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1 Introduction

In recent years, observation data together with theoretical considerations are beginning to

constrain the amplitude of primordial gravitational waves generated by inflation. Com-

bining the B-mode results from BICEP2 and KECK array CMB polarisation experiment

with the (more model-dependent) constraints from Planck analysis of CMB temperature

plus BAO and other data, yields a combined limit on the tensor-to-scalar ratio r0.05 < 0.07

at 95% confidence [1]. Through the Lyth bound [2], this implies an experimental upper

bound (under the assumptions behind [2]) on the inflaton field range.

At the same time, theoretical considerations seem to suggest that certain large field

inflationary models are in tension with quantum gravity [3–12]. These considerations take

various forms, one of which is the weak gravity conjecture (WGC) [3]. When applied

to axion inflation, the WGC gives a correlated bound on the axion field range and the

instanton action that generates the axion potential. Axion monodromy inflation [13, 14] and

in particular F-term axion monodromy inflation [15] (see [15–30] for realisations) remains
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an interesting exception, as the inflaton potential is not only generated by instantons.1

Indeed, a monodromy axion is mapped to a massive gauge field through T-duality [7] so

the WGC does not immediately apply.

Taking hints from these experimental findings and theoretical considerations, it is

worthwhile to explore if string theory models of axion monodromy inflation naturally come

equipped with mechanisms to lower the power of the tensor mode compared to standard

chaotic inflation.2 It has been argued that backreaction of the inflaton potential energy on

heavy scalar fields can flatten a quadratic inflationary potential at large inflaton values [34].

This “flattening” then provides an example of a mechanism to lower r. However, whether

flattening occurs depends on how the inflaton couples to the heavy fields, and hence a

diagnostic is possible only if the UV completion of inflation is known. For example, in

string theory constructions with D-branes [35–37], flattening can follow from the structure

of the DBI+CS action [13–15, 23, 34, 38–40]. However, the degree of flattening that one

finds in this context is to date rather limited, e.g., a quadratic potential gets flattened to

a linear potential through the α′ effects included in the DBI action.

In this paper, we would like to point out a new source of flattening that we dub as

flux flattening. This source of flattening is only visible for sufficiently large field ranges and

hence it is not captured in the supergravity limit. Therefore, it represents an additional

source of flattening to the effects seen in the supergravity literature. Despite having been

overlooked, flux flattening effects entail strong flattening power, being able to lower the

tensor power of a quadratic potential to well within the current experimental bound from

combining the data from PLANCK, BICEP2/Keck Array and BAO.

We analyse flux flattening in the context of type IIB/F-theory flux compactifications

with mobile 7-branes [17, 18, 23], where this effect is easily described. Indeed, it is well

known that in the presence of three-form background fluxes D7-branes experience a poten-

tial as we displace their position moduli from the vacuum. At small field values, such

potential only depends on certain flux components, namely those that induce a non-

supersymmetric B-field on the D7-brane worldvolume [41, 42]. However, at large field

values all background fluxes will contribute to the D7-brane energy, as one can see through

direct evaluation of the DBI+CS action. Moreover, the kinetic term of a given position

modulus will also depend on all these fluxes, resulting in an inflaton dependent kinetic

term that will flatten the potential. The latter effect was already observed in [23] for a

particular choice of background fluxes allowed by an orbifold projection. There, the growth

of the kinetic terms with large inflaton values matched that of the potential, resulting in

flattening to a linear potential. As we will show, once all background fluxes are taken

into account the growth of the D7-brane position kinetic term will always be larger than

that of its potential, thus inducing larger flattening effects than those observed in [23].

The functional dependence of the scalar potential that arises in this more general case has

moreover a richer structure and interesting phenomenological features.

1Though suppressing membrane nucleation still imposes a somewhat milder bound [31–33].
2Note, however, that we are not implying that these mechanisms necessarily make the tensor mode

unobservable, as detectable tensors require only r & (a few)× 10−3.
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In order to extract predictions from this more general setup it is important to relate

the parameters of the D7-brane potential with the compactification data, and in particular

with those compactifications that are compatible with the known schemes for closed-string

moduli stabilisation. Therefore, we consider the embedding of our system into type IIB/F-

theory compactifications with background fluxes. We find that in certain cases the scalar

potential displays flat directions, in which the D7-brane position Φ and the 4d dilaton S

vary simultaneously. Such flat directions can be easily understood in terms of the symme-

tries of the effective Kähler and superpotential of the compactification. Then, by choosing

slightly different superpotential parameters, one may engineer a very light direction that

would represent the trajectory of inflation. As we will discuss, this scheme favours models

of single field inflation, in which only one real component of the D7-brane moduli space is

below the Hubble scale and the others stay at a mass scale similar to the Kähler moduli

of the compactification. We use this fact to obtain an effective theory for Φ and a Kähler

modulus T , valid below the scale of complex structure moduli masses. As in [43], we use

this effective theory to study moduli stabilisation and compute the backreaction effects of

T and the heavy component of Φ on the inflaton potential.

Given this large single-field inflation scenario compatible with moduli stabilisation

one may input its typical scales into the DBI+CS action. Interestingly, we find that the

a priori complicated structure for the potential simplifies, and we recover a flux flattened

potential that only depends on a single parameter, constrained to take values in a particular

range. This in turn results in cosmological observables that cover the range of values

ns ' 0.96− 0.97 and r ' 0.04− 0.14, as show in figure 4.

This paper is organised as follows. In section 2 we compute the D7-brane position po-

tential for flux backgrounds that induce supersymmetric and non-supersymmetric world-

volume fluxes, generalising previous analysis. We describe the asymptotic behaviour of

this potential at large field values and input the parameters from moduli stabilisation to

compute the cosmological observables of the model. In section 3 we embed the mobile

D7-brane as an F-term axion monodromy model in the context of type IIB/F-theory flux

compactifications. We describe the discrete and continuous shift symmetries that appear in

simple examples. We use the latter to formulate an scenario of single-field inflation with a

realistic mass spectrum and compatible with Kähler moduli stabilisation. We finally draw

our conclusions in section 4. Finally, appendix A describes an alternative procedure to ob-

tain an effective field theory for the inflaton field, and appendix B explores flux flattening

effects for more general single field potentials.

2 7-branes and flux flattening

Following [17, 18, 23], one may consider scenarios of large field inflation in which the

inflaton candidates are D7-brane position moduli lifted by the presence of background

fluxes. The potential generated for such moduli can be easily computed by means of 4d

supergravity for small inflaton vevs but, as shown in [23], in the regime of interest for

inflation this approximation fails and one should compute the potential directly from the

D7-brane action. This large-field computation was carried out in [23] for the restricted set
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of ISD background fluxes that respect the orbifold symmetry of the Higgs-otic setup, and

generalised in [43] to include IASD fluxes respecting the same symmetry.

In the following we would like to generalise the computation in [23] to include the

more generic set of ISD background fluxes that will appear in general compactifications

with mobile 7-branes like in [17], and to consider varying dilaton and warp factors. As we

will see, while the effect of these extra fluxes does not appear in the scalar potential for

small 7-brane displacements (and it is therefore invisible in the supergravity approximation)

it produces an important flattening in the scalar potential for sufficiently large values of

the 7-brane position modulus. Finally, although the computations will be performed by

reducing the D7-brane action, by simply applying SL(2,Z) duality it is easy to see that

our conclusions apply to any mobile 7-brane.

2.1 The closed string background

Let us consider a type IIB/F-theory flux compactification with a 10d Einstein frame metric

of the form

ds2
10 = Z−1/2(y)dxµdxµ + Z1/2(y)ĝmn(y)dymdyn (2.1)

where ĝ is an F-theory three-fold metric on the internal space, with Kähler form Ĵ and

holomorphic (3, 0)-form Ω0 = g
1/2
s Ω̂, and Z is the warping. As in [44], on top of this

background there is a set of 7-branes sourcing a holomorphic axio-dilaton τ = C0 + ig−1
s ,

D3-branes sourcing Z and the self-dual RR flux F5, and an imaginary-self-dual (ISD)

three-form flux background G3 = F3 − τH3.

Let us now look at a neighbourhood of a D7-brane wrapping a four-cycle S, and

introduce local coordinates (z1, z2, z3) such that the D7-brane is localised in the z3-plane.

In such a region we consider an ISD primitive three-form flux G3 of the form

G3 = S1̄1̄ dz̄1 ∧ dz2 ∧ dz3 + S2̄2̄ dz1 ∧ dz̄2 ∧ dz3

+ S3̄3̄ dz1 ∧ dz2 ∧ dz̄3 +G1̄2̄3̄ dz̄1 ∧ dz̄2 ∧ dz̄3 (2.2)

where Sk̄k̄ and G1̄2̄3̄ are approximated to be constant. The important effect of the presence

of the G3 flux on the dynamics of the D7-brane will be given by the pullback of the B-field

on its worldvolume. In particular in the proximity of the D7-brane we can integrate the

relation dB2 = −ImG3/Imτ , obtaining

B2 = − gs
2i

[
S1̄1̄ z3 dz̄1 ∧ dz2 + S2̄2̄ z3 dz1 ∧ dz̄2

+ S3̄3̄ z̄3 dz1 ∧ dz2 +G1̄2̄3̄ z̄3 dz̄1 ∧ dz̄2 − h.c.
]
. (2.3)

We may now identify the normal coordinate to the D7-brane with the brane position

modulus via z3 = σΦ, with σ = 2πα′ = l2s/2π. This implies that the pullback of the

B-field on the worldvolume of the D7-brane, and therefore F = B2 − σF , will depend on

its location. Since supersymmetry is achieved when F (0,2) = 0 on the D7-brane, we see

that the flux components S3̄3̄ and G1̄2̄3̄ will naturally stabilise the brane position modulus

at loci where this condition is met, which for vanishing magnetic fluxes on the worldvolume

of the D7-brane is attained at B(0,2) = 0 or equivalently z3 = 0.
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In addition to the form of the G3 flux we will need the values of the RR fluxes and

potentials that enter the D7-brane Chern-Simons action. In particular we will need the

following set of relations

dC6 −H3 ∧ C4 = −gs ?10 ReG3 = −Z−1dvolR1,3 ∧H3, (2.4)

dC8 −H3 ∧ C6 = g2
s ?10 Re dτ = −1

2
d
(
gs dvolR1,3 ∧ Ĵ ∧ Ĵ

)
, (2.5)

that can be obtained from the equations of motion. Finally we have that

F̃5 = dC4 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 = (1 + ?10)dχ4 , (2.6)

where

χ4 = χdvolR1,3 , dχ = dZ−1. (2.7)

With this at hand we proceed to compute the scalar potential felt by a D7-brane.

2.2 The DBI+CS computation

The Dirac-Born-Infeld (DBI) and Chern-Simons (CS) actions which control the dynamics

of a single D7-brane are

SDBI = −µ7

∫
d8ξ g−1

s

√
−det(P [EMN + σFMN ) , (2.8)

SCS = µ7

∫
P

[∑
n

C2n ∧ e−B2

]
∧ eσF , (2.9)

where P [·] denotes the pull-back on the worldvolume of the D7-brane and

EMN = g1/2
s GMN −BMN , µ7 = (2π)−3σ−4 , (2.10)

where G is the 10d Einstein frame metric.

