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Plasmonic modes of polygonal rods calculated using a quantum hydrodynamics method
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Plasmonic resonances of nanoparticles have drawn lots of attention due to their interesting and useful properties
such as strong field enhancements. The self-consistent hydrodynamics model has the advantage that it can
incorporate the quantum effect of the electron gas into classical electrodynamics in a consistent way. We use the
method to study the plasmonic response of polygonal rods under the influence of an external electromagnetic
wave, and we pay particular attention to the size and shape of the particle and the effect of charging. We find
that the particles support edge modes, face modes, and hybrid modes. The charges induced by the external field
in the edge (face) modes mainly localize at the edges (faces), while the induced charges in the hybrid modes are
distributed nearly evenly in both the edges and faces. The edge modes are less sensitive to particle size than the face
modes but are sensitive to the corner angles of the edges. When the number of sides of regular polygons increases,
the edge and face modes gradually change into the classical dipole plasmonic mode of a cylinder. The hybrid
modes are found to be the precursor of the Bennett mode, which cannot be found in classical electrodynamics.

DOI: 10.1103/PhysRevB.96.125134

I. INTRODUCTION

Plasmonic resonances are ubiquitous for metallic nanopar-
ticles [1–8], and these collective excitation modes can be used
to realize many interesting phenomena, such as extraordinary
optical transmission [7] and negative refraction [8]. Recent
advances in nanoscience enabled the fabrication of metallic
nanoparticles with controlled size and shape. At the nanoscale,
the quantum nature of electrons emerges [9–26] and standard
local electrodynamics description becomes inadequate. For
example, nonlocal effects must be taken into consideration
in order to study the resonances of nanometallic particles, as
have already been verified experimentally [9,10]. In addition
to the nonlocal effect, other quantum effects are also not
ignorable in plasmonic modes [11–26]. One issue is the
tunneling of the electrons through tiny gaps for gap plasmonic
modes in the core shell structure [11–13] and dimer structures
[14–17], which reduces the field enhancement. Another quan-
tum feature is the loss caused by the surrounding material due
to the creation of surface electron-hole pairs [25,26]. In order to
describe these quantum effects theoretically, different methods
have been proposed [27–50]. The most accurate formulation
that is computationally tractable is perhaps the time-dependent
density functional theory (TD-DFT) [27–33]. This method
is already computationally intensive, and the computation
becomes even more demanding if TD-DFT is coupled with
Maxwell equations to include electromagnetic (EM) wave
characteristics, such as retardation [51,52]. On the other hand,
corrected classical models, such as nonlocal surface layer
models [34–36], hard-wall hydrodynamics models [37–40,53],
quantum corrected models [41–43], and others [44,45], have
also been proposed to study these systems. These models
can handle full EM wave characteristics, in the sense that
Maxwell equations are explicitly and exactly solved, but some
quantum features of the electron gas are not included. For
example, the electron spill-out effect near the metal surface
[46] is typically not treated adequately. The self-consistent
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hydrodynamics model (SC-HDM) [46–50] can be viewed as
an advanced form of quantum corrected classical model. This
model works with the electron density instead of electronic
wave functions, so that the energy functional is simple enough
to solve for the response equations and Maxwell equations
at the same time and on the same footing self-consistently
[46–50]. This method has been employed successfully to study
the plasmonic responses for some simple plasmonic structures
with simple geometries [46–50]. The power of this method
is its ability to handle systems with complex structure and
complex geometry, and it is worthwhile to study the EM wave
response of some complicated metallic particles using this
model.

In this paper, we employ the SC-HDM to investigate the
plasmonic modes of polygonal rods. We found three types of
plasmonic modes, namely edge, face, and hybrid modes. In
the edge (face) modes, the charges induced by an external EM
wave are mainly localized at the edges (faces), while in the
hybrid modes, the induced electrons are distributed nearly
evenly in both edges and faces. The resonance frequency
of the edge modes are mainly determined by the corner
angles of the edges, while the face modes are more sensitive
to particle sizes. In addition, when the number of sides of
regular polygons increases, the edge and face modes merge
into the classical dipole plasmonic mode of a cylinder. The
hybrid modes are found to be the precursor of the Bennett
mode, which originates from charge oscillating in and out
of a surface. The paper is organized as follows. In Sec. II,
we briefly review the SC-HDM. The numerical results of
ground states for charge neutral particles are given in Sec. III.
In Sec. IV, we calculate the scattering properties of these
polygonal rods, such as absorption spectrum, plasmonic mode
profile, geometric effect, energy dissipation distributions, and
the effect of charging. Conclusions are drawn in Sec. VI.

