see that errors [|[C' — C'||yyp+1.00(q) are controlled by measurement errors in the

[ul® —u'®) lwr+s.0(q) norm, so that the second term in the right-hand side of (21)
implies a loss of two derivatives from the measurements to the quantity 7. This
explains Remark 2.6.

Stability on div C'. The right-hand side of (18) is a linear functional in the compo-
nents of C, rational in the components of the measurements and its partial derivatives
up to second order so that, as before, the stability on div C' is of the form

6+N
(22) Hle C — le C”Wp,oo S KI Z HG(J) — € (j)|‘WP+1,oc(Q)
j=1
+ K”HC — C/HWp,oc(Q), p>0.

This ends the discussion on stability and the proof of Theorem 2.5. d
5. Reconstructible tensors. Fulfilling Hypothesis 2.2A-B.

5.1. The constant-coefficient problem. We now show that, in the same way
that harmonic polynomials up to second order uniquely characterize a constant diffu-
sion tensor in the scalar case, a constant elasticity tensor C' is uniquely characterized
by elasticity solutions, whose components are polynomials up to second order.

Polynomial displacement fields. Assume that C' is constant, and let us denote by
¢; the ith row (or column) of ¢ (i.e., C' in Voigt notation).

It is straightforward to see that any displacement field u with linear components
is a solution to (1). These solutions in fact allow us to construct a basis of strain
tensors, i.e., such that ¢V, ... ¢® is the natural basis of RS for every x € X. This
can be achieved by considering the following solutions:

ull(x) = (2,0,007, u®(x) = (0,5,0)", u®(x)=(0,0,2)7,
(23) 1 1 1
11(4)(X) = g(O,Z,y)T, u(S)(X) = §(Z,O,$)T, u(G)(X) = §(y7x70)T'
Next, a displacement field with quadratic components, of the form
1 1 1
(24) u(x) = 3% Px, 3% Qx, 3% Rx |, P,Q,R € S5(R),

has a strain tensor, in Voigt notation, taking the form e(x) = 2V; + yVa2 + 2V3, where
we have defined

Vi == (P11, Qa1, R31, Qa1 + Ro1, Piz+ Ri1, Pro+Qui)7,
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Vo := (P12, Qa22, Ra2, Q32 + Raz, Pog + Ray, Pax + Qa1)7,
Vs = (P13, Qa23, R33, Qa3 + Ras, P33+ Ra1, Pia+Q13)".

The correspondence (P, @, R) — (V1, V2, V3) is bijective, with inverse (Vj; denotes the
jth component of V;)

V11 Va1 Vs1
P = « Vag—Viz  5(Vas + Vae — Via) |,
| sym : Vs — Vi
[ Vi —Vor Vi 3(Vae + Via — Vas) ]
(25) Q = . ‘/22 ‘/32 )
| sym . Vsq — Va3 i
[ Vis — Va1 2(Via+ Vas — V) Vig ]
R = : Vag — V3o Vas |,
| sym : Vas |

so that prescribing one or the other is equivalent. Then the stress tensor is expressed
as

c=ce=zxcVi+ycVo+zcVs.

With this expression, u is an elasticity solution if and only if the following three scalar
conditions are fulfilled:
c1-Vitecs-Va+ces-Vs=0,
(26) c6-Vitea-Vates Vz=0,
cs - Vi+cyg-Votcsz-V3=0.
This essentially leaves us with an 18-3 = 15-parameter family of quadratic solutions
to the constant-coefficient elasticity system, and we now show that these solutions
suffice to characterize C' uniquely. Conditions (26) can be written in the form (12)
where, defining {e;}%_, as the natural basis of R®, the matrices M*, M2, M3 take the
form
M'=Vi®e +Vz ®es+ V3 ©es,
(27) M2:V1®86+‘/2®82+V3®e4,
M)=Vi®es +Va®es+ Vi ®es.
We will show in the next paragraph that, for various choices of Vi, Vo, V3 satisfying
(26), the corresponding matrices (27) span the hyperplane {c}* in Ms(R), thereby
imposing enough orthogonality conditions on ¢ to determine it uniquely up to a mul-
tiplicative constant.

