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Polarization bandgaps and fluid-like elasticity
in fully solid elastic metamaterials
Guancong Ma1,2,*, Caixing Fu1,*, Guanghao Wang3, Philipp del Hougne1, Johan Christensen4, Yun Lai3

& Ping Sheng1,2

Elastic waves exhibit rich polarization characteristics absent in acoustic and electromagnetic

waves. By designing a solid elastic metamaterial based on three-dimensional anisotropic

locally resonant units, here we experimentally demonstrate polarization bandgaps together

with exotic properties such as ‘fluid-like’ elasticity. We construct elastic rods with unusual

vibrational properties, which we denote as ‘meta-rods’. By measuring the vibrational

responses under flexural, longitudinal and torsional excitations, we find that each vibration

mode can be selectively suppressed. In particular, we observe in a finite frequency regime

that all flexural vibrations are forbidden, whereas longitudinal vibration is allowed—a unique

property of fluids. In another case, the torsional vibration can be suppressed significantly. The

experimental results are well interpreted by band structure analysis, as well as effective

media with indefinite mass density and negative moment of inertia. Our work opens an

approach to efficiently separate and control elastic waves of different polarizations in fully

solid structures.
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T
he past decades witnessed a revolution in the study of
classical waves brought about by man-made
sub-wavelength composite structures, denoted metamater-

ials, which hold the potential of unprecedented functionalities
that go far beyond those offered by Nature. The study of
metamaterials has thrived in electromagnetism1,2, optics3,4, fluid-
borne acoustics5,6 and also in structure-borne elastic waves7—a
ubiquitous type of classical waves that has pivotal importance in
many areas of studies and applications, such as mechanical and
civil engineering, geophysics and seismology. Many intriguing
phenomena that were first discovered in electromagnetism, such
as cloaking8–10, negative refraction11,12, super-resolution
focusing12,13, have been successfully demonstrated in thin
plates. ‘Pentamode’ metamaterials demonstrate extreme
mechanical properties through intricate designs of strut
frameworks14–21. Ambitious projects also aim to reduce the
destructive power of seismic waves22–24. However, elastic waves
are distinct from both electromagnetic and acoustic waves by
possessing a richer variety of polarization characteristics—waves
with both longitudinal and transverse nature are allowed25. While
these characteristics bring new features, they also make elastic
waves more complex and more difficult to handle than
electromagnetic and acoustic waves.

Sub-wavelength building blocks with local resonances26,27 have
been widely utilized for the design of acoustic metamaterials.
Double negativity in acoustics28–30, sub-wavelength wave
guiding31, super-lensing32,33 and super-absorption34,35, are
examples among a plethora of exotic functionalities.
Remarkably, recent theoretical studies linking local resonance
with elastic waves in two-dimensional systems have found
fascinating consequences and unique properties, such as
negative shear modulus36, fluid-like behaviour37, super-
anisotropy37 and so on. However, because of the structural
complexity, these fascinating systems present tremendous
experimental challenges. Consequently, the appeal of resonant
elastic metamaterials with unique properties and richer physics in

polarization control beyond their acoustic and electromagnetic
counterparts mostly remained theoretical.

Here we present the design and experimental realization of a
type of three-dimensional locally resonant elastic metamaterial,
which exhibits polarization bandgaps and ‘fluid-like’ elasticity.
Based on such metamaterials, we construct unique rod-shape
structures, which we denote as ‘meta-rods’. By measuring their
response functions for flexural, longitudinal and torsional
vibrations, we demonstrate the selective suppression of these
vibrations by polarization bandgaps and unprecedented elastic
rod properties. In particular, we observe that in a certain
frequency regime, only the longitudinal vibration can be excited
in the meta-rod, whereas flexural vibrations are forbidden—a
hallmark elastic property of fluids (hence denoted ‘fluid-like’
elasticity). Whereas in another configuration of the same
metamaterial units, the meta-rod can significantly suppress the
torsional vibration in a certain frequency regime. These unusual
characteristics revealed by experiments are well interpreted by
band structures as well as effective medium theory that exhibits
negative moment of inertia and indefinite mass densities.

Results
Metamaterial design. A photographic image of the unit cell is
shown in Fig. 1a. A steel cylinder, with a radius r¼ 15.8 mm and
height h¼ 37.6 mm, is coated with silicone rubber. The cylinder’s
axial direction is defined as the z axis, and the xy-plane is parallel
to the end surfaces. The silicone layers on the top and at the
bottom of the steel cylinder are both 1 mm in thickness; whereas
the silicone covering the curvilinear side has a thickness of 5 mm.
The silicone-coated steel cylinder is then cast inside an epoxy cube
with each side a¼ 60 mm. The physics of this unit cell can be
understood with a simple mass-spring-mass model, as shown in
the inset of Fig. 1a. Here the steel cylinder and the epoxy cladding
mostly have the role of two block masses, M1 and M2, which
interact through compression and expansion of the silicone rubber
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Figure 1 | The unit cell and its eigenmodes. A photographic image of the unit cell is shown in a. A simple spring-mass model of the system is shown in the

inset, wherein M1, M2 are the mass of the core (steel cylinder), and shell (epoxy), respectively; K and K0 are different spring constants, which are tunable via

the thickness of the silicone coating at relevant positions. Simulated displacement profiles of the three translational modes (TMs) are shown in b.