II. FORMULATION OF SC-HDM

The systems studied are two-dimensional (2D) polygonal
rods, as shown in Fig. 1(a). The polygonal rods are translational
invariant along the z axis. The yellow regions stand for the
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FIG. 1. (a) Schematic picture of the plasmonic system under consideration, in which yellow region stands for the jellium background with
circumradius ra , �G is the ground state calculation domain with radius rg , and �D is the excited state calculation domain with radius rd . The
right inset shows different regular polygons with the same circumradius ra . The green (red) arrow denotes the edge (face) direction of the
regular polygons. Calculated electron distribution (n0 − nj )/nion and effective potential Veff of the ground state for a sodium triangle with radius
ra = 2 nm is shown in (b) and (c), respectively. The white dashed line in (b) highlights the jellium boundaries. The VW parameter λω (see text)
is chosen as 0.12, the radius of excited state calculation domain is rd = 2.7 nm, and that for ground state calculation domain is rg = 3.5 nm.

jellium background in the shape of regular polygons. They are
bounded by a circumscribed circle with radius ra , as marked
by the gray dashed lines in Fig. 1(a). The right inset in Fig. 1(a)
shows polygonal rods with different side numbers N . The blue
dashed circle and triangle show the boundaries of ground state
and scattering state calculation domain, respectively, denoted
by �G and �D .

To study the plasmonic response of our system, we employ
a SC-HDM [46–50]. The SC-HDM is well documented in the
literature [46–50], but to make the descriptions self-contained,
we will give a short introduction of the model in this section.
The basic assumption of a hydrodynamics model (HDM) is to
treat the electrons of metals as ideal, irrotational, and isentropic
fluid, which indicates that temperature effects are not included
in the model. Based on these assumptions, the electron gas can
be described by the physical variables, electron density n(r,t),
and canonical momentum p(r,t). The equations of motion for
the electron gas can be obtained from the time evolutions of
these variables, namely [46–50]

men

(
∂v
∂t

+ v · ∇v
)

= −n∇
(

δG

δn

)
+ nqe(E + v × B),

(2.1)

∂n

∂t
+ ∇ · (nv) = 0, (2.2)

where qe = −e is the charge of the electron (e > 0), me is
the mass of the electron, v = (p − qeA)/me is the velocity of
the electron, A is the vector potential, and E,B are the fields
generated by the charges, currents, and external EM waves.
The functional G[n(r,t)] is the internal energy of the electron
gas, including the internal kinetic energy and the exchange-
correlation energy [54–56]. In this paper, we follow the choice
of G[n(r,t)] in Ref. [47] (see also Supplemental Material,
Sec. I [57]). Equations (2.1) and (2.2) are the basic equations
in the HDM, and their numerical solutions together with the
Maxwell equations are needed to study the plasmonic behavior
of our system.

The next step is to do linear expansions of the following
quantities in Eqs. (2.1) and (2.2) as

n = n0 + n1, v = v1,

(
δG

δn

)
=

(
δG

δn

)
0

+
(

δG

δn

)
1

,

E = E0 + E1, B = B1, (2.3)

where the subscript 0 stands for the equilibrium states and
subscript 1 means the linear expansions of these quantities.
The equilibrium v0 is zero, which means no electrons move
at equilibrium, and B0 is also zero because no external
static magnetic field is imposed. Substitute the expansions
in Eq. (2.3) into Eqs. (2.1) and (2.2) and Maxwell equations,
and keep the zero order terms. Then we arrive at

(
δG

δn

)
0

+ qeφ0 = μ, (2.4)

∇2φ0 = qe

ε0
(n+ − n0), (2.5)

where μ is the chemical potential, n0 is the ground state
electron density, and φ0 is the electrostatic potential defined
as E0 = −∇φ0. Here, n+ stands for the positive charged
background including nuclei and core electrons. Here, we
use the jellium model n+ = nj , in which nj = nion inside the
metal, and nj = 0 outside the metal. The ion density nion is
defined via a dimensionless quantity rs as

nion = 3

4π (rsaH)3 , (2.6)

where aH = 0.529 Å is the Bohr radius. The total number
of electrons imposes another constraint [46,58]. Suppose the
particle has a net charge σ . Then the electron density should
obey ∫

�G

dr e[n+ − n0] = σ. (2.7)

Equations (2.4), (2.5), and (2.7) collectively determine the
ground state charge densities of the plasmonic particles.

The linear response equations in the frequency domain
could be obtained by keeping the first order terms in the
expansions of Eqs. (2.1) and (2.2) and Maxwell equations,
namely [46–50]

(−iω + γ )J1 = en0

me

∇
(

δG

δn

)
1

+ e2n0

me

E1, (2.8)

∇ · J1 − iωρ1 = 0, (2.9)

∇ × (∇ × E1) −
(ω

c

)2
E1 = iωμ0J1, (2.10)
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where the induced currents and charges are defined as J1 =
n0qev1 and ρ1 = qen1, γ is the loss parameter introduced
empirically here [59,60], and the electric fields E1 = Einc +
Esca are total fields including incident fields and scattering
fields from the environment. Equations (2.8)–(2.10) determine
the linear responses of the plasmonic particles.

Before going into the details, we note that the loss intro-
duced within this method is empirical because the method does
not include any microscopic loss mechanism, such as electron-
phonon scattering and the production of bulk or surface
electron-hole pairs. It is known that these loss mechanisms
are quite sensitive to the surrounding media because of the
screening effect. In order to compare our results quantitatively
with experimental ones, the empirical loss parameter needs
to be set depending on the real surroundings. Furthermore,
the loss parameter should also rely on the mode profile of the
plasmonic resonance because of electron-hole pair productions
[25]. Since the plasmonic resonance is a kind of charge density
oscillation, the production of electron-hole pairs created at
different plasmonic resonances should depend on the charge
distributions of the mode. In other words, the loss parameter
should in principle depend on the mode characteristics.