Dimensional reduction of the CS action. In order to evaluate the CS action of the

D7-brane let us first consider how this action changes between two different D7-brane

locations. That is, we consider a reference four-cycle S0 and take a homotopic deformation

S. Since both four-cycles lie in the same homology class there is a five-chain Σ5 such that

∂Σ5 = S − S0, and we have that

∆SCS = µ7

∫
R1,3×Σ5

P

[
d

(∑
n

C2n ∧ e−B2

)]
(2.11)

= µ7

∫
R1,3×Σ5

(dC8 −H3 ∧ C6)−B2 ∧ (dC6 −H3 ∧ C4) +
1

2
F̃5 ∧B2 ∧B2 + . . .

=
µ7

2

∫
R1,3

dvolR1,3

∫
Σ5

d
(
Z−1B2 ∧B2 − gsĴ ∧ Ĵ

)
where for simplicity we have turned off the gauge worldvolume flux F , and in the second

line we have neglected terms that do not contribute to the chain integral. If in addition we

assume that at S0 the pull-back of B2 vanishes and the volume contribution cancels with

that of the remaining 7-branes we obtain that

SCS =
1

2
µ7

∫
R1,3

dvolR1,3

∫
S

(
Z−1B2 ∧B2 − gsĴ ∧ Ĵ

)
(2.12)
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Dimensional reduction of the DBI action. To dimensionally reduce the DBI action

we may follow a procedure similar to the one outlined in [23]. We arrive at the result

SDBI = −µ7

∫
R1,3×S
d8ξ gs

√
det(gab)f(F)

[
1 + 2Zσ2∂µΦ∂µΦ +

1

2
g−1
s Zσ2FµνFµν

]
, (2.13)

where by Φ we denote the complexified brane position modulus. The function f(F) ap-

pearing in (2.13) is defined as

f(F) = 1 + εF2 +
1

4
ε2(F ∧ F)2 , (2.14)

where ε = Z−1g−1
s and the contractions are made with the unwarped metric ĝab of S.

Note that, since we are considering more general fluxes than the case appearing in [23],

the function f(F) is not a perfect square. Retaining only terms quadratic in derivatives

we obtain the following terms from the DBI action

SDBI = µ7

∫
R1,3

dvolR1,3

∫
S

gs
2
Ĵ ∧ Ĵ

√
f(F)

[
1 + Zσ2∂µΦ∂µΦ + . . .

]
, (2.15)

where we have used that the pull-back of −1
2 Ĵ∧Ĵ is the volume form of a holomorphic four-

cycle like S, and where the dots include higher derivative terms as well as terms involving

the gauge field on the D7-brane.

The brane position modulus effective action. Let us summarise the 4d effective

action controlling the dynamics of the brane position modulus. Adding up the DBI and

CS contribution we obtain

SΦ = −
∫
R1,3

dvolR1,3

[
g(F)∂µΦ∂µΦ + V (F)

]
, (2.16)

where

g(F) =
1

(2π)3σ2

∫
S
gsZ

√
f(F) dv̂olS , (2.17)

V (F) = µ7

∫
S
gs

[√
f(F)− 1

]
dv̂olS −

1

2
Z−1F ∧ F , (2.18)

and dv̂olS is the unwarped volume form of the D7-brane four-cycle. We may now perform

the 4d Weyl rescaling

gµν →
gµν

VolX6

(2.19)

with VolX6 is the volume of the compactification manifold X6 in units of ls = 2π
√
α′. After

that, mass scales in Planck units should be measured in terms of κ−1
4 =

√
4πl−1

s and the

above quantities read

g(F) =
1

2πVolX6

1

l4s

∫
S
gsZ

√
f(F) dv̂olS , (2.20)

κ4
4 V (F) =

1

8πVol2X6

1

l4s

∫
S
gs

[√
f(F)− 1

]
dv̂olS −

1

2
Z−1F ∧ F , (2.21)
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Notice that if F is a self-dual or anti-self-dual two-form in S then

F ∧ F = ±F2dv̂olS ⇒ f(F) =

(
1 +

1

2
εF2

)2

(2.22)

and so in the former case the potential vanishes while in the latter we have

κ4
4 V (F) =

1

8πVol2X6

1

l4s

∫
S
Z−1F2 dv̂olS (2.23)

as obtained in [42]. The kinetic term and potential depend on Φ through eq. (2.3) and

the identification z3 = σΦ. To make this dependence more explicit let us turn off the

worldvolume flux F and introduce a new normalisation for the brane position modulus

Φ →

(
ṼS0

2πVolX6

)−1/2

Φ (2.24)

where

ṼS =
1

l4s

∫
S
gsZ dv̂olS (2.25)

and S0 is the reference four-cycle where P [B2] vanishes, hence the minimum of the potential

that corresponds to Φ = 0. Note that with this choice of normalisation Φ has canonical

kinetic terms at this minimum. After this redefinition we find the kinetic term and potential

take the form

g(Φ) =
1

ṼS0

1

l4s

∫
S
gsZ

[
1 + ε̂ (G +H) +

1

4
ε̂2 (G −H)2

] 1
2

dv̂olS , (2.26)

κ4
4 V (Φ) =

1

8πVol2X6

1

l4s

∫
S
gs

([
1+ε̂ (G+H)+

1

4
ε̂2 (G−H)2

] 1
2

+
1

2
ε̂G − 1

2
ε̂H−1

)
dv̂olS ,

(2.27)

where we have defined

ε̂ = gs
2πVolX6

4ZṼS0

(2.28)

and H and G stand for the self-dual and anti-self-dual components of P [B2], respectively.

Given (2.3) they read

G = |G1̄2̄3̄Φ− S3̄3̄Φ|2 , H = |S2̄2̄Φ− S1̄1̄Φ|2 . (2.29)

In order to compare with the results in [23] let us consider that gs and Z are constant.3

Then ṼS = ṼS0 for any S and so these expressions reduce to

g(Φ) =

[
1 + ε̂ (G +H) +

1

4
ε̂2 (G −H)2

] 1
2

, (2.30)

κ4
4 V (Φ) =

ṼS
8πVol2X6

Z

([
1 + ε̂ (G +H) +

1

4
ε̂2 (G −H)2

] 1
2

+
1

2
ε̂G − 1

2
ε̂H− 1

)
. (2.31)

3Despite this simplification it could still happen that gs does depend on Φ, which would complicate the

functional dependence of g(Φ) and V (Φ). The effect of flux flattening discussed below would nevertheless

still remain.
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Note that if we set H = 0 we recover the results in [23]. On the contrary, if H 6= 0 we

have that [g(Φ)]2 no longer is a perfect square and that g and V depend on quite different

functions of Φ.

Finally, in order to analyse the potential it is convenient to move to a different

parametrisation for the brane position modulus. Specifically we may switch to polar coor-

dinates in the plane normal to the D7-brane location and define

ρ2 = ΦΦκ−2
4 (2.32a)

A = 2|G1̄2̄3̄S3̄3̄|/(|G1̄2̄3̄|2 + |S3̄3̄|2) (2.32b)

Ã = 2|S1̄1̄S2̄2̄|/(|S1̄1̄|2 + |S2̄2̄|2) (2.32c)

θ = 2Arg Φ−ArgG1̄2̄3̄S3̄3̄ (2.32d)

ζ = ArgG1̄2̄3̄S3̄3̄ −ArgS1̄1̄S2̄2̄. (2.32e)

The quantities G and H then simplify with this notation and become

G = κ2
4(|G1̄2̄3̄|2 + |S3̄3̄|2)

[
1−A cos θ

]
ρ2 , H = κ2

4(|S1̄1̄|2 + |S2̄2̄|2)
[
1− Ã cos(θ + ζ)

]
ρ2 .

(2.33)

2.3 Potential asymptotics and flux flattening

Let us now turn to the analysis of the asymptotic behaviour of the above scalar potential.

In order to compare with the large-field linear behaviour found in [23] we again consider

the simplified version (2.31), and for convenience we define the following quantities

G̃ = ε̂ (|G1̄2̄3̄|2 + |S3̄3̄|2)κ2
4 , Υ =

|S1̄1̄|2 + |S2̄2̄|2

|G1̄2̄3̄|2 + |S3̄3̄|2
. (2.34)

The important parameter in the upcoming analysis will be Υ, which measures the strength

of supersymmetric components of the B-field induced on the D7-brane vs the non super-

symmetric ones, and it will parametrically control the flattening of the scalar potential.

To gain an intuition over the asymptotics of the scalar potential we will consider regions

in the parameter space where we effectively achieve single field inflation, as one of the

components of Φ is much heavier than the other one. As we will see in section 3 and also

pointed out in [43], this limit seems favoured when embedding our D7-brane system in

a setup with full moduli stabilisation. These cases admit an unified description and the

shape of the potential will depend on two parameters, one the aforementioned Υ and the

other which we choose to call Ĝ to be defined for each case. The cases we look into are the

following two:

- Single field I. Here we take A = Ã = 0 so that the angular variable θ disappears from

the potential. The inflaton is identified with the radial variable ρ =
√

ΦΦκ−1
4 and in

this case Ĝ = G̃.

- Single field II. Here we take A = Ã ' 1 and ζ = 0. Now the inflaton is the real

part of Φ′ = e−iγ/2Φ where γ = Arg(G1̄2̄3̄S3̄3̄). Due to the fact that A is very close

to 1 the imaginary part of Φ′ will have a much higher mass as compared to the real

– 8 –
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part. Therefore considering trajectories where the inflaton is Re Φ′ is the inflaton

and Im Φ′ is frozen at the origin is a good approximation and the model becomes a

single field model to all effects. In this case Ĝ = (1−A)G̃.4

Both cases have in common that along the trajectories described it occurs that G = Ĝρ2

and H = ΥĜρ2, where ρ stands for the inflaton field. Therefore the potential is identical

in both and we can discuss its asymptotic shape at the same time. The scalar potential

we obtain is

V (ρ)

V0
=

√
1 + Ĝ(Υ + 1)ρ2 +

1

4
Ĝ2(Υ− 1)2ρ4 +

1

2
Ĝ(1−Υ)ρ2 − 1 , (2.35)

where κ4
4V0 = ṼS(8πVol2X6

Z)−1. We can easily analyse the asymptotic behaviour of the

scalar potential for ρ→∞. The result turns out to heavily depend on the value of Υ

lim
ρ→∞

V (ρ)

V0
=



Ĝ(1−Υ)ρ2 , 0 6 Υ < 1 ,√
2Ĝ ρ Υ = 1 ,

2

Υ− 1
− 4Υ

Ĝρ2(Υ− 1)3
, Υ > 1 .

(2.36)

We see therefore that if Υ > 1 — namely when the strength of the self-dual B-field compo-

nents is larger than the anti-self-dual ones — the potential will approach a constant value

as ρ draws nearer to infinity. The resulting potential in this regime exhibits a plateau-like

shape and inflationary models constructed using this scalar potential will have a much

lower value of tensor-to-scalar ratio as opposed to the usual power-law like potentials. So

far we have discussed the effect of flattening in the scalar potential, however as already

noted in [23] additional flattening in the scalar potential will appear when considering the

effect of the non trivial kinetic terms. To obtain the canonically normalised inflaton field

ρ̂ it is necessary to solve the integral equation

ρ̂ =

∫ ρ

g1/2(ρ′)dρ′ , (2.37)

and invert the relation between ρ̂ and ρ. Given the complexity of the kinetic terms we

find it possible to attain canonical normalisation only numerically. Nevertheless we can

gain some intuition looking at large values of the inflaton field where the kinetic terms

drastically simplify

lim
ρ→∞

Kρρ =


1

2
Ĝ |Υ− 1| ρ2 Υ 6= 1 ,√
2Ĝ ρ Υ = 1 ,

(2.38)

4In the limiting case where A = Ã = 1 and ζ = 0, Re Φ′ becomes a flat direction and one could see Im Φ′

as driving single field inflaton, as considered in [23]. In that case one should take Ĝ = G̃.
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Figure 1. The single field scalar potential for the canonically normalised inflaton ρ̂ for different

values of Υ keeping fixed Ĝ = 1.

which yields the following potential for large values of the inflaton field in terms of the

canonically normalised field

lim
ρ̂→∞

V (ρ̂)

V0
=



√
8Ĝ

(1−Υ)√
|Υ− 1|

ρ̂ , 0 6 Υ < 1 ,(
9

2

) 1
3

Ĝ
1
3 ρ̂

2
3 Υ = 1 ,

2

Υ− 1
−
√

2|Υ− 1|Υ√
Ĝ ρ̂ (Υ− 1)3

, Υ > 1 .