Two modes are degenerate at 1,651 Hz, denoted by TM(x) and TM(y), in which the steel and epoxy oscillate anti-phase in the xy-plane. A third mode,

denoted by TM(z), is found at 2,637 Hz, in which the steel core and epoxy oscillate anti-phase in the z-direction. Three rotational modes (RMs) are shown

in c, characterized by the out-of-phase rotational oscillation of the steel and epoxy along a certain axis (indicated in the parentheses). In b,c, black cones

indicate the amplitude and direction of the displacement. Colours represent the displacement component perpendicular to the slicing plane, with red/blue

representing positive/negative displacement, respectively. All eigenmodes were calculated using an isolated unit cell.
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that acts as springs. Owing to the difference in the
silicone’s thickness, the spring constants in relevant positions are
different (denoted by K for the side, and K0 for top and bottom,
respectively).

The consequence of the difference in silicone thicknesses or
spring constants can be immediately seen by investigating
the eigenmodes of an isolated unit cell using finite-element
simulations. Three translational modes (TMs) are found, in
which the steel cylinder undergoes translational vibration and
moves out-of-phase with respect to the epoxy cladding, which are
shown in Fig. 1b. Two of these modes are degenerate at 1,651 Hz,
in which the cylinder and the epoxy vibrate in the xy-plane.
We denote these two modes as TM(x), TM(y). The third mode,
wherein the steel cylinder and the epoxy vibrate in the
z-direction, has a much higher eigenfrequency at 2,637 Hz.
This mode is denoted by TM(z). The large mismatch in
eigenfrequencies between TM(z) and TM(x, y) is mainly due to
the difference in the silicone coating’s thickness. Basically, a larger
thickness means a smaller spring constant, thereby leading to a
lower eigenfrequency; whereas a smaller thickness indicates
the opposite. By changing the thickness of the silicone rubber,
we can conveniently engineer the corresponding eigenfrequencies
independently. This is shown in Supplementary Fig. 1 and
Supplementary Note 1.

Three rotational modes (RMs) are also found in simulations,
wherein the steel cylinder and epoxy oscillate rotationally about
each of the three spatial axes in an anti-phase manner, as shown
in Fig. 1c. Their physical consequences are demonstrated and
discussed below.

Quasi-one-dimensional arrays as meta-rods. By assembling the
unit cells into a quasi-one-dimensional periodic array, we obtain
an elastic structure commonly known as a rod. An elastic rod
can sustain four distinct branches of waves: two flexural,
one longitudinal and one torsional25,38. They are easily
distinguishable through their vibration profiles, as schematically
illustrated in Fig. 2a. Characterized by the rod’s bending, flexural
modes are dominantly transverse in their nature, therefore, there
are two orthogonal polarizations. In the longitudinal vibration,
displacements in the rod mainly are along the axial direction,

accompanied by a small amount of breathing. In the torsional
mode, a rod engages in rotational and twisting vibration along its
own axis. These three types of vibrations can be identified
through their dispersion signatures at low frequencies. The
longitudinal and torsional waves have linear dispersions. Flexural
waves, however, are governed by biharmonic equations25,38,
therefore, have distinctive quadratic dispersion relations. As we
shall next demonstrate, the metamaterial unit cells endow the
rods with very unusual vibration properties, hence they are
denoted as ‘meta-rods’.

From the unit cell’s geometry, it is straightforward to see that
there exist two different ways to build the quasi-one-dimensional
array. One is to repeat the unit cell in the z-direction, that is,
along the steel cylinder’s axis. We denote this array as ‘sample-kz’.
The second type of array, denoted by ‘sample-kx’, has periodicity
in the x (or y) direction, that is, perpendicular to the steel
cylinder’s axis. These samples are shown in Fig. 2b,c (top). Next,
we demonstrate the emergence of unique vibrational properties
such as the intriguing fluid-like elasticity, and the extinction of
torsional vibration.

Fluid-like characteristic. First, we excite sample-kz by a force
perpendicular to the rod. This is realized by the experimental
set-up shown in Fig. 3a. Simply put, the sample is uprightly
fixated on an aluminum plate that is supported on low-friction
sliding tracks, which confine their motion to one single direction.
We then connect the aluminum plate to an electromagnetic
shaker, whose vibration causes the plate to move back and forth
along the tracks (see Methods for more details). For the meta-rod,
this transverse excitation will excite flexural vibrations. We obtain
the response function by dividing the acceleration (with direction
along the excitation force) measured on the top of the sample
with the one measured on the aluminum plate. This is plotted in
Fig. 4a as a function of frequency (blue circles). A bandgap is
clearly seen in B1.2–1.6 kHz. We further use a laser Doppler
vibrometer to map the displacement parallel to the actuation
direction on a facet of the meta-rod at 1,350 Hz, that