Two numerical steps are needed to obtain the plas-
monic resonances and related properties of the system using
SC-HDM. We first solve Eqs. (2.4), (2.5), and (2.7) to
get the ground states, and then solve Eqs. (2.8) to (2.10) to
get the scattering states. In the following sections, we will
discuss the numerical implementations of the models and some
numerical results of polygonal rods.

III. GROUND STATE OF CHARGE DENSITY
OF NEUTRAL POLYGONAL RODS

In this section, we consider the ground state density
for the charge neutral polygonal rods. We employ a finite
element method (FEM) to solve the differential Eqs. (2.4),
(2.5), and (2.7) in real space [61,62], and numerical details
are given in the Supplemental Material, Sec. II [57]. For
simplicity’s sake, we will assume throughout this paper that the
jellium represents the simple metal sodium. In the numerical
calculations, the ground state calculation domain is denoted
by �G, the boundary of which is shown by blue dashed
lines in Fig. 1(a). In the energy functional, the parameter λω

comes from von Weizsacker kinetic energy functional [54,55].
Throughout this paper, we set λω to 0.12, as this is optimal for
our calculations (see Supplemental Material, Sec. IV [57]).

The calculated electron density n0 distributions of the
ground state for a sodium (rs = 4) triangle with radius ra =
2 nm is shown in Fig. 1(b). To show the difference between
the electron density and jellium background, we plot the
relative dimensionless quantity (n0 − nj )/nion in Fig. 1(b)
to demonstrate the ground state charge densities. The white
dashed line shows the boundaries of the jellium background.
We note that the electron density distributions are smooth
near the edges of the jellium background, although the jellium
background density does have singularities at the polygon
corners. As expected, the electron density is equal to the jellium
background in the bulk metal region. The difference between
the electron density and jellium background only occurs near
the surfaces, creating a surface dipole layer. The existence

of this dipole layer forms an electrostatic potential barrier,
which constitutes one part of the effective single electron
potential Veff(r) (see Supplemental Material, Sec. II, for the
explicit formulations of Veff(r) [57]). To see this, we plot
the corresponding effective single electron potential Veff(r)
in Fig. 1(c). The zeros of the effective potential are set to the
chemical potential deep inside the metal. The distribution of
Veff(r) is anisotropic, indicating that the surface dipole layer
in the edge direction (E direction), denoted by the green arrow
in Fig. 1(a), are quite different from that in the face direction
(F direction), labeled by the red arrow in Fig. 1(a). It should
be mentioned that our calculations are in 2D space, with the z

direction being invariant, so the corner in 2D space is the edge
in the three-dimensional (3D) space, and the edge in 2D space
is the face in 3D space. Throughout this paper, we will use the
notations in 3D space.

To further see the effect of the sharp edges on the surface
dipole, we plot the modulation of the local work function as
a function of polar angles θ/π for a sodium triangle by gray
lines in Fig. 2(a). The local work function WF (θ ) is defined
as WF (θ ) = Veff(θ,r = rg) − Veff(θ,r = 0), which r and θ are
radial and angular coordinates in the polar coordinate system.
Since the cylinder is isotropic, we choose the work function
of a sodium cylinder as the reference, marked by magenta
lines in Fig. 2(a). The gray line in Fig. 2(a) shows that the
local work function in the E direction is lower than that in
the F direction. For comparison, we also plot the local work
function distributions for a sodium square, pentagon, hexagon,
and 20-sided polygon in Fig. 2(a) by orange, red, blue, and
green lines, respectively. As the number of sides of the regular
polygon increases, the local work function difference between
polygons and cylinder becomes smaller because the corners of
the polygon are smoother. The local work function difference
between E and F directions is also smaller with the increasing
of side number. To show this, we plot the relative local work
functions versus the half of the interior angle (α = π

2 (1 − 2
N

))
of a regular polygon in Fig. 2(b) for the E and F directions by
open squares and open triangles, respectively. It can be seen
that, as α increases, the difference between the edge and face
direction gets smaller. As far as the ground state is concerned,
the key difference between polygons and the circle is the
anisotropic local work function, indicating different surface
dipoles in different angles. This is a geometric curvature effect,
in contrast to the crystal plane (packing) induced work function
difference [63].

IV. SCATTERING PROPERTIES OF POLYGONAL RODS

After obtaining the ground state density, we can implement
the linear response equations into FEM. The numerical details
are given in the Supplemental Material, Sec. III [57]. To get the
scattering state accurately, the total calculation domain (�T )
must be of the wavelength order. As we are concerned with the
deep subwavelength properties of the plasmonic resonances,
the particle size is much smaller than the wavelength. In order
to deal with the scale difference between the particle size
and the wavelength, we divide the total calculation domain
into two subdomains. One is the domain near the particle
denoted by �D within which we solve the full linear response
equations, and the other subdomain �F (≡�T − �D) is the
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FIG. 2. (a) Modulations of local work function as a function of polar angle θ/π for a triangle, square, pentagon, hexagon, 20-sided polygon,
and cylinder are plotted by gray, orange, red, blue, green, and magenta lines, respectively. (b) Local work functions in the E (edge) direction
and F (face) direction as a function of interior angles α are plotted by open squares and open triangles, respectively. The circumradii of all the
regular polygons are 2.0 nm.

free space within which we only solve Maxwell equations. The
subdomain �D , with a finer grid than �F , is chosen to make
sure that there are no induced electrons outside this domain,
so we do not need to solve linear response equations outside.
Throughout this paper, we set the radius rd of �D to rd =
ra + 0.7 nm, and this setting is optimal for our calculations
(see Supplemental Material, Sec. V [57]).