(2.39)

We chose to plot the form of the scalar potential for the canonically normalised inflaton

field ρ̂ for different values of Υ in figure 1 to show more explicitly the flattening effect in

the scalar potential.

Let us stress that this strong flattening effect will be absent in the supergravity dis-

cussion that we will carry in the next section, which will able to capture the inflaton scalar

potential only in the regime of small values for ρ. Nevertheless, such a supergravity analysis

will allow us to draw up an estimate for the typical values of the parameter in the DBI

potential, as we discuss in the following.

2.4 Estimating the scales of the model

Let us briefly discuss a DBI potential compatible with the compactification scheme dis-

cussed in section 3, and which considers the interplay of the D7-brane position modulus

with the closed string moduli of the compactification. In particular, in subsection 3.4

we will argue that a simple way to reproduce a scalar mass spectrum compatible with

large field inflation and moduli stabilisation is by having one of the two components of

the complex field Φ much lighter than the other one. Therefore, we will recover a single

field inflation model with a potential of the kind discussed above, and the details from

the compactification will translate into some specific values for the parameters V0, Ĝ and

Υ. In the following we would like to consider those typical values for V0, Ĝ and Υ that
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are compatible with a realistic scalar mass spectrum and the moduli stabilisation scheme

discussed in section 3.4, in order to obtain a constrained range of cosmological observables

in the next subsection.

First, we have that for small values of ρ the potential becomes

V (ρ) = V0 Ĝρ
2 + . . . (2.40)

with

κ4
4V0 ∼

gsVolS

8πVol2X6

∼ 4×
(
10−6 − 10−5

)
, (2.41)

where we have taken gsVolS ∼ 1 − 10 and Vol2X6
∼ 104, the latter being a typical value

compatible with the hierarchy of mass scales discussed in subsection 3.4, see e.g. footnote 12.

Comparing with the estimated mass for the inflaton near the vacuum we have that

κ4
4V (ρ) ' 4× 10−11ρ2 ⇒ Ĝ ∼ 10−6 − 10−5 . (2.42)

Moreover, we have that Υ is the quotient between two different kind of fluxes. On the

one hand G1̄2̄3̄ and S3̄3̄ are fluxes that enter the inflaton scalar potential even at small field.

On the other hand, S1̄1̄ and S2̄2̄ will be fluxes to which the D7-brane will be insensitive

near the vacuum. However, these fluxes will be sensed by the complex structure moduli,

to which they will give masses. Hence, unless Υ is constrained by some specific feature of

the compactification,5 one may estimate Υ1/2 as the quotient between the typical complex

structure moduli mass (that is, the flux scale) and the mass of a D7-brane modulus. If we

now focus on the single field scenario considered in section 3.4, which corresponds to the

single field case II discussed above, and look at the mass relations found in section 3.4, we

have that Υ1/2 is roughly the quotient between the flux scale and the mass of the heaviest

component of the D7-brane modulus, namely Im Φ′. In other words we have that

Υ ∼
m2

flux

m2
ImΦ′

∼ N2

κ2
4|W0|2

∼ 102 − 103 , (2.43)

where N ∈ Z is the typical value of flux quanta, which we have taken around N2 ∼ 1− 10.

Finally, W0 is as defined in subsection 3.4, from where we have taken the typical value

κ4W0 ∼ 0.1.

Given this large value of Υ and the small value of Ĝ, we may approximate (2.35) by

V (ρ)

V0
=

Ĝρ2

1 + 1
2Ĝ(Υ− 1)ρ2

+ . . . (2.44)

so asymptotically

V (ρ)
ρ→∞−→ 2V0Υ−1 ∼ (10−9 − 10−7)κ−4

4 (2.45)

which is intriguingly close to the scale of large-field inflation V
1/4

inf,? = (10r)1/41.88 ×
1016GeV [45]. This asymptotic constant value will not be changed by the field-dependent

inflaton kinetic term, which for this choice of parameters can be approximated to be

g(ρ) = 1 +
1

2
Ĝ(Υ− 1)ρ2 + . . . . (2.46)

5More precisely, Υ could be constrained to vanish by an orbifold symmetry like in [23] or by the fact

that h1,1(S) = 1, see the discussion in section 3.1.
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Figure 2. Scalar potential V̂ for the canonical field ρ̂ for two different values of Υ̂.

Using (2.37) we have that the canonically normalised field is given by

ρ̂ =
ρ

2

√
1 +

1

2
Ĝ(Υ− 1)ρ2 +

sinh−1

(√
1
2Ĝ(Υ− 1)ρ2

)
√

2Ĝ(Υ− 1)
. (2.47)

Hence, in the region where Ĝ(Υ − 1)ρ2 � 2 we have that ρ̂ ' ρ and that (2.44) is a

quadratic potential, and in the large field limit we have that ρ̂ '
√

1
8Ĝ(Υ− 1)ρ2 and that

the potential asymptotes to the constant value (2.45). In any event notice that for this

range of parameters the potential can be written as

V (ρ̂) = V̂0 · V̂ (ρ̂) (2.48)

where V̂0 = 2V0/(Υ−1) and V̂ is a monotonic function that only depends on the parameter

Υ̂ = Ĝ(Υ−1), such that V̂ ' 1
2Υ̂ρ2 at small field and asymptotes to 1 for ρ̂→∞. In figure 2

we plot V̂ for some typical values of this parameter, within the range Υ̂ ∼ 10−4 − 10−2.

2.5 Cosmological observables

Let us now analyse in some detail the cosmological observables that can be derived from

the potential discussed above. In the single field scheme of subsection 3.4 one finds that the

distortion effect coming from the stabilisation of other moduli is sufficiently suppressed,

and therefore the DBI+CS potential discussed in this section is a good approximation

during the field ranges where inflation occurs.6 Therefore, in the following we will focus

on the single field scalar potential (2.48) and derive the phenomenological features of this

model. We will see that even in this concrete case there is a rich phenomenology allowing

for the possibility of having a moderately low tensor-to-scalar ratio. One may also analyse

6More precisely, we find negligible backreaction effects from the heavy component of Φ and Kähler

moduli in the 4d supergravity model describing a mobile D7-brane, and we expect the same conclusion to

apply to the flux-flattened DBI potential.
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Figure 3. Spectral index and tensor-to-scalar ratio in terms of 10−4 6 Υ̂ 6 10−2 for N∗ = 50 and

N∗ = 60 e-folds.

the features of single field D7-brane potential for other choices of parameters that may

occur in different setups, as we do in appendix B.

As it usually happens for single field inflation to obtain the main cosmological observ-

ables, the spectral index ns and the tensor-to-scalar ratio r, it is sufficient to obtain the

slow-roll parameters η and ε. For a single scalar field φ with non-canonical kinetic terms

the slow-roll parameters are

ε =
M2
P

2
Gφφ

(
DφV

V

)2

, (2.49)

η = M2
P G

φφDφDφV

V
. (2.50)

where Gφφ is the inverse of the target space metric and derivatives are covariant derivatives

with the connection derived from the metric Gφφ. Knowledge of the slow-roll parameters

is sufficient to compute cosmological observables: we copy here the well-known relations

ns = 1 + 2η∗ − 6ε∗ , (2.51)

r = 16ε∗ , (2.52)

where η∗ and ε∗ are the values of η and ε at the beginning of inflation.

Since an overall factor V0 drops out in the computation of ε and η, in the single field

limit there are only two relevant parameters in the D7-brane potential, namely Ĝ and

Υ. Moreover, after we add the input from the moduli stabilisation scheme of section 3.4

the potential simplifies to (2.48) whose only relevant parameter is Υ̂ ≡ (Υ − 1)Ĝ, with

typical range 10−4 6 Υ̂ 6 10−2. We have scanned over this range of Υ̂ showing how

the cosmological observables evolve when this parameter is varied, displaying the results in

figure 3. We find that the typical range for these cosmological observables is ns ' 0.96−0.97

and r ' 0.04 − 0.14. In figure 4 we have superimposed the precise region in the ns − r
plane over the Planck collaboration results [45].

3 Embedding into type IIB/F-theory

Let us now consider how to construct compactifications in which the above flux-flattened 7-

brane scalar potential drives large-field inflation. One important ingredient when building
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Figure 4. Spectral index ns vs. tensor-to-scalar ratio r superimposed over the plot given by the

Planck collaboration [45] for the single field model with 10−4 6 Υ̂ 6 10−2.

models of large field inflation is to provide a configuration in which the inflaton candidate

is allowed to perform trans-Planckian excursions. In the case of D7-brane position moduli,

this requires using the framework of F-term axion monodromy [15], and in particular D7-

branes with periodic directions in their moduli space, as already pointed out in [17, 18,

23, 46]. We will discuss the general features of these constructions and the relation to

the D7-brane potential discussed in the previous section, paying special attention to the

case of D7-branes on T4/Z2 × T2 and its F-theory lift to K3 × K3 [17, 46–51]. This

simple embedding not only contains the main features of an inflationary model of mobile

D7-branes, but it is also well-understood in terms of the Kähler and superpotential that

describe the full 4d scalar potential at small field values. The latter will be crucial to

understand how to generate mass hierarchies between the inflaton sector and the rest of

the scalars of the compactification and, ultimately, to embed the 7-brane scalar potential

into a consistent framework of moduli stabilisation, along the lines of [43].

3.1 Periodic 7-branes and model building

Let us consider type IIB string theory compactified in a Calabi-Yau orientifold X6, and a

D7-brane wrapping a holomorphic four-cycle S in it. The moduli space of such four-cycle

will depend on its topology, and in particular on the Hodge number h2,0(S) that gives

the complex dimension of holomorphic deformations of S. As we are interested in mobile

D7-branes, we will assume that h2,0(S) > 0. The infinitesimal holomorphic deformations

of S are given by a set of normal holomorphic vectors {Xi} such that

ιXiΩ|S = α̃i (3.1)

where Ω is the holomorphic three-form in X6 and α̃i is a basis of (2,0)-forms in S. We

may choose the Xi such that the α̃i have a constant norm, and integrate the infinitesimal
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deformations to define D7-brane position coordinates in terms of the chain integrals

Φi =
1

l5s

∫
Σ5

Ω ∧ αi (3.2)

where Σ5 is a five-chain connecting the initial four-cycle S to a homotopic divisor S ′, and

αi is a dual basis of (0,2)-forms such that
∫
S α̃i ∧α

j = δji , extended to Σ5. Finally, we will

assume that there are one or more periodic directions in the moduli space of S, and dub a

D7-brane wrapping such a four-cycle as a periodic D7-brane.7

Let us now consider the presence of background three-form fluxes F3 and H3 threading

X6. In order to cancel the Freed-Witten anomaly [52, 53], we must require that the pull-

back of H3 on S vanishes in cohomology. Such a condition is trivially satisfied whenever

h1,0(S) = 0, but in general we may have that H3|S does not vanish identically. For

simplicity let us first assume that H3 is transverse to S and so H3|S = 0, as implicitly

taken in the computation of the previous section, namely in (2.2). Then the gauge invariant

worldvolume flux F = σF−B is closed, and can always be taken to be harmonic in S as this

choice minimises the energy of the D7-brane. Finally, let us assume that the embedding

of S is such that at this locus the D7-brane is BPS. In practice this means that F , if

non-vanishing, is a primitive (1,1)-form of S.