Rank mazimality of quadratic displacement fields. Since c is invertible, let us
denote by ¢ the ith row (or column) of ¢!, so that c; - ¢} = d;;. Since we can write

casc= 2?21 ¢; ® e;, using the identity
UeV):(SeT)=U-S)(V-T), UVSTeR

we can show that the space {c}*, regarded as a hyperplane of Mg(R) of dimension
35, is spanned by the following family:

(28)
{c}t =span{c; ®e;, 1<4,j<6, i#j, c®e —cl, ®e1, 1<i<5}.
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Next, proceeding by exhaustion, we construct quadratic solutions giving rise to
matrices M*, M2, M? spanning the family (28).
e We first consider quadratic displacement fields satisfying (26) and such that
two vectors among {V7, Vo, V3} vanish identically.

—If Vi = Vo = 0, conditions (26) read V3L1{cs3,c4,c5}, so that V3 €
span {c}, 5, ¢}, thus leading to matrices M*, M2, M3 in the set {c} ®
ej, i=34,5 j=1,206}.

— If Vi = V5 = 0, conditions (26) read Val{ca,cq,c6}, so that Vo €
span {c3, ¢4, ct}, thus leading to matrices M1, M2, M? in the set {c} ®
ej, i=1,35, j=24,6}

—If V5 = V3 = 0, conditions (26) read Vi L{ci,cs5,c6}, so that Vi €
span {c3, ¢4, ¢}, thus leading to matrices M*, M2, M?3 in the set {c} ®
ej, i=234, j=1,56}

e Second, we consider quadratic displacement fields satisfying (26) and such
that one vector among {V7, V5, V3} vanishes identically.

— If V1 = 0, conditions (26) read c6 - Va+c5-V3 =co Vot cy V3 =
cy-Vo+c3- V3 =0. One way to achieve this is by writing, for some free
parameters «, 3,7,

Vo = acg + pcs + ey, V3 = —ack — g — vycs.
The matrices M, M?, M? thus constructed take the form

M'=a(ci ®es — ¢t @ es)+p(cs ®eg — ¢ @ es)+y(c, @ es — i @ es),
M?=a(ci®es —ci @ey)+B(ch ey —c) @eq)+y(c @ex — ¢ Dey),
M?*=a(c; ®@es —ct ®es3)+H(c; ey —c) ®ez)+y(c ®es — i @es).

— If Vo = 0, conditions (26) read ¢q - Vi +¢5- Vs =c¢cs- V1 +c4- V3 =
cs5- Vi +c3- V3 =0. One way to achieve this is by writing, for some free
parameters «, f3,7,

Vi = aci + feg + ek, V3 = —ack — e — vyc3.
The matrices M, M?, M? thus constructed take the form

M'=a(ci ®e; —ct @es)+B(c; ®er — ¢ @es)+y(ct @ e —ci @ es),
M?=a(c; ® es — ¢t @eq)+6(c; @es — cf @eq)+7y(ci @es — ¢ @ey),
M?*=a(c} @ es —ct ®e3)+H(c R e; — ) ®es)+y(ci ®es —ci @ es).

Examining the five cases considered, we see that the set (28) can be spanned
by matrices M, M?, M3 generated by either of the above cases. This concludes the
discussion.

Remark 5.1. The number of solutions required here is not sharp. In fact, it would
be enough to construct a hyperplane (of dimension 20 instead of 35) of Sg(R) using
well-chosen solutions, though it is not necessarily straightforward to find out which
subfamily of (28) of cardinality 20 spans the orthogonal space to {c} in Sg(R).