A. Absorption spectrum and mode profile

To see the plasmonic modes of polygonal rods, we
calculate the absorption cross-section σabs under plane wave
illumination with incident angle θi = 0 (E‖y) for the triangle
and square, as shown in Figs. 3(a) and 3(b) by solid blue/red
lines, respectively. The incident angle θi is defined as the polar
angle of the wave vector, and the coordinates are given in
Fig. 1(a). The values of σabs are calculated by integrating the
Poynting vector in the far field. From Figs. 3(a) and 3(b),
several prominent absorption peaks are found in the spectra for
both the triangle and square. The frequency of resonance peaks
shows strong dependence on the geometry. If we characterize
the resonances according to the pattern of induced charge
concentration, we can group them into three categories: edge
modes (Ed mode), face modes (Fa mode), and hybrid modes
(Hb mode). The edge (face) modes have the induced electrons
mainly localize at the edges (faces). In the hybrid modes, the
induced electrons are distributed nearly evenly in both edges
and faces and also have a notable local in-and-out oscillation
perpendicular to the interfaces. Using this classification, we
labeled the plasmonic modes by Ed, Fa, and Hb in Fig. 3. For
instance, the symbol EdT

1 is used to denote the first (subscript
1 is the mode index) edge (Ed) mode for triangle (superscript
T) particles. The lowest frequency modes for both the triangle
and square are found to be edge modes. The induced charge
and current distributions of the EdT

1 mode and EdS
1 mode are

plotted in Figs. 4(a) and 4(c), respectively. The color stands
for the quantity ρ1/E0 and the arrows represent J1 at some
particular time. It is clear that the induced electrons are mainly
concentrated near the edges. There are also high order edge
modes, such as EdT

2 . The induced electrons in these modes

still mainly localize near the edges, but they decay into the
face slower than the fundamental mode.

The face modes for triangle and square appear in higher
frequencies, as shown by FaT

1 and FaS
1 in Figs. 3(a) and 3(b).

The induced charge and current distributions of FaT
1 and

FaS
1 modes are shown in Figs. 5(a) and 5(c), respectively.

Compared with the Ed modes, Fa modes have their induced
electrons mainly localized near the polygon faces, with the
currents flowing from one face to another. The induced charges
have opposite signs for a single face, but the amplitudes of
the positive and negative charges are different. In Figs. 3(a)
and 3(b), the further higher frequency modes are hybrid modes,
denoted by HbT and HbS. The bandwidths of them are broad
due to more dissipative loss, and the induced charges are in
both edges and faces.

For comparison, solid gray lines in Figs. 3(a) and 3(b) show
the absorption spectrum of the triangle and square calculated
by the classical model. The classical model is equivalent to
the SC-HDM under local response approximations (LRAs,
see also Supplemental Material, Sec. VI [57]), which ignores
the δG

δn
term and sets n0 = nj . In order to make a meaningful

comparison with SC-HDM results, we need to smooth the
sharp edges of the polygonal rods within LRA calculations. It
is because the electron distributions in SC-HDM are always
smooth over the sharp edges of the jellium background (due to
the kinetic term in the energy functional), as shown in Fig. 1(b)
[31,64], but there is no smoothing mechanism in classical LRA
calculations. According to the electron densities calculation by
SC-HDM, we set the smoothing length to 0.1 nm in Fig. 3 (see
Supplemental Material, Sec. VII [57]). We also see several
prominent absorption peaks in the spectrum. The modes could
be classified into two classes. The lower frequency peaks
(below 4 eV) are edge modes, while the higher frequency
peaks can be assigned as the face modes. This classification is
possible because there are two branches of plasmonic modes
for a single metallic wedge according to prior quasistatic
solutions of the wedge problem [65,66]. The lower frequency
band has even symmetry, while the higher frequency band
consists of odd modes. For the even mode, the induced charges
on the two faces of the wedge are the same, so the induced
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FIG. 3. Absorption spectra of (a) a triangle and (b) a square with
circumradius ra = 2 nm under plane wave incidence with incident
angle θi = 0 are plotted by blue and red solid lines, respectively.
The loss parameter γ is 0.17 eV throughout the domain �D . The
absorption spectrum of triangle for plane wave with incident angle
θi = π/2 is plotted in (a) by gray dots, and that of square for plane
wave with incident angle θi = π/4 is plotted in (b) by green dots.
The gray lines show the absorption spectra calculated by the classical
model with the rounded corners (see text). The resonance modes
are labeled according to their induced charge profiles (see text). The
superscript denotes the shapes (T stands for triangle) and the subscript
denotes the mode number.

charges are maximal in the corner position. Symmetry-wise,
this corresponds to the edge modes observed in SC-HDM.
For the odd modes, the induced charges of the two faces
have opposite signs, so there must be a node in the corner
position. This corresponds to the face modes observed in
SC-HDM. These classical results help us understand the modes
in SC-HDM qualitatively, but they are significantly shifting in
frequency due to quantum spill out effects [67]. We will discuss
the physical reasons for the quantum corrections later.