We may now consider deforming S along one of its periodic directions. Here there are

several possibilities depending on the topology of S. If h1,1(S) = 1, then there is only one

harmonic (1,1)-form on S, which is necessarily its Kähler form and therefore non-primitive.

Using the assumption that H3|S4 = 0 and that the D7-brane is BPS, this means that F
must vanish on S. Now, as the D7-brane moves in its moduli space, a non-vanishing B-field

and hence a flux F will be induced in its worldvolume. Because H is primitive in X6 the

induced B-field will be primitive in S [42], and so F can only be a harmonic (2, 0) + (0, 2)-

form. As a result F will be anti-self-dual, the function f(F) will be a perfect square as

in (2.22) and we will recover a potential of the form (2.23). Therefore, under the above

conditions we obtain a setup similar to that in [23], with the differences that we only have

one D7-brane and no orbifold projection is present. Moreover, the potential V (F) and

kinetic function g(F) do not need to be quadratic in Φ, as the induced B-field is such that

B(0,2) = ci α
i (3.3)

with ci more general than a linear function of Φ and Φ. What such a B-field needs to

satisfy is that, upon closing a loop in the moduli space of the D7-brane, the change in B

should be quantised. Hence this variation can be compensated in F by a discrete change

in F and the multi-branched structure of axion-monodromy models arises. Due to that,

along a closed loop ci will depend on the D7-brane position as a superposition of a linear

plus a periodic function, a dependence that will be translated into the function f(F).

Let us now consider the case where h1,1(S) > 1, while still assuming that H3|S = 0

along its moduli space. Then the induced B-field will be harmonic but it may have both

7One particular example could be a D7-brane wrapping a K3 submanifold fibered over a Riemann

surface. As we will see below, this condition of periodicity can be relaxed in the more general context of

F-theory compactifications.
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anti-self-dual (2, 0) + (0, 2) and self-dual (1,1)-primitive components, depending on the

components of ιXImG3|S . The former will contribute to the kinetic term and potential

as the quantity G in (2.26) and (2.27), while the latter will contribute as H. Again, these

quantities need not be the square of a linear function of Φ and Φ as in the previous

section, but rather of a linear plus a periodic function along each periodic coordinate of

the D7-brane, giving a quadratic potential with modulations. In any event the potential

and kinetic term will be of this form and so the effect of flux flattening will occur for large

values of Φ, specially when the induced B-field has an amount of self-dual component which

is comparable or bigger than that of the anti-self-dual component.

Finally, let us consider the case where H3|S 6= 0. Then, even at its BPS locus, the D7-

brane will have a non-closed, co-exact induced B-field component Bco that solves dBco =

H3|S . Now, in order to minimise the D7-brane energy, the system can always develop an

exact piece for F , F ex = da such that F −Fh = σF ex −Bco is self-dual, independently of

what the harmonic component Fh of the worldvolume flux is. As a result, this non-closed

B-field will contribute to the D7-brane potential and kinetic term as H in (2.26) and (2.27),

inducing the effect of flux-flattening even in the case where h1,1(S) = 1. Notice however

that this self-dual, non-harmonic component of F is by definition periodic upon completing

a loop in the D7-brane position space, so in order to induce a parametrically large flux

flattening we need to consider the case where h1,1(S) > 1.

Part of this dynamics will be captured by the 4d effective action of the compactifica-

tion. In particular in the absence of fluxes we have that the Kähler potential capturing

the 4d axio-dilaton S, the complex structure moduli and D7-brane kinetic terms has the

form [54–56]

K = − log

[
− i

l6s

∫
X6

Ω ∧ Ω

]
− log

[
−i(S − S + C(Φ,Φ))

]
. (3.4)

where C is a real function of the D7-brane position and the complex structure moduli.

Clearly, C must respect the periodicity of the moduli space of periodic D7-branes [46].

This will manifest as discrete shift symmetries that should be respected even when one-

loop [57–61] and warping effects [62–64] are taken into account.

When including background and worldvolume fluxes a potential will be generated for

the dilaton, complex structure and D7-brane position moduli. For small values of these

fields such potential will be captured by the effective superpotential [56, 65, 66]

W = WGVW +WD7 =
1

l6s

∫
X6

G3 ∧ Ω +
1

l5s

∫
Σ5

Ω ∧ F , (3.5)

where Σ5 is defined as in (3.1).

Finally, we may also understand this effective theory from the perspective of F-theory,

where all the above moduli become complex structure moduli of the Calabi-Yau fourfold

Y8. In this case it is straightforward to write Kähler potential and superpotential for these

moduli as [44, 65, 67]

K = − log

[
1

l8M

∫
Y8

Ω4 ∧ Ω4

]
, (3.6)

W =
1

l8M

∫
Y8

G4 ∧ Ω4 . (3.7)
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As we will discuss below, this description allows to generalise the setup with a periodic

D7-branes to more general compactifications in which models of F-term axion monodromy

can also be constructed.

3.2 A simple K3 × K3 embedding

As pointed out in [17], one simple case where periodic D7-branes are realised is in type

IIB string theory compactified in an orientifold of T4/Z2 ×T2, which is the orbifold limit

of the K3×T2 orientifold. This compactification space is constructed by first considering

the orbifold T4/Z2 ×T2, with the Z2 action generated by θ : (z1, z2, z3)→ (−z1,−z2, z3),

and with the coordinate zi spanning the i-th torus. One then mods out by the orientifold

action ΩR(−1)FL with R : (z1, z2, z3) → (−z1,−z2,−z3), which introduces a total of 64

O3-plane located at the fixed loci of R as well as 4 orientifold O7-planes located at the

fixed loci of R · θ. In the case where no exotic O3-planes are present, the condition of

cancellation of D3-brane tadpoles is

ND3 +
1

2l4s

∫
X6

H3 ∧ F3 = 16 (3.8)

where l2s = 2πσ. Here the closed string fluxes F3, H3 are constant and obey the following

quantisation conditions8

1

l2s

∫
γ3

F3 ∈ 2Z ,
1

l2s

∫
γ3

H3 ∈ 2Z (3.9)

for all γ3 ∈ H3(X,Z). Finally, cancellation of D7-brane tadpoles is ensured by introducing

16 D7-branes wrapping T4/Z2 and being point-like in the transverse coordinates of T2,

which is parametrised by the complex position field Φ. Any of these D7-branes is then a

periodic D7-brane with one complex modulus and two periodic directions.

One nice feature of this system is that it admits a simple embedding in a F-theory

compactification on a Calabi-Yau fourfold Y8 given by K3× K̃3. Indeed, if K̃3 is ellipti-

cally fibered upon taking the weak coupling limit we obtain a type IIB compactification

on K3×T2 with 16 D7-branes located at points on the torus and 4 O7-planes. Our initial

setup may be easily recovered upon taking the limit in complex structure moduli space

where the K3 becomes the orbifold T4/Z2. The F-theory description has the advantage of

describing on the same ground closed and open string moduli. Note that in this setup the

cancellation of D3-brane tadpole translates to

ND3 +
1

2l6M

∫
Y8

G4 ∧G4 =
χ(Y )

24
, (3.10)

where lM is the M-theory Planck length and in the case at hand χ(Y ) = 242. In this case

the closed string flux G4 will be quantised as9

1

l3M

∫
γ4

G4 ∈ Z , (3.11)

for all γ4 ∈ H4(Y,Z).

8Flux quanta should be multiples of 2 in the particular orbifold we are considering, see [68].
9Note that for the case of K3× K̃3 the second Chern class satisfies 1

2
c2(K3× K̃3) ∈ H4(K3× K̃3,Z)

and therefore the fluxes should be simply integrally quantised [69].
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This F-theory description also has the advantage that provides a simple description of

the 4d N = 1 effective action for small field values, and in particular explicit expressions

for the tree-level Kähler and superpotentials (3.6) and (3.7), see e.g. [46, 49]. Since the

holomorphic 4-form decomposes into the wedge product of the holomorphic 2-forms of each

K3 surface as Ω4 = Ω2 ∧ Ω̃2, to express the Kähler potential it is convenient to introduce

the period vectors Π and Π̃, respectively defined as the integrals of Ω2 and Ω̃2 over a basis

of integral 2-cycles. The periods of each K3 may be written as [17, 46, 49–51]

Π =
1

2


1

C2 − τ1τ2

τ1

τ2

2Ca

 , Π̃ =
1

2


1

Φ2 − Sτ3

S

τ3

2Φa

 , (3.12)

where a = 1, . . . , 16 and C2 is the square of the vector Ca and similarly for Φ2. When

comparing with the type IIB setting we may identify the moduli τi with the complex

structure modulus of the i-th torus, S with the axio-dilaton, Φa with the relative position of

the D7-branes with respect to the O7-planes and the moduli Ca are the additional complex

structure moduli of the first K3 surface. Using the period vectors it is straightforward to

write down the Kähler potential (3.6) as

K = − log
[
2Π.M.Π

]
− log

[
2Π̃.M.Π̃

]
, (3.13)

where M is the intersection matrix

M =


0 2

2 0

0 2

2 0

116

 . (3.14)

For simplicity we may take the limit where the first K3 becomes the orbifold T4/Z2,

turning off the moduli Ca, and also turn off all Φa except one, considering a single moving

D7-brane whose position is given by Φ. Then we obtain that the Kähler potential is

K = − log [−(τ1 − τ1)((τ2 − τ2)]− log
[
−(S − S)(τ3 − τ3) + (Φ− Φ)2

]
(3.15)

This Kähler potential can also be written in the form (3.13) using the simplified period

vectors and intersection matrix

Π =


1

−τ1τ2

τ1

τ2

0

 , Π̃ =


1

Φ2 − Sτ3

S

τ3

2Φ

 , M =


0 2

2 0

0 2

2 0

1

 . (3.16)
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Finally, in this reduced moduli space, the most general superpotential (3.7) can be writ-

ten as

lsW = Π.G.Π̃ , (3.17)

where Π, Π̃ are as in (3.16) and G is a matrix of integer entries containing the relevant

flux quanta

G =


n̂0 m0 −n0 m̂0 f0

n̂3 m3 −n3 m̂3 f3

n̂1 m1 −n1 m̂1 f1

n̂2 m2 −n2 m̂2 f2

0 0 0 0 0

 , (3.18)

In the type IIB limit m̂i, n̂i ∈ Z can be identified with quanta of F3, then mi, ni ∈ Z
with quanta of H3, and fi ∈ Z with D7-brane worldvolume flux quanta [46]. By explicit

computation one finds that the superpotential reads

lsW = n̂ + m̂ τ3 − nS + m
(
Φ2 − Sτ3

)
+ 2fΦ . (3.19)

where the calligraphic letters are functions of the moduli of the first K3, namely

n̂ = n̂0 + n̂1τ1 + n̂2τ2 − n̂3τ1τ2 (3.20)

m̂ = m̂0 + m̂1τ1 + m̂2τ2 − m̂3τ1τ2 (3.21)

n = n0 + n1τ1 + n2τ2 − n3τ1τ2 (3.22)

m = m0 +m1τ1 +m2τ2 −m3τ1τ2 (3.23)

f = f0 + f1τ1 + f2τ2 − f3τ1τ2 (3.24)

As stressed above, using these Kähler and superpotential to compute the scalar po-

tential for closed and open string moduli is only a good approximation in the regime of

small field values for S, τi and Φ. Nevertheless, these supergravity quantities are quite

useful to detect discrete and continuous symmetries of our system, as we will discuss in

the following. Finally, the above Kähler potential will be subject to one-loop corrections,

see [57–59] for details. For simplicity, in the following we will assume that such one-loop

effects are negligible.