The transversely isotropic case. Here we treat a particular example of anisotropy,
where the number of unknowns is reduced to 5, and we show how the general method

[Pk

can be adapted. Assuming that the es (or “z”) direction is the constant direction of
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isotropy, we decompose a T1 tensor, in Voigt notation, as

| © O O OO

a—b
2

S OO0 oe
oo o0 & o
S oo a0 0
SO O O OO
S o0 OO OO

Locally, four well-chosen orthogonality constraints are enough to locate c(x) in
the five-dimensional space describing it. As each displacement field gives rise to
three orthogonality constraints, we expect that two well-chosen displacement fields
u™ u®_ in addition to the six forming a basis of strain tensors, should suffice.

As in the fully anisotropic case, the family of linear displacement fields (23) forms a
basis of strain tensors of elasticity solutions, and we now aim at finding two additional
solutions in the form of well-chosen quadratic polynomial displacement fields. Since
the unknowns are now the scalars (a, b, ¢, d, ¢), we can rewrite the conditions (26) for
a quadratic displacement field to be an elasticity solution as orthogonality constraints
on the vector (a,b,c,d,e). In this set of variables, a displacement field of the form
(24) solves the system of elasticity if and only if

a
Vit 4 2Vag Viz — 2Vas Vis 0 Vs b 0
Wie+ Ver —3Vig+ Vi Va3 0 2% c|=10
0 0 Va1 + Vi Vi Vis + Vay d 0

e

The two additional quadratic solutions can be chosen as follows:
e u(? is constructed so that

Vit + 2Vag Viz — 2Vas Vis 0 Vs
WVie+ Ver —3Vig+ Vo Va3 0 Vaq
0 0 Va1 + Vsa Vaz Vig+ Voy
-b a 0 0 0
= 0O —c b 0 0|,
0 0 —d ¢ 0

and all other coefficients Vj; are set to zero. One possible solution of this is
(V12a Vlla ‘/237 ‘/337 ‘/217 ‘/31) - (Cl, _b7 ba ¢, —¢, _d)

(all other coefficients set to zero), which, upon using (25), yields the displace-
ment field

u® = (—=bax? — 2cay — ay® — 2dxz, ca® + 2axy — b2?, da? + 2byz + c2?).

e u® is constructed so that

Vit+ 5Vas Viz — 3Vas Vis 0 Vs
Vie+Vee —3Vig+ Vo Va3 0 2%
0 0 Va1 + Vi Vi Vis + Vay
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000 0 0
=looo0o o o],
000 — d

and all other coefficients Vj; are set to zero. One possible solution is
(V33, Vi5) = (—e,d)

(all other coefficients being set to zero), which, upon using (25), yields the
displacement field

u® = (0,0,dz? — ez?).

u™ and u® were constructed to be solutions of the system of elasticity, and the
orthogonality constraints they generate saturate a hyperplane of R®. Satisfying such
orthogonality constraints, (a, b, ¢, d, e) are uniquely determined up to a constant, which
is in turn determined following the approach to reconstruct 7 in the general case (see
section 4.2).

5.2. Proof of Theorem 2.7.

5.2.1. Preliminaries: Forward theory and interior regularity. Here and
below, if u denotes a vector-valued function, we will loosely write u € H*(X) to mean
that u has components in the Sobolev space H*(X). In order to prove Theorem 2.7,
we will use the following theorem (see, e.g., [26, Chap. 6, Thm. 1.11]): if C is
smooth, uniformly pointwise stable (as defined in (2)) and X is smooth, then for
every f € L?(X) there exists a unique solution u € H?(X) to the problem

(29) V- (CVu)=f (X), ulsx =0.
If f € H5(X), then u € H572(X) for s > 0 with an estimate of the form

(30) llall gs+2(x) < Clf]| s (x)-

Such estimates also hold in Sobolev norms W#*P? for every 1 < p < oco. Using a lift
operator, if the boundary is smooth and problem (29) is replaced by a boundary value
problem with £ = 0 and u|sx = g € H*"2(9X), one may obtain a similar inequality
as (30) wpon replacing [f]s-(x) by gl v,