We now change the incident angle θi of the plane wave,
but keep the incident electric fields in the xy plane, and then
calculate absorption spectrum again. For triangle particles, we
plot the absorption spectrum for a plane wave with incident

angle θi = π/2 in Fig. 3(a) by open gray dots. We see that
the absorption spectrum is almost the same as the spectrum
for the θi = 0 case. This is because the particle size is much
smaller than the wavelength, and as such, the EM wave cannot
recognize the anisotropy of the metallic particles [68], and
hence, the external wave couples equally well with the particle
resonances irrespective of the incident angle. We plot the
induced charges and currents under this plane wave incidence
of EdT

1 and FaT
1 modes in Figs. 4(b) and 5(b), respectively.

The induced electrons are still localized in edges and faces
for these modes even though the polarizations of the incident
waves are different. These results further show that the peaks
correspond to intrinsic resonant modes. For the square particle,
the absorption spectrum under plane wave illumination (θi =
π/4) is also plotted by green dots in Fig. 3(b). The induced
charges and currents of EdS

1 and FaS
1 modes are plotted in

Figs. 4(d) and 5(d), respectively. We note that these edge and
face modes also exist for various geometric configurations,
and they are experimentally observed in different plasmonic
particles [1,69,70].

Before going to the next section, we note that the computa-
tional time of our method is much less than ab initio packages,
such as TD-DFT that incorporates Maxwell equations. The
cost of computational time of our method is about one order
of magnitude longer than classical models (see Supplemental
Material, Sec. VIII [57]).

B. Geometric effect

In the previous section, we see that polygonal metallic
particles carry resonances that can be classified as edge modes,
face modes, and hybrid modes. For a cylindrical rod, there
are two plasmonic resonances: the classical dipole resonance
(D mode), and the Bennett mode (M mode, also known as
multipole surface plasmon modes) [71–73]. It is interesting
to see how the resonance modes in polygonal rods approach
those of the cylinder as the number of corners increases. We
will consider the effect of side number of the regular polygon
while keeping either the radius ra fixed or the total number
of electrons fixed. To see this geometric effect, we show the
calculated absorption spectra for various N -sided polygons
and cylindrical particles with the same radius in Fig. 6(a). The
absorption spectra for these polygonal rods with the same total
number of electrons are plotted in Fig. 6(b). We see that the
edge and face modes come together and become the dipole
mode as the side number N increases. We note that the dipole
resonance frequency of the cylindrical rod is 3.96 eV according
to our calculations. This is consistent with Refs. [48,67], which
is redshifted comparing with classical resonance frequency
ωp/

√
2 = 4.16 eV (see Supplemental Material, Sec. VI [57]).

Although our choice of the exchange-correlation terms in
energy functional G[n(r,t)] is different from Refs. [48,49],
the dipole resonance peak is essentially the same, indicat-
ing that the plasmon resonances are not sensitive to the
details of the exchange-correlation potential in the energy
functional.

The Bennett mode of cylindrical rods corresponds to a
perpendicular oscillation of the electron density in and out
of the surface of the plasmonic particle along the radial
direction. The induced charges have opposite signs but the
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FIG. 4. Plot of the induced electron density ρ1/E0 (color/intensity) and the current density J1 (vector field) at some particular time for the
EdT

1 mode shown in Fig. 3 for a plane wave incident at an angle (a) 0 and (b) π/2, respectively. The induced electron density and current density
for the EdS

1 mode are shown in (c) and (d) for plane wave incident angle 0 and π/4, respectively.
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FIG. 5. Plot of the induced electron density ρ1/E0 (color/intensity) and the current density J1 (vector field) at some particular time for the
FaT

1 mode claimed in Fig. 3 are shown in (a) and (b) for plane wave incident at angles of 0 and π/2, respectively. The induced electron density
and current density for the FaS

1 mode are shown in (c) and (d) for plane wave incident at angles 0 and π/4, respectively.
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FIG. 6. (a) Absorption spectra of regular polygons with increasing side number N are plotted by the solid lines. All regular polygons have
the same circumradius ra = 2.0 nm, and loss parameter γ is 0.17 eV throughout the domain �D . (b) Absorption spectra of polygons with
increasing side number N for fixed total number of electrons. (c) Induced electron density ρ1/E0 (color/intensity) and current density J1 (vector
field) at some particular time for the Bennett mode and its precursors [the M and Hb modes shown in (a)].