3.3 Monodromies and shift symmetries

Discrete symmetries and multi-branched structure. Besides providing simple ex-

pressions for the effective Kähler and superpotential, the example of K3× K̃3 is useful

in the sense that the discrete shift symmetries characteristic of axion-monodromy systems

can be easily detected. Indeed, recall form the discussion of section 3.1 that in any type

IIB flux compactification with periodic D7-branes a multi-branched potential is expected

to appear, in which closing a loop in the D7-brane moduli space is compensated by shifting

some worldvolume flux quanta, and that this operation corresponds to a change in the

branch of the 4d potential. Such symmetry is manifest in the DBI computation of sec-

tion 2, since the potential and kinetic terms only depend on F . When embedded in the
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toroidal model T4/Z2×T2, this discrete symmetry corresponds to shifting Φ by the lattice

Λ = {p + qτ3} that describes the non-trivial loops of the T2 transverse to the D7-brane.

Clearly, one would expect that such a discrete symmetry is also manifest in the 4d effective

theory that arises from the K3× K̃3 F-theory lift of this compactification.

In particular, one would expect that the Kähler potential (3.15) is invariant per se, as

in the absence of fluxes the theory is fully symmetric under lattice shifts of Φ. Indeed one

sees that this Kähler potential is invariant under the transformations

(a) Φ → Φ + 1 , (3.25)

(b)

{
Φ → Φ + τ3

S → S + 2Φ + τ3
(3.26)

that generate the lattice Λ describing T2 = R2/Λ, and in general under the transformation{
Φ→ Φ + p+ qτ3

S → S + 2qΦ + q (p+ qτ3)
with p, q ∈ Z . (3.27)

This discrete symmetry is easier to detect in the matrix formulation of the Kähler poten-

tial (3.13), as these transformations can be expressed as shifts of the period vector Π̃

Π̃ → S.Π̃ (3.28)

where for Π̃ as in (3.16) and in the case of the lattice generators we have that

Sa =


1 0 0 0 0

1 1 0 0 1

0 0 1 0 0

0 0 0 1 0

2 0 0 0 1

 , Sb =


1 0 0 0 0

0 1 0 0 0

0 0 1 1 1

0 0 0 1 0

0 0 0 2 1

 , (3.29)

for (3.25) and (3.26), respectively. Then because

ST .M.S = M (3.30)

we have that each of these shifts as well as any sequence of them leaves the Kähler potential

invariant.

With respect to the superpotential, we expect that the discrete symmetry is preserved

if combined with discrete shifts of the flux quanta. More precisely the shift (3.28) will be

compensated by the opposite shift in the flux matrix

G → G.S−1 (3.31)

which in the case of the lattice generator (3.25) translates into

fi → fi −mi , n̂i → n̂i +mi − 2fi , (3.32)
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and in the case of the generator (3.26) it becomes

fi → fi + ni , m̂i → m̂i − ni − 2fi . (3.33)

While these discrete symmetries are derived in the context of F-theory, they have an

intuitive interpretation in terms of their type IIB limit. On the one hand, the shift in fi
corresponds to the shift in D7-brane worldvolume flux quanta that compensates the shift

of B-field, as discussed in section 3.1. On the other hand, the shifts in n̂i, m̂i correspond

to shifts in the background flux F3 due to the rearrangement of D5-brane charge.

This example allows us to readily generalise the picture of discrete shift symmetries to

a generic Calabi-Yau four-fold. Here the fundamental quantity is the period vector Π(z)

of the Calabi-Yau four-fold whose entries are functions of the four-fold complex structure

moduli. Notice that since in F-theory brane position moduli get unified with closed string

moduli we can treat them on equal footing. In this scenario the tree-level Kähler potential

is written as

K = − log
[
Π.M.Π

]
, (3.34)

where M is the intersection matrix of integral 4-cycles in the Calabi-Yau four-fold. A dis-

crete shift symmetry is present whenever upon performing a suitable translation in complex

structure moduli space z → z + f(z) it is possible to find a matrix S with integer coeffi-

cients such that Π(z + f(z)) = S.Π(z) and ST .M.S = M . While this clearly constitutes a

symmetry of the Kähler potential it is necessary to take into account how the superpoten-

tial transforms as well if fluxes are added. The superpotential may be easily expressed in

terms of the period vector as

lsW = G.M.Π(z) , (3.35)

where G is a vector with integer coefficients. Upon performing the aforementioned discrete

transformation we find that the transformed superpotential is

lsW
′ = G′.M.Π(z) , (3.36)

where G′ = G.(ST )−1. This shows how the effect of performing a discrete shift symmetry

is translated in a suitable redefinition of the integer flux quanta, a mechanism which is the

avatar of axion monodromy. It is important to state that the presence of these discrete

shift symmetries effectively cuts the moduli space to some fundamental domain which may

contain some compact directions inside it: addition of fluxes effectively unfolds this compact

moduli space, a signature of axion monodromy. Identification of the correct fundamental

domain is in general case is a difficult exercise although in some specific cases the answer

is known [70–72].

The question that remains open is when and under which conditions a discrete shift

symmetry does appear. Luckily it is possible to find an answer to these questions: discrete

shift symmetries are intimately tied with the presence of singular points in the complex

structure moduli space.10 In the case we have previously analysed the singularity is located

10In some cases though the presence of a singular point in the complex structure moduli space does not

give discrete shift symmetries, see [24] for examples.
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at the point of large complex structure of the Calabi-Yau 4-fold, and indeed in the proximity

of this point a shift symmetry appears for the complex structure moduli [46]. For simplicity

we will phrase our discussion in the case of complex structure moduli space of a Calabi-

Yau 3-fold X6, where most examples are known, although the discussion can be easily

generalised to a Calabi-Yau n-fold mutatis mutandis. First we need to highlight one of

the characteristics of the period vector Π(z): namely that it behaves as a section of an

appropriate vector bundle H over the complex structure moduli space M. Specifically

at z ∈ M the fibre of H is simply H3(Xz,Z) where Xz is the Calabi-Yau manifold X

with complex structure specified by z. This vector bundle comes equipped with a flat

connection ∇ called Gauß-Manin connection which allows to perform parallel transport of

sections of H around paths onM. While it is true that the connection is flat (and therefore

parallel transport around closed cycles would give no transformations on sections of H),

it may develop some singularities at specific points in the complex structure moduli space

ẑi where the Calabi-Yau manifold develops a singularity. The presence of singularities

in the Gauß-Manin connection implies that upon circling these singular points a section

of H gets acted upon by a matrix transformation which realises the transformation of

the period vector Π(z) advocated above. This provides a mechanism to realise discrete

shift symmetries in general Calabi-Yau compactifications, although the precise details of

the vector period transformations are somewhat technical and here we will refrain from

delving into them. The interested reader may consult for instance [73–76] and references

therein for explicit examples.

Continuous shift symmetries. One well-known fact is that in the tree-level Kähler

potential (3.15) the discrete shift symmetry (3.25) is promoted to the continuous

shift-symmetry

Φ → Φ + λ (3.37)

with λ ∈ R. This continuous symmetry highlights the field direction Re Φ, and makes it a

natural inflaton candidate, as considered in [43].

While (3.37) is an obvious shift symmetry of this Kähler potential it is strange that

it is the only one. After all, it is nothing but a translation along one of the one-cycles of

the T2 transverse to the D7-brane. Geometrically all of these one-cycles are on the same

footing, and microscopically they are all similar for the D7-brane. Hence there is a priori

no reason why the field direction (3.37) should be special. In particular we would expect

to find a continuous shift symmetry like (3.37) for each of the points of the lattice that

defines T2.

One can indeed see that this is the case whenever we allow for field space excursions

involving S and Φ simultaneously. Indeed, let us consider our K3 × K̃3 model with an

initial point in moduli space given by (Φ0, S0) and with all τi fixed to some value. Then if

we consider the one-dimensional trajectory
Φ = Φ0 + λ (s+ rτ3)

S = S0 + r
Φ2 − Φ2

0

s+ rτ3

with varying λ ∈ R (3.38)
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and fixed r, s ∈ R, one can see that the Kähler potential (3.15) is left invariant. Notice

that we do not have one shift symmetry but an infinite number of them, parametrised

by (r, s) ∈ R2. If we take (r, s) = (p, q) ∈ Z2 then each of these trajectories connects

with different lattice points of T2, where they reduce to (3.27). In particular, taking

(r, s) = (0, 1) and λ ∈ N we generate the discrete shifts that correspond to (3.25) and

taking (r, s) = (1, 0) we generate those in (3.26).

We then see that, when combining field excursions involving Φ and S, many shift

symmetries arise, and that they are related to the periodic directions in the D7-brane

moduli space. Absent some criterium that selects one among the rest, they are all equally

valid as inflationary trajectory candidates and should be considered on equal footing.

The criterium to select one trajectory among all of them will in general come from

the effective superpotential. Indeed, as discussed above W will transform non-trivially

under discrete shifts that leave K invariant, and generically the same will happen for

their continuous counterparts. Interestingly, for the case under discussion one can easily

characterise whenever W selects one of the above trajectories among the others. Indeed, it

is easy to check that for a superpotential of the form (3.19) a trajectory with fixed τi and
Φ = Φ0 + κ

S = S0 + n
Φ2 − Φ2

0

m + nτ3
+ 2f

Φ− Φ0

m + nτ3

with varying κ ∈ C (3.39)

leaves W invariant. As a result, whenever f = 0 and nm ∈ R there will be a field space

trajectory of the form (3.38) that leaves both the Kähler and superpotential invariant,

which signals a flat direction of the scalar potential. As discussed in appendix A this can

be made manifest by using the SL(2,R) invariance of K.

As we will see in the following, this result will still hold when we complete K and W

with the remaining ingredients to describe a compactification with full moduli stabilisation.

Therefore, in such a setup we will have a simple mechanism to generate flat directions in

field space, which then will be useful to generate mass hierarchies among fields in the

scalar potential.