Additionally, we will use below that when the elasticity tensor C' is smooth and
uniformly pointwise stable, interior regularity arguments as in [17, Thm. 1, p. 309]
(in the case of scalar elliptic PDEs) translate into the following: if u solves (29), then
for V.CC U C X, there exists a constant C (U, V, C') such that

1
(31) lellzr vy < Crllull 2wy + Ifllz20y) (%‘ = 5(@'“3‘ + 33‘“1‘)) -

Finally, we note that for any 2 C X, the functionals F; : [C1(€, S3(R))]® — C(Q)
and Fy : [C1(£, S3(R))]*TN — C°(Q), defined by
(32) {e(j)}lgjgg — .7:1(6(1), ey 6(6)) = d‘e/lt(e(l), R ,6(6)),

33)  {eDhcjcorn = Fae), .. 0Ny = > N(M') : N(M'),
M'CM,#M’'=20

are continuous as polynomials of the entries of the strain tensors and their first partial
derivatives.
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5.2.2. Near-constant elasticity tensors. We now use the constructions from
the constant-coefficient problem in section 5.1, as well as the continuity of displace-
ment fields with respect to the elasticity coefficients in appropriate norms, to establish
reconstructibility of near-constant tensors.

Proof of Theorem 2.7(i). For two displacement fields u,u’ solutions of (1) with
respective elasticity tensors C,C’ (both uniformly pointwise stable and at least C3-
smooth) and the same boundary condition g € H?2(9X), the difference u—u’ satisfies
the PDE

V- (CVu—-u))=V-(C"-0n')  (X), (u—uox =0,
so that, using (30) with s = 2, we obtain that

le =€l < KIC = Cllesoo o sy < KIC = Cllescx gl 3,

1

for some constants K, K’. By Sobolev inequality H*(X) — C1'2(X) C CH(X), we
arrive at the estimate

(34) le = €'llerxy < KNIC = CMles -

Now pick C’" = Cy, a tensor with constant coefficients, and construct solutions
{u,(f) ?i{v satisfying Hypothesis 2.2; i.e., 3 (eél), . ,6((36)) and .7:2(6((31), . ,6((36+N)) are
bounded away from zero throughout X. We then see that combining the continuity of
F1, Fain (32)-(33) with estimate (34) applied to (1), ... e(6+N) shows that, if an elas-

ticity tensor C' is close enough to Cy in the C?(X)-norm, then upon defining {u'/ )}?i{\[
solutions of V - (CVul)) = 0 with boundary condition u')|5x = uéj) lox, the differ-

ence [ ¢ |1 (x) should be so small that Fi(e®, ..., e®)and Fy(eM, ... O6+N)
remain bounded away from zero throughout X, so that C' can be explicitly recon-
structed from these strain tensors. Theorem 2.7(i) is proved. O

5.2.3. Runge approximation. We say that a differential operator £ satisfies
the Runge approximation property on X if for every compact €2 C X, every solution
v of Lv =0 () can be approximated in L?(2) by solutions u of Lu = 0 (X). Other
approximation topologies can be used (e.g., H*() in [31, Thm. 3.3]); in fact here we
will use a C? approximation. The Runge approximation property is closely related to
the unique continuation property; see, e.g., [25].

Unlike that for scalar elliptic PDEs, the literature on unique continuation results
for elliptic systems is sparse. In the context of elasticity, it has been proved for the
Lamé system (and more generally for elliptic systems with an iterated Laplacian as
diagonal part) using doubling inequalities in [1], and for the TT case in [31].

When the Runge approximation is available, by following the ideas of Bal and
Uhlmann presented in [13] and generalized in other contexts in e.g., [29, 9], one
becomes able to fulfill the hypotheses of reconstructibility (Hypothesis 2.2) by con-
structing local solutions satisfying appropriate qualitative behavior. This is what we
now do in the proof of Theorem 2.7(ii).