same amplitude normal to the surface of one single face so
that a single face is locally charge neutral for the Bennett
mode, while that for the dipole mode is nonneutral [71–73].
The Bennett mode can only exist in models which allow the
electron spill out effect (see Supplemental Material, Sec. VI
[57]) so that charge can oscillate from inside the metal into
the vacuum. According to our model, the resonance frequency
of the Bennett mode is 4.76 eV, as shown by magenta lines
in Fig. 6(a). From Figs. 6(a) and 6(b), we see that the hybrid
modes of regular polygons can be treated as the precursors of
the Bennett mode in the circular cylinder. The hybrid mode is
very weak for the triangular particle, as shown by gray lines
in Fig. 6(a). The hybrid mode absorption peak increases as the
side number of the polygon increases, as shown by orange,
red, blue, and green lines in Fig. 6(a), eventually merging with
the Bennett mode peak. In order to see how the hybrid modes
change into the Bennett mode, we plot in Fig. 6(c) the induced
electron densities and currents of the hybrid mode peaks in
Fig. 6(a) for different polygonal rods. We see that, in addition
to a local oscillation component, the Bennett mode also has
global components due to the finite size of the particle. When
the side number decreases, the local components gradually
decrease while the global components increase and finally
become the hybrid mode.

The results so far indicate that the edges in polygonal
rods can strongly modify the plasmonic resonances of small
particles, splitting the dipole resonance into edge/face modes
that can be significantly redshifted/blueshifted, depending on
the angle of the wedge. Comparison of our SC-HDM results
with classical model results (e.g. Fig. 3) also indicate that
nonlocal effects are significant and cannot be ignored.

In addition to shape, size is obviously another parameter
that can control plasmonic resonances. The size dependence
of plasmonic modes directly relates to the dispersion relations
of these plasmonic modes [74–76]. We plot the resonance
frequencies of the EdT

1 mode and EdS
1 mode as a function of

particle size r−1
a in Fig. 7(a) by solid red and blue lines. We see

that the edge mode frequencies of both the triangle and square
are nearly independent of the particle size in this range. This
is consistent with the fact that the induced charges are mainly
bounded to the single edge, so the size effect is minimal here.
For comparison, we also calculate the size dependence of the
EdT

1 mode and EdS
1 mode using the classical model, as shown

by the dashed red and blue lines in Fig. 7(a). Similar to the
SC-HDM, classical models also show little size dependence of
these edge modes. However, the edge mode frequencies within
SC-HDM are redshifted comparing to LRA, which are similar
to the dipole mode of a cylindrical rod. The physical reason
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FIG. 7. (a) The resonance frequencies of the edge modes as a function of the circumradius is plotted by red circles (EdT
1 mode) and blue

circles (EdS
1 mode), respectively. The open circles are obtained by SC-HDM, and the circles with a cross inside are obtained using classical

model (LRA). (b) The resonance frequencies of the face modes as a function of the radius are plotted by red stars (FaT
1 mode) and blue stars (FaS

1

mode), respectively. The resonance frequencies of the dipole mode (D mode) for cylindrical particles are also plotted by dark green triangles.
(c) The resonance frequencies of the Bennett mode (M mode) for cylindrical particles are plotted by dark green squares. (d) The calculated
resonance frequencies of the Ed1 mode for SC-HDM as a function of interior angles α are plotted by solid stars. The solid line shows the
analytical dispersions of edge modes for a single corner obtained under quasistatic and small wave number limitations. The blue circles show
the numerical results obtained by BEM with quantum corrections under quasistatic limits. (e) The difference between d⊥ and d‖ of a single
interface for the charge neutral case, p charging (d‖ = −0.001 nm), and n charging (d‖ = 0.001 nm) are plotted by red, blue, and green lines,
respectively.

is due to the location of the induced charge densities [77,78],
which can be discussed using the Feibelman parameter that
describes the centroid of the induced charges [67,77,78]. If
the induced charges are mainly inside the jellium background,
the resonance frequency blueshifts. Conversely, if the induced
charge mainly locates outside the jellium background, the
resonance frequency redshifts.

We also plot the resonance frequencies of FaT
1 mode, FaS

1
mode, and dipole mode as a function of particle size r−1

a in
Fig. 7(b) by red, blue, and green lines, respectively. In contrast
to the edge modes, the face modes are redshifted with the
decreasing of particle size for both the triangle and square.
The size dependence of the face modes is found to be similar
to that of the dipole mode of cylindrical rods. It can be shown
that the quantum corrections to the dipole mode of cylindrical
rods are [47,67] (see also Supplemental Material, Sec. IX, for
detailed derivations [57])

(
ω

ωp

)2

= 1

2

[
1 − 1

ra

(d⊥ − d‖)

]
, (4.1)

where ω2
p = e2nion/meε0 is the bulk plasma frequency. Here,

d⊥ and d‖ are the Feibelman parameters defined as

d⊥ =
∫

xρ1dx∫
ρ1dx

, d‖ =
∫

n0 − nj

nion
dx, (4.2)

for a single interface [77,78]. For charge neutral interfaces,
d‖ is equal to zero, and d⊥ describes the centroid of the
charges induced by the external field. The calculated values
of d⊥ − d‖ are shown in Fig. 7(e) for a sodium neutral flat
interface. The interface is at x = 0 nm, which is formed by
sodium (x < 0 nm) and vacuum (x > 0 nm). The parameters
used in these single interface calculations are the same with
all the 2D calculations. It can be seen that, at the dipole
resonance frequency (∼4.0 eV), d⊥ > 0, indicating that the
resonance frequency of the dipole mode is redshifted [67,77].
Our calculations also numerically verify this point, as shown
by the solid green lines in Fig. 7(b). The induced charge
densities shown in Fig. 5 of these face modes also mainly
reside outside the jellium background, similar to the D mode
of cylindrical particles. So the resonance frequencies of the
face modes are redshifted within SC-HDM. Furthermore, we
also plot the size dependence of the Bennett mode in Fig. 7(c).
It shows that the size dependence of the Bennett mode is
opposite to the dipole mode, consistent with Ref. [48].