3.4 Moduli stabilisation

Following [43], one may try to embed a system with a mobile D7-brane into a type IIB

compactification with the necessary ingredients for full moduli stabilisation. In the case

where h1,1(S) = 1 and the background flux is transverse to S, one may capture the non-

trivial kinetic term of the D7-brane position field in terms of a higher derivative correction

to the Kähler potential, as done in [43, 77], and so study the stability of the inflationary

trajectory by means of 4d supergravity techniques. In the case where the effect of flux

flattening is important, namely when h1,1(S) > 1, such a description for the D7-brane

scalar potential and kinetic terms for large values of Φ is not known. Nevertheless, one

may still use 4d supergravity to analyse the stability of the inflationary trajectory at small

field values, in order to estimate how important are the effects of moduli stabilisation and

heavy field backreaction on the naive potential computed in section 2.
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Recovering the DBI potential at small field. In order to connect with the setup

of section 2 let us assume a D7-brane whose moduli space of positions contains a T2

parametrised by the complex field Φ. Then, by analogy with the K3× K̃3 example, we

may consider that the D7-brane and closed string dynamics is governed by an effective

superpotential of the form

lsW = f̂ − Sf +
(
Φ2 − SU

)
g + Uĝ (3.40)

where U is the complex structure modulus of such a T2 and f , g, f̂ , ĝ are holomorphic

functions of the flux quanta and the complex structure moduli of the compactification.

Similarly, one would expect a Kähler potential of the form

K = − log
[
(Φ− Φ)2 − (S − S)(U − U)

]
+K2 (3.41)

where K2 contains the dependence on the Kähler and remaining complex structure moduli.

In the absence of any superpotential for the Kähler moduli we will recover a positive

definite scalar potential which, at Φ = 0, reduces to the no-scale scalar potential in [44]

for the axio-dilaton S and complex structure moduli. In principle, one may assume that

the mass for these fields at the vacuum is much larger than that of Φ and so, following

the philosophy in [30], replace such heavy fields by their vevs in (3.40) and (3.41). This

strategy, followed in [23, 43], is however only a fair approximation for a restricted range

of superpotential parameters in (3.40). Indeed, from the discussion above we have that

whenever g/f ∈ R there is a flat direction of the scalar potential along Φ ∝ f + gU in

which the dilaton varies as11

S = S0 +
g

f

Φ2

1 + g
fU

, (3.42)

with S0 the vev of S at Φ = 0. Therefore, for generic g/f it is not a good approximation

to assume that S will remain close to its vev S0. This means that, in general, we cannot

apply the philosophy of [30] to S.

Instead we can integrate out S by cancelling its F-term, solving for it in terms of the

other moduli and plugging the result back into the scalar potential. For simplicity, let

us consider the Kähler and superpotential above with all the complex structure moduli

including U fixed to their vev. Then the F-term for S is given by

DSW = −
(Φ− Φ)2(f + gU)− (U − Ū)

(
f̂ − S̄f +

(
Φ2 − S̄U

)
g + Uĝ

)
(Φ− Φ)2 − (S − S̄)(U − Ū)

(3.43)

where we have assumed that ∂SK2 = 0. Hence we obtain DSW = 0 by demanding that

S = S0 +
ḡ

f̄

Φ
2

1 + ḡ
f̄
U

+
(Φ− Φ)2

U − U
(3.44)

11This assumes that in (3.41) K2 does not depend on S and Φ or, if it does, it depends through the

combination (Φ− Φ)2 − (S − S)(U − U).
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Plugging this expression into the scalar potential we obtain that

V =
eK

κ2
4

KΦΦ̄|DΦW |2 =
1

4πκ4
4

2
∣∣(f̄ + ḡŪ

)
Φ−

(
f̄ + ḡU

)
Φ̄
∣∣2

8Vol2X6
|U − Ū ||

∫
X6

Ω ∧ Ω|
. (3.45)

where in our conventions κ2
4 = l2s/4π and all volumes are measured in units of ls.

In order to compare this result with the scalar potential of section 2 we need to canon-

ically normalise the position field at Φ = 0. Taking into account that there its kinetic term

is given by KΦΦ|Φ=0 = gs/|U −U |, with g−1
s = ImS0 we obtain that the scalar potential is

VSUGRA =
g−1
s

2πκ2
4

∣∣(f̄ + ḡŪ
)

Φ−
(
f̄ + ḡU

)
Φ̄
∣∣2

8Vol2X6
|
∫
X6

Ω ∧ Ω|
(3.46)

where now Φ is canonically normalised at the origin. We may now compare with the DBI

result (2.31) in the small field limit and in the 4d Einstein frame

VDBI+CS '
gs
κ4

4

|G1̄2̄3̄Φ− S3̄3̄Φ|2

16VolX6

(3.47)

where for simplicity we have set a trivial warp factor Z = 1. We then obtain that

G1̄2̄3̄ =
κ4√
π

f + gU

gsVol
1/2
X6
|
∫
X6

Ω ∧ Ω|1/2
S3̄3̄ =

κ4√
π

f̄ + ḡU

gsVol
1/2
X6
|
∫
X6

Ω ∧ Ω|1/2
(3.48)

Finally, as in [23] we may diagonalise this scalar potential as

κ4
4 VDBI+CS '

gs
16VolX6

[
(|G1̄2̄3̄| − |S3̄3̄|)

2 (Re Φ′
)2

+ (|G1̄2̄3̄|+ |S3̄3̄|)
2 (Im Φ′

)2]
(3.49)

where

Φ′ = e−iγ/2Φ γ = Arg (G1̄2̄3̄S3̄3̄) . (3.50)

Notice that using the dictionary (3.48) we have that gf̄ ∈ R is equivalent to |G1̄2̄3̄| = |S3̄3̄|,
which precisely is where we obtain a flat direction in the scalar potential, in agreement with

our previous discussion. Away from the flat direction condition we have that the masses

of the two mass eigenstates go like

m√2Im Φ′ =
g

1/2
s

2κ2
4Vol

1/2
X6

(|G1̄2̄3̄|+ |S3̄3̄|) = 2 eK/2|W0|(1 + ε) , (3.51)

m√2Re Φ′ = 2 eK/2|W0| |ε| , (3.52)

where

|W0| = κ−2
4 |G1̄2̄3̄|Vol

1/2
X6

∣∣∣∣∫
X6

Ω ∧ Ω

∣∣∣∣1/2 =
κ−1

4√
π
g−1
s |f + gU | , (3.53)

ε =
|S3̄3̄| − |G1̄2̄3̄|

2|G1̄2̄3̄|
' ImU

|f + gU |2
Im (gf̄) . (3.54)
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Here ε measures the departure form the flat direction case, and whenever |ε| � 1 we have

that Re Φ′ is a very light compared to Im Φ′. In that case, the heaviest mode Im Φ′ is in turn

much lighter than the complex structure and axio-dilaton moduli whenever κ4|W0| � N ,

with N the typical value for the flux quanta.12 In particular, its mass will not be far from

that of the Kähler moduli sector in standard moduli stabilisation schemes. Therefore, one

should be able to describe an N = 1 effective field theory for Φ and the Kähler moduli

below the flux scale, as we discuss in the following.

Integrating out the dilaton. As mentioned above, in general it will not be a good

approximation to fix the 4d axio-dilaton S at its vev S0 in K and W , since S varies

significantly as we change the value of Φ. However, when a flat direction is developed

because gf̄ ∈ R, we have that the holomorphic field redefinition

Ŝ = S − g

f

Φ2

1 + g
fU

(3.55)

is such that Ŝ remains constant and equal to S0 along the flat direction. Therefore, for

describing the scalar potential in a field space region around the flat direction trajectory,

one may apply the strategy of [30] to this new holomorphic variable Ŝ, and replace it by

its vev S0 both in K and W , as done with the complex structure moduli.13

Whenever the flat direction is not present because Im (gf̄) 6= 0 then Ŝ will no longer

be constant along the trajectory of minimum energy. On the one hand it will still be

true that, if S is given by (3.44), then Re Ŝ = ReS0 for any value of Φ. On the other

hand it will happen that Im Ŝ will depart from ImS0 as we move away from Φ = 0

along the said trajectory. Nevertheless, one expects that this displacement is small as

long as the mass of Im Φ′, Re Φ′ is much smaller than the typical mass scale induced by

fluxes. In particular whenever |ε|, κ4|W0| � 1, the approximation of taking Ŝ = S0 in K

and W should be accurate enough to describe the inflationary potential up to subleading

backreaction effects [30].

Doing this procedure in the no-scale case we find an effective Kähler and superpotential

for Φ given by

K = − log

[
−(S0−S̄0)(U−Ū)−

(
g

f

Φ2

1 + g
fU
− ḡ

f̄

Φ
2

1 + ḡ
f̄
Ū

)
(U−Ū)+ (Φ− Φ)2

]
+K2

W = W0 (3.56)

12For instance, for the choices κ4W0 ∼ 0.1, |ε| ∼ 0.01, eK ∼ 10−5 one recovers an inflaton mass of the

order m2√
2Re Φ′ ∼ 4× 10−11M2

P and m2√
2Im Φ′ ∼ 4× 10−7M2

P , while m2
flux = N2 × 10−5M2

P .
13Notice that Ŝ is not only holomorphic on Φ and U , but also on all the remaining complex structure

moduli through g and f . Therefore (3.55) can be seen as a field redefinition even at the flux scale, and one

may apply the strategy of [30] to all complex structure moduli and Ŝ simultaneously. We discuss alternative

definitions to the definition (3.55) in appendix A.
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where again K2 contains all the dependence on the Kähler moduli. In terms of the com-

ponents of the field Φ′ defined in (3.50) the first part of the Kähler potential K ′ reads

K ′ = − log

[
− (S0 − S̄0)(U − Ū) (3.57)

+
1

2

(
1 +
|f + gŪ |
|f + gU |

)
(Φ′ − Φ

′
)2 − 1

2

(
1− |f + gŪ |
|f + gU |

)
(Φ′ + Φ

′
)2

]
= − log

[
− (S0 − S̄0)(U − Ū)

+
1

2

(
1 +

|S3̄3̄|
|G1̄2̄3̄|

)
(Φ′ − Φ

′
)2 − 1

2

(
1− |S3̄3̄|
|G1̄2̄3̄|

)
(Φ′ + Φ

′
)2

]
Therefore we recover an effective theory with a constant superpotential and a Kähler po-

tential with no apparent shift symmetry for any component of Φ. Notice however that

whenever gf̄ ∈ R or equivalently |G1̄2̄3̄| = |S3̄3̄| we recover a shift symmetry along Re Φ′,

which then becomes a flat direction. Finally, we can rewrite the Kähler potential in the

simpler form

K = −3 log(T + T̄ )− log
[
4su+ (1 + ε)(Φ′ − Φ

′
)2 + ε(Φ′ + Φ

′
)2
]

+K2 (3.58)

with u = ImU , s = ImS0 and ε is defined as in (3.54). Again, notice that in the regime of

interest |G1̄2̄3̄| ' |S3̄3̄| and so |ε| � 1.