Proof of Theorem 2.7(ii). We decompose the proof in three steps.

Step 1. Local solutions with constant coefficients. pt Fix xo € X and Bs, =
Bs,.(x0) C X, a ball of radius 3r (r tuned hereafter) centered at xg, and denote
Cp = C(x¢). Following the approach in section 5.1, we first construct solutions to
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the problem with frozen constant coefficients; i.e., such solutions, which we denote by

{uéj )}siiv (each with strain tensor e((Jj )), solve
(35) Vo (Coef)=0 (R?), 1<j<6+N.

This family is constructed so that Hypothesis 2.2A-B is satisfied throughout Bs, (in
fact, they fulfill these hypotheses globally).

Step 2. Local solutions with varying coefficients. From solutions {u
o
j=

() 6+N
0

L1, we

construct a second family of solutions {ugj ) each with strain tensor ¢/ )) via the

following equation:
(36) V-(C9) =0 (By), uflop, =uf’, 1<j<6+N.
The difference of both solutions satisfies, for 1 < j <6+ N,
(387) V(O — ") =V (Co-C)e)) (Bar), (@) — i), =0,
where the right-hand side is smooth since C' is assumed to be smooth, and thus eéj ) is

also smooth. Then using estimate (30) in high enough Sobolev norms combined with
Sobolev inequalities [17, Thm. 6, p. 270], we arrive at estimates of the form

[u) —uf’| < Ol —u || ga(p,.) < C'|V - ((Co — OV | 1124, )

€% (Ba,) =
so that

%) L 1<GE6EN o u‘gj)”@(Bsr) =0.

Step 3. Runge approximation (control from the boundary 0X ). Assume r has
been fixed at this stage. By virtue of the Runge approximation property, for every

d>0and1<j<6+ N, there exists ggj) € Hz(0X) such that
(39) ||u((5j) - u£j>|\L2(BST) <4, where u((;j) solves (1) with u((;j)|ax = g((;j).

Since C' is smooth and V - (C(egj) - egj))) = 0 throughout Bs,, estimate (31) with
f = 0 implies that

les” = el () < o) [0 — 0 |1a(s, -
Moreover, using that V - (Capq(egj) - e£j))) = -V ((quC)(egj) - e£j))) for every
1 < p < ¢ < 3, and assuming that C is at least of class C3, we can find a constant
Cy(r,C) (we drop the dependency on C below) such that
le§” = €Dl a5 5, < Cor, O)lle” = €l as 1,y < Calr)[ug” =l |12, < Ca(r)s.
By Sobolev inequality H3 — C1'2 € C!, we deduce that

le§” = elles(s, < Ca(r)s,  1<j<6+N.
Since r is fixed at this stage, we deduce that

. @) _ () —
(40) lim - max e — e lexs,) =0
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Completion of the argument. Theorem 2.5 states that C' is reconstructible if both
functionals Fi, F2 are bounded away from zero for some properly chosen solutions.

Fixing again xg € X and B,, as above, Step 1 established that F; (egl), cee 6((36)) and
J)s

]:2(681), e eéGJrN)) were bounded away from zero over B,, where the eé s were strain
tensors associated with a problem with frozen coefficients. Due to limits

(38) and (40),
1)

(6+N))

there exists a small » > 0, then a small 6 > 0 and local solutions (u((; B

such that maxi<j<en ||e((;j) - Géj)”Cl(Br(zo)) is so small that, by continuity of Fj

and Fy mentioned above, .7:1(6[(51), ey egG)) and ]-"Q(egl), ey e§6+N)) remain uniformly
bounded away from zero over B,.. Hypothesis 2.2 is thus satisfied over B, by the family

{ugj )}?i{\] which is controlled by boundary conditions. C' is thus reconstructible
over B, with a local stability as in Theorem 2.5. The proof of Theorem 2.7(ii) is
complete. a
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