To further investigate the edge modes, we plot the resonance
frequencies of the lowest frequency edge modes calculated by
SC-HDM as a function α by red stars in Fig. 7(d). For cylin-
drical particles (α = 90◦), we plot the resonance frequency
of dipole modes. We see that the edge mode frequencies
increase monotonically with the interior angles α. To see the
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physical reasons, we first recall the analytical dispersions of
the even corner modes in the static and small wave number
approximations are [65,66] (see also Supplemental Material,
Sec. X, for detailed derivations [57])(

ω

ωp

)2

= α

π
. (4.3)

We plot Eq. (4.3) as a solid line in Fig. 7(d). The qualitative
agreement between analytical models and SC-HDM results
indicates the resonances in the spectrum are indeed edge
modes. The quantitative deviations between these two are due
to quantum corrections caused by electron spill-out effect. To
quantitatively model this effect, we employ the Feibelman
d-parameter model based on the boundary element method
(BEM) as defined in Ref. [67] to see the quantum corrections
of these edge modes. The numerical results of this quantum
BEM are shown by open blue circles in Fig. 7(d). We
see excellent agreement between quantum BEM results and
SC-HDM results for cylindrical particles. As the wedge angle
decreases, both methods show a similar trend of deviation
from the classical quasistatics results, indicating the effect
of electron spill out. However, the deviation between quantum
BEM and SC-HDM results becomes larger for sharper corners.
This is because local charging effect causes the d‖ to become
polar angle dependent, which is inherent in SC-HDM but not
included in the quantum BEM model. Nevertheless, quantum
BEM still gives the correct shift directions compared with the
analytical models. Figure 7(d) reinforces the notion that the
edge mode frequencies are very sensitive to the corner angles.

C. Charged particles

The SC-HDM can also be used to treat charged metallic
particles. This is a distinct advantage of this method, as there
is no obvious way to consider a charged particle within the
framework of macroscopic classical electrodynamics. This is
also useful as nanosized metallic particles are not necessarily
neutral. To study charged particles, we need to carry out the
calculations by changing the σ manually in the constraint
condition in Eq. (2.7) for ground state calculations. For the sake
of computation efficiency, we transform the constraint to the
Neumann boundary condition of Eq. (2.5) (see Supplemental
Material, Sec. II [57]). During the transformation, we assume
that the electrostatic potential φ0 decays isotropically on the
boundary ∂�G. This approximation is good when rg is chosen
to be large enough, and we choose the value of rg to make
sure that further increase of rg does not change the absorption
spectrum. The numerical results suggest that it is good to set
rg to be 8.0 nm for 2 nm particles (see Supplemental Material,
Sec. XI [57]).

To see the effect of the additional charges on the plas-
monic modes, we calculate the absorption cross sections of
different charged cylinders, triangles, and squares, as plotted
in Figs. 8(a), 8(b), and 8(c), respectively. The incident light
is a single plane wave with incident angle θi = 0. To make
the additional charges σ easier to interpret, we introduce
the quantity �S defined as σ/enion with the dimension of
area in 2D configurations here. Also, �S > 0 (<0) stands
for positive (negative) charged particles. The ratio of �S

to the total jellium area means the percentage of additional

k
E

k
E

k
E

(a)

(b)

(c)

D

M

Ed
Fa

Ed

Ed
Fa

FIG. 8. (a) Absorption spectra of a charged cylinder are shown by
solid red lines for different additional amounts of charges. The open
cyan triangle dots and open green square dots show the resonance
frequencies as a function of �S for dipole mode (D) and Bennett mode
(M), respectively. The vertical axis is the absorption cross section
σabs divided by geometric cross section σgeo = 2ra . (b) Absorption
spectra of a charged triangle are shown by solid red lines for
different additional amounts of charges. The dependence of resonance
frequencies on �S are shown by open blue circles, open orange square
dots, and open blue star dots for the EdT

1 mode, the EdT
2 mode, and

the FaT
1 mode, respectively. (c) Absorption spectra of the charged

square are shown by solid red lines for different additional amounts
of charges. The dependence of resonance frequencies on the amount
of �S are shown by open blue circles and open blue star dots for
the EdS

1 mode and the FaS
1 mode, respectively. All the polygons have

the same circumradius ra = 2.0 nm, and loss parameter γ is 0.17 eV
throughout the domain �D .
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D

Ed

M
Fa

FIG. 9. Electric field enhancement factors of polygonal rods
under plane wave illumination (θi = 0) as a function of interior
angles α for edge modes (blue circles), face modes (red triangles),
and Bennett mode (green squares) calculated using SC-HDM. These
plasmonic modes correspond to those shown in Fig. 6(a).