Adding Kähler moduli stabilisation. Let us now add the necessary ingredients to

achieve full moduli stabilisation in a semi-realistic setup. Since our setup requires |W0| � 1

in order to decouple the D7-brane position modulus from the complex structure moduli, it

is more natural to consider a KKLT-like scheme with a single Kähler modulus T , as done

in [43]. We then have a Kähler potential of the form

K = −3 log(T + T̄ )− log
[
(Φ− Φ)2 − (S − S)(U − U)

]
+K ′ (3.59)

where K ′ contains the dependence in the complex structure moduli besides U . In addition

we have a superpotential of the form

lsW = lsWflux + lsWnp =
(
f̂ − Sf +

(
Φ2 − SU

)
g + Uĝ

)
+ lsAe

−aT (3.60)

where f, g, f̂ , ĝ depend on the flux quanta and complex structure moduli, and so may the

non-perturbative prefactor A. From these two quantities we compute the supergravity

scalar potential

VSUGRA =
eK

κ2
4

(
Kαβ̄DαWDβ̄W − 3|W |2

)
(3.61)

which together with an uplifting term14

Vup =
eK

κ4
4

∆2 (3.62)

14Here we are treating ∆2 as a constant, as it would arise by considering, e.g., F-term uplift. As in [43]

we will not delve on the actual microscopic origin of this uplifting mechanism, as it will not affect the

subsequent discussions.
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give us the final scalar potential

V = VSUGRA + Vup . (3.63)

Notice that if Wnp does not depend on S and Φ the full superpotential will still be

invariant under the complex shift (3.39). Hence, if we also assume that K ′ does not depend

on S and Φ and follow our previous discussion, we have that whenever gf̄ ∈ R there will

be a real shift of the form
Φ = Φ0 + λ

(
1 +

g

f
U

)
S = S0 + g

f

Φ2

1 + g
fU

with λ ∈ R (3.64)

that leaves W and K invariant. Therefore both VSUGRA and Vup will be invariant and this

direction in field space will be a flat direction of the full scalar potential.

We may now consider relaxing the above assumptions on Wnp and K ′. For instance,

let us consider a non-trivial dependence of the prefactor A on Φ, as done in [78]. In general,

such a dependence may or may not be periodic in the lattice of Φ. If on the one hand it is

not periodic, then it should be such that A is invariant under the discrete shift symmetry of

section 3.3 that shifts fields and flux quanta simultaneously. Therefore, it will most likely

depend on Φ2 through a function of Wflux, and so it will be invariant under the real shift

symmetry (3.64). If on the other hand the dependence is periodic it must be bounded,

so we expect it to be subdominant with respect the dependence in Wflux for large values

of Φ. The same observations apply to the potential dependence of K ′ on Φ, for instance

through one-loop corrections, which as stated above we assume negligible. Therefore, up

to this degree of approximation the full scalar potential should develop a flat direction

whenever gf̄ ∈ R, and a very light direction in field space whenever we slightly violate this

condition. In the following we will consider the consequences of this feature in the simplest

case, namely when A and K ′ do not depend on Φ.

As in our previous discussion of the no-scale case, the variable Ŝ defined in (3.55)

remains constant and equal to its vev along such a flat direction of V , and very close to it

when |δ| ∝ Im(g/f) is very small. We may then apply the strategy of [30] to Ŝ and all the

complex structure moduli, replacing them by their vevs in W and K. We thus obtain an

effective potential for T and Φ of the form (3.63), where now VSUGRA and Vup only depend

on T and Φ, through the quantities

W = W0 +Ae−aT (3.65)

K = −3 log(T + T̄ )− log
[
4su+ (1 + ε)(Φ′ − Φ

′
)2 + ε(Φ′ + Φ

′
)2
]

where u, s and ε are as in (3.58). All these quantities as well as a ∈ R and A, W0 ∈ C
are treated as constants. Notice that even if the inflaton candidate Re Φ′ appears in the

Kähler potential there is a priori no η-problem, as |ε| � 1 and so the kinetic term for Φ is

dominated by the coefficient of Im Φ′ in K.
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Given this effective theory, we are able to stabilise the Kähler modulus as in the KKLT

proposal [79]. Cancelling the F-term of T in the vacuum we arrive to the relation

DTW = 0→W0 = −1

3
Ae−aT0(2aReT0 + 3) , (3.66)

where T0 is the value of T at the KKLT AdS vacuum. For simplicity, in the following we will

assume that W0, A ∈ R, so that ImT0 = 0. The introduction of the uplifting term (3.62)

will shift the Kähler modulus vev. For instance, in order to obtain a Minkowski vacuum

state one should minimise the scalar potential for every field in the vacuum and impose

V |vac
tot = 0 from which we obtain the following relations

A = − 3W0e
at(at− 1)

2a2t2 + 4at− 3
, ∆2 =

12a2t2
(
a2t2 + at− 2

)
(2a2t2 + 4at− 3)2 W 2

0 κ
2
4 , (3.67)

describing implicitly the new value for t = 〈ReT 〉, while 〈ImT 〉 still vanishes.

We can see that the ingredients for Kähler moduli stabilisation do not change signif-

icantly the mass hierarchies obtained in the no-scale case. Indeed, if we denote by ϕ and

ξ the canonically normalised components Re Φ′ and Im Φ′, respectively, we find that in

the vacuum

m2
ϕ =

ε2W 2
0

8ust3
+O

(
t−4
)

, m2
ξ =

W 2
0 (1 + ε)2

8ust3
+O

(
t−4
)
, (3.68)

m2
ReT =

a2W 2
0

8ust
−

5
(
aW 2

0

)
8ust2

+O
(
t−3
)

, m2
ImT =

a2W 2
0

8ust
−

3
(
aW 2

0

)
8ust2

+O
(
t−3
)
. (3.69)

which reproduces (3.51), (3.52) and the usual mass for the Kähler modulus in KKLT-like

schemes. Again, the mass of the inflaton candidate is strongly suppressed with respect

the other moduli by the parameter ε, and the mass of its partner ξ is of the same order

of magnitude as the Kähler moduli sector. Multifield effects during inflation will then be

negligible as long as

|ε| < 10−2 . (3.70)

Given these expressions, one is able to accommodate a realistic setup by for instance

taking the following set of parameter values

κ4A = −1.6 , a =
2π

15
, κ4W0 = 0.09 , su = 10 , ε = 2.3× 10−2 , (3.71)

so that the Minkowski vacuum is found for

t = 10.8 , ∆2 = 0.0148 (3.72)

and the above masses are given by

mϕ = 6.4× 10−6MP , mξ = 2.8× 10−4MP ,

mReT = 8.1× 10−4MP , mImT = 9.9× 10−4MP . (3.73)
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Inflaton potential and backreaction. Let us now analyse the effect of moduli sta-

bilisation and backreaction during inflation. First notice that, even in this supergravity

description, the kinetic term for the inflaton candidate φ = Re Φ′ depends on itself due to

the breaking of the shift symmetry. The definition of the canonically normalised variable

ϕ =

∫ √
2KΦΦ̄ dφ , (3.74)

is non-trivial. In particular, for the case at hand we see that

√
2KΦΦ̄ =

√
su+ ε(1 + 2ε)φ2

su+ εφ2
. (3.75)

which admits an analytic integral but it does not admit an analytic inverse. However, since

|ε| � 1 we may approximate this expression by

√
2KΦΦ̄ ' (su+ εφ2)−1/2

(
1 +

ε2φ2

su+ εφ2

)
=

1√
su

(
1− εφ2

2su

)
+O(ε2) (3.76)

where in the second equality we have expanded around ε = 0. Integrating the last expres-

sion we arrive to

ϕ =
φ√
su

(
1− εφ2

6su

)
, (3.77)

whose inverse involves roots of a polynomial of degree 3. Since this effective 4d supergravity

description is supposed to be valid in the small field limit we may assume that

|ε|φ2 � 6su→ φ ∼
√
suϕ , (3.78)

and use this relation in the following.

Let us now address the backreaction effects of the Kähler modulus and the inflaton

partner ξ. For this we will employ perturbation theory, where we define

ReT = t+ δReT (ϕ) , ImT = 0 + δImT (ϕ) , ξ = 〈ξ〉+ δξ(ϕ) , (3.79)

with t, and 〈ξ〉 = 0 are vevs of the backreacting fields in the Minkowski vacuum. Assuming

that the fluctuations are small and minimising the scalar potential for them we find that

δReT (ϕ) =
3ε2ϕ2

2a3t2
+O

(
H2

m2
T

)
, δImT (ϕ) = 0 , δξ(ϕ) = 0 . (3.80)

Notice that the backreaction of Re T is suppressed by a factor of t2 as compared to similar

setups, like e.g. in [43]. The main reason is that in our setup the Kähler modulus is

not coupled to the inflaton neither via the superpotential nor the kinetic terms. It is only

coupled via the overall factor of eK in the scalar potential. One way to check the consistency

of this result is to plot the scalar potential in the plane (Re T, ϕ) for the benchmark set of

parameter values (3.71), as done in figure 5. Indeed, there we see that the trajectory of

minimum energy (represented by the darkest blue colour) is at this level of approximation
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Figure 5. Scalar potential evaluated in the (Re T, ϕ) plane for the set of parameters (3.71) where

colder colours mean smaller values of V .

a straight line in the (Re T, ϕ) plane. This means that the Kähler modulus backreaction

effects are essentially negligible. Numerically we have that

δReT (ϕ) ∼ 10−4ϕ2 , (3.81)

and the leading order contribution in the scalar potential will be Vback ∼ −1.55× 10−16ϕ4.

The scalar potential taking into account both backreaction effects and the flattening

induced by the kinetic term is then

V =
ε2W 2

0

16ust3
[
ϕ2 − 2εϕ4

]
+ O

(
ε4,

1

t4

)
, (3.82)

where the ϕ4 term in the former expression arises only due to the non-trivial kinetic term,

and not to the backreaction of heavy moduli. Unfortunately, when we plug the set of

parameters (3.71) into this potential we find a supergravity model where the slow-roll

conditions cannot occur for more than ∆ϕ ∼ 6MP and so the necessary number of e-folds

cannot be attained. Of course, this supergravity description is only valid for the small-field

limit. At large-field values we should not trust the supergravity scalar potential, which

should be replaced by the DBI potential of section 2. By the analysis of subsection 2.5

we obtain that the corresponding flux-flattened potential would indeed attain the 60 e-

fold of inflation with cosmological observables within current experimental bounds. The

above analysis should then be understood as a means to estimate the magnitude of the

backreaction effects. Indeed, if this magnitude is already negligible for (3.82) we expect

it to be even less important for the DBI scalar potential, since the effect of flux-flattening
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will lower the potential energy. We have found this to be a general feature of the effective

supergravity models of the kind (3.65), irrespective of the set of effective parameters chosen.

In fact, for a different choice of parameters one may easily construct models where 60 e-

folds of inflation are attained and with realistic cosmological observables, already at the

supergravity level.15

4 Conclusions

In this paper we have analysed an interesting class of models of F-term axion monodromy

inflation [15] that arise in type IIB/F-theory flux compactifications with mobile D7-branes,

of the kind proposed in [17, 18, 23]. The main observation that has triggered our analysis

is that the flux-induced potential on the D7-brane position field Φ presents large flattening

effects at large field values, due to the structure of the DBI+CS action. Flattening effect

of this kind had already been observed in [23], although for a very particular class of

background fluxes compatible with the symmetries of the model. We have found that

when one considers the most generic flux background, as one would need to do for the

models in [17], the flattening effects are much larger. This effect, dubbed flux flattening,

arises due to the different dependence that the inflaton potential and kinetics terms have

on Φ in the presence of generic background fluxes. It occurs that the kinetic terms grow

equally or faster than the potential and so, upon canonical normalisation and at large field

values, we find a potential that displays either a linear or smaller power-law behaviour. In

fact, we have argued that in setups where Φ is lighter than the complex structure moduli

of the compactification the latter case will apply, rendering flux flattening effects quite

generic. Moreover, in simple setups where one of the component of the complex field Φ

is much lighter than the other, we obtain a rather simple single-field inflationary model

whose potential only depends on one parameter Υ̂. We have made a rough estimate for

the range of values of this parameter and have shown that the related potentials nicely

reproduce CMB observables within the current experimental bounds, attaining values for

the tensor-to-scalar ratio as low as r ∼ 0.04.

In order to perform these estimates, and in order to determine how feasible are the scale

hierarchies that lead to single-field inflationary models, we have considered the embedding

of mobile 7-branes with periodic directions in type IIB/F-theory flux compactifications. As

in [17, 46] we have used the example of F-theory on K3×K3 to develop our intuition on

this system, and in particular on which kind of discrete and continuous symmetries will it

exhibit. This picture has served to formulate under which conditions the 4d supergravity

15Indeed, had we chosen the set of parameters

κ4A = −1.05 , a =
2π

26
, κ4W0 = 0.48 , su = 1.05 , ε = 6.3× 10−4 , t = 9.27 , ∆2 = 0.28 ,

we would have also found mass scales similar to (3.73) and a supergravity potential of the form (3.82).

However this potential would now be such that 60 e-folds are attained starting from ϕ? = 14.16MP , and

with CMB observables with values r = 0.069 and ns = 0.960. Again, the backreaction effects will be

negligible, more precisely of the order Vback ∼ −3.13 × 10−18ϕ4. Hence, this example constitutes a 4d

supergravity model of large-field inflation of interest on its own.
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scalar potential of a compactification with a mobile D7-brane will contain a flat or a

very light direction involving a particular component of Φ, which we then identify with

the inflaton field. In fact, we have found that the corresponding inflationary trajectory

also involves large displacements of the inflaton field S. Armed with an approximate flat

direction, it is no longer necessary to tune any of the quantities of the superpotential (3.40)

to a very small value like in [43] in order to obtain a low inflaton mass. Instead, we only need

to require that the complex structure moduli functions f and g have a relatively similar

phase when evaluated at the vacuum. We find that this milder requirement constitutes

an advantage in order to build models of D7-brane chaotic inflation in general Calabi-Yau

compactification, where f and g would depend on the period integrals. Finally, one may

use this 4d supergravity description to combine the D7-brane system with the necessary

ingredients to achieve Kähler moduli stabilisation. We have done so in a KKLT-like scheme

with a single Kähler modulus, finding that Kähler moduli stabilisation is compatible with

our single-field inflationary scenario for the hierarchy of scalar masses that the latter entails.

There is a series of directions which would deserve further attention in order to render

our flux flattening scenario more precise. First, as pointed out in [43], including Kähler

moduli stabilisation will induce the presence of imaginary anti-self-dual (IASD) background

fluxes, which will in turn modify the DBI+CS D7-brane action. Since in our supergravity

analysis the backreaction effects of Kähler moduli are negligible for our setup, we expect the

same to be true for the contribution of IASD fluxes. Nevertheless, it would be interesting

to generalise the D7-brane action computation of section 2 to include the presence of

IASD fluxes in order to directly verify this expectation. Moreover, in order to perform a

more accurate analysis of backreaction effects along the inflationary trajectory, it would be

interesting to describe the DBI+CS D7-brane potential and kinetic terms purely in terms

of 4d supergravity, as done in [43, 77] for the Higgs-otic scenario. Due to the complicated

square root dependence that arises due to the DBI action this seems in general quite a

challenging task, but it may be achievable for the simplified expressions that arise for the

choice of parameters made in subsection 2.4. Finally, we have analysed the compatibility

with Kähler moduli stabilisation in a very particular KKLT-like scheme. Since in our

models W0 is not very small, one may also consider combining the D7-brane system with

the moduli stabilisation scheme of the Large Volume Scenario [80], as already suggested

in [17].

One aspect that we have not considered is the backreaction of the inflaton field on the

complex structure moduli of the compactification. As pointed out in [81–84], such effects

may severely reduce the canonical field distance and therefore prevent the inflaton field to

perform the necessary excursion to attain 60 e-folds of inflation. It would be interesting

to compute such backreaction effects, either by specifying the complex structure moduli

functions in (3.40) in a explicit example and integrating them out together with U and

S, or by considering an intermediate effective theory with S, U and Φ that contains the

symmetries inherent to our scenario. In any event, we expect the general point made

in [43, 83] to also hold in our scenario. Namely, that these dangerous effects should be

absent when achieving a appropriate hierarchy of masses between the inflaton and the

closed-string moduli entering its kinetic term. Recently, it has been argued that creating
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such a hierarchy may lead to other problems like a flux scale above the Kaluza-Klein

scale [84]. In that respect, it is worth pointing out that in our setup there is no need

to make flux quanta large to achieve a low inflaton mass, and that the smallness of the

quantities ε and W0 that create the mass hierarchy may easily arise from their dependence

on complex structure moduli of the compactification on which the inflaton kinetic term does

not depend. Therefore such considerations would a priori not apply to our scenario. At

any rate, our proposed flux flattening effects and their embeddings into moduli stabilisation

schemes that we presented provide an interesting arena for these backreaction issues to be

concretely addressed. We hope to return to these issues in the future.
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A SL(2,R) transformations of the Kähler and superpotential and alter-

native effective theories

Let us consider a Kähler potential of the form

K = − log
[
(Φ− Φ)2 − (S − S)(U − U)

]
+K2 (A.1)

where K2 does not contain any dependence on U, S,Φ. Then following [85–88] we see that

K is invariant under a SL(2,R)U symmetry up to a Kähler transformation. More precisely

we have that by under the following field redefinitions

U → aU + b

cU + d
(A.2)

S → S − c Φ2

cU + d
(A.3)

Φ → Φ

cU + d
(A.4)

with a, b, c, d ∈ R and ad− bc = 1, the Kähler potential transforms as

K → K + log |d+ cU |2 . (A.5)

Let us now take a superpotential of the form

W = n̂ + m̂U − nS + m
(
Φ2 − SU

)
+ 2fΦ +W2 (A.6)
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where W2 and the calligraphic letters are functions of other moduli but not of U, S,Φ.

Applying the above set of field redefinitions and taking into account the Kähler transfor-

mation (A.5) we obtain

W →W ′ = n̂′ + m̂′ U − n′ S + m′
(
Φ2 − SU

)
+ 2fΦ + (cU + d)W2 (A.7)

where

n′ = dn + bm , m′ = am + cn , n̂′ = dn̂ + bm̂ , m̂′ = am̂ + cn̂ . (A.8)

In particular, if n and m have the same phase we can always choose a and c such that

m′ = 0. In this case, for f = 0 we have a flat direction along Re Φ. One can then see that,

in terms of the original variables this precisely corresponds to the trajectory (3.38), with

r/s = −c/a.

Interestingly, one can use this freedom to obtain an expression for W and K more

suitable for the purposes of section 3.4, namely to obtain an effective theory for the fields

Φ and T in order to analyse moduli stabilisation. For this, recall that n, m, n̂, m̂ are

functions of the complex structure moduli of the compactification. Let us now denote their

numerical value at the vacuum Φ = 0 by their non-calligraphic version. That is,

n = n|Φ=0 , m = m|Φ=0 , n̂ = n̂|Φ=0 , m̂ = m̂|Φ=0 . (A.9)

Now, as these quantities are numbers we can do the field redefinition (A.2)–(A.4) with

parameters

a = 1 b = 0 c = −Re
(m
n

)
d = 1 . (A.10)

In terms of the new variables we have the same Kähler potential (A.1), and the new

superpotential

W = n̂ +
(
m̂− Re

(m
n

)
n̂
)
U − nS +

(
m− Re

(m
n

)
n
) (

Φ2 − SU
)

+ . . . (A.11)

and so, if we write this superpotential in the form (3.40) we have that at the vacuum

g

f
= iIm

(m
n

)
= i

∣∣∣m
n

∣∣∣ sin (θn − θm) (A.12)

where θm, θn are the phases of m and n, respectively. By our assumptions of the main text

this difference of phases is very small and so this is a very small number. We then recover

a shift-symmetric Kähler potential and a superpotential with new modulus dependent

coefficients. Near the vacuum the coefficient for Φ2 is much smaller than those for the

closed string moduli, and a slight misalignment of phases plays the role of an effective

µ-term. This µ-term is in particular much smaller than the coefficient of S and with a

phase that differs by eiπ/2. Under these circumstances it seems quite reasonable to apply

the strategy of [30] to the new complex structure and dilaton S, with the latter differing

slightly from the variable (3.55). After that we obtain an effective theory for Φ given by

W = W0 + µΦ2 + . . . µ = inIm
(m
n

)
(A.13)
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Figure 6. Spectral index ns and tensor-to-scalar ratio r in terms of Υ with Ĝ = 0.003 for N∗ = 50

and N∗ = 60 e-folds.

and a Kähler potential of the form (A.1), where now S and U are replaced by their vevs.

As in section 3.4 one may add the contribution from the Kähler moduli sector to address

full moduli stabilisation below the flux scale. For instance, in a KKLT-like scenario one

would obtain an effective potential of the form

W = W0 + µΦ2 +Ae−aT (A.14)

and a Kähler potential given by

K = −3 log
[
T + T̄

]
− log

[
4su+ (Φ− Φ)2

]
(A.15)

with s = 〈ImS〉 and u = 〈ImU〉. The computational details of the complex structure and

Kähler moduli backreaction and the conditions needed in order to have trans-Planckian

field ranges are then similar to the ones discussed in [43].

B Other single field potentials

In this appendix we perform an analysis for the D7-brane single field potential of subsec-

tion 2.3 along the lines of subsection 2.5, but for different values of Ĝ and Υ that may

arise in different setups from the one of subsection 3.4. We considered two regions in the

Ĝ parameter space, namely Ĝ ∼ 0.003 and Ĝ ∼ 3, and vary Υ which is the parameter that

controls the deviation from the model of [23]. We show how the cosmological observables

vary in the two regimes for 0 6 Υ 6 20 in the figures 6 and 7.

We see that in both cases the effect of the parameter Υ is quite dramatic: it leads

to a significant lowering of the tensor-to-scalar ratio r as expected from the flattening

induced by the self-dual component of the flux F . At the same time the spectral index

ns generally moves closer to 1 as Υ increases. This behaviour occurs for both regimes of

Ĝ that we chose to explore. The rôle of this second parameter is to provide (at Υ = 0)

an interpolation between models with quadratic and linear potential as already observed

in [23] (a similar interpolation between quadratic and linear potentials was also observed

in [26, 27]). Therefore if we allow for more general values of Ĝ and Υ than the ones used

in section 2.4 we see that it is possible to explore additional regions of the ns − r plane,

namely we may start with any potential interpolating between quadratic and linear (the
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Figure 7. ns and r in terms of Υ with Ĝ = 3 for N∗ = 50 and N∗ = 60 e-folds.

Figure 8. Region for the spectral index ns vs. tensor-to-scalar ratio r for the two values of Ĝ

(orange region corresponds to Ĝ = 0.003 and green to Ĝ = 3) and 0 6 Υ 6 20.

exact interpolation being set roughly by Ĝ) and by increasing Υ access regions with a lower

value of the tensor-to-scalar ratio r. To show this more explicitly we chose to superimpose

over the Planck collaboration results [45] the two regions explored in the ns − r plane,

showing the result in figure 8.
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[85] G. Lopes Cardoso, D. Lüst and T. Mohaupt, Moduli spaces and target space duality

symmetries in (0, 2) Z(N) orbifold theories with continuous Wilson lines, Nucl. Phys. B 432

(1994) 68 [hep-th/9405002] [INSPIRE].

[86] I. Antoniadis, E. Gava, K.S. Narain and T.R. Taylor, Effective mu term in superstring

theory, Nucl. Phys. B 432 (1994) 187 [hep-th/9405024] [INSPIRE].
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