number of charge carriers to the total number of charge
carriers. Figure 8 shows that all the plasmonic modes are
blueshifted in the positive charged particles and redshifted
in the negative charged particles. However, the magnitudes
of shifting are different for different modes. For the modes
with long-range charge oscillations, such as the D mode and
face modes, the shifting is small compared to the “local”
modes, such as the Bennett mode and edge modes. This is
because the additional charges accumulate near the surface
and hence create a stronger effect on the surface than the bulk.
Furthermore, the changes of the strength of the Bennett mode
are most significant in all these plasmonic modes. Since the
Bennett mode is locally charge neutral, the doping should have
the most prominent effects on this mode.

To illustrate the physics, we calculate and compare the
Re[d⊥ − d‖] of a single interface for charge neutral, positively
charged, and negatively charged cases in Fig. 7(e) by red,
blue, and green lines, respectively. We see that near the dipole
resonance frequency, Re[d⊥ − d‖] is smaller in the positively
charged interface than the neutral interface, so according
to Eq. (4.1), the dipole plasmonic mode should blueshift
upon positive charging. For the negatively charged interface,
Re[d⊥ − d‖] is bigger than the neutral interface around 4
eV and should induce a red shift. These effects explain the
trend for the dipole mode in Fig. 8(a). The Bennett mode
corresponds to the zero of Re[d⊥ − d‖] because of its charge
neutral nature. So the resonance frequency of the Bennett
mode should blueshift for the positively charged particle, as
seen from both Figs. 7(e) and 8(a).

D. Lightning rod effect and energy dissipation distributions

The plasmonic modes of polygonal rods can have useful
applications due to their local electric field enhancements.
Such a phenomenon is often called the lightning rod effect
[79]. We plot the maximum electric fields Emax normalized by
the incident field amplitude E0 for edge modes, face modes
(together with D mode), and the Bennett mode (together with
its precursors) by blue circles, red triangles, and green squares
in Fig. 9. We see that the field enhancement for face modes
and Bennett modes increases with the interior angle α, but
the enhancement for edge modes shows an opposite trend.
The field enhancements for edge modes and face modes have
a crossover between a square rod and a pentagon rod. This
is because the polygons with smoother edges carry weaker
edge modes and stronger face modes, as shown in Figs. 6(a)
and 6(c). We note that the field enhancements shown in Fig. 9
have the same order of magnitude as those obtained using
ab initio TD-DFT [31,64], indicating that our method gives
reasonable results.

The absorption spectra shown earlier are calculated by
integrating the fields at the far field. Within the context of
the hydrodynamic model, the energy absorption from the
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FIG. 10. Contour plot of the energy dissipation 〈J1 · E1〉/I0 in units of nm−1 within the domain �D for (a) dipole mode (D), (b) Bennett
mode (M), (c) EdT

1 mode, (d) FaT
1 mode, (e) EdS

1 mode, and (f) FaS
1 mode. These plasmonic modes correspond to those in Fig. 6(a) with

ra = 2.0 nm.
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incident light is due to the work done by the EM wave on
the electrons. In order to understand the energy dissipation
distributions inside the electron gas, we calculate the time
averaged work done We = 〈J1 · E1〉 by the fields on the
electron gas. In our model, this work done could be obtained
by the microscopic current J1 and the microscopic field E1.
As a consistency check, the integration of We/I0 (I0 is the
intensity of incident light) within the domain �D should be
equal to the absorption cross section calculated with fields
at the far field, and we numerically verify this is indeed the
case in Sec. XII in Supplemental Material [57]. To see the
distributions work done We for different plasmonic modes, we
plot in Figs. 10(a)–10(f) the spatial distributions of We/I0 for
the plasmonic resonance modes shown in Fig. 6(a), including
the dipole mode, the Bennett mode, EdT

1 mode, FaT
1 mode, EdS

1
mode, and FaS

1 mode. From Fig. 10, we see the dominant loss of
all these modes comes from the interface area of the particles,
but not from the bulk interior areas. The difference between the
modes is similar to the induced electron distributions, namely
the energy dissipations mainly come from the edge (face)
area for the edge (face) modes. From Figs. 10(d) and 10(f),
we find standing-wave-like patterns in the energy dissipation
distributions, which further indicate the size dependence of
face modes is larger than that of edge modes.

V. CONCLUSIONS

In conclusion, we found three types of plasmonic modes
for polygonal metallic particles, including edge modes, face
modes, and hybrid modes. These plasmonic modes are
classified according to their induced electron concentration
profile. We show that the edge modes are less sensitive to
particle size than the face modes, but are more sensitive to
corner angles of the edges. The edge and face modes can be
viewed as broken-symmetry consequences of the dipole mode
of a cylindrical particle. As the number of the sides of the
polygon increases, the edge mode moves up and the face mode
moves down in frequency to merge into the classical dipole
plasmonic mode of a cylinder. The hybrid modes are found to
be the precursor of the quantum Bennett mode. Finally, it is
shown that positive (negative) charging causes the blue (red)
shift to all these plasmonic modes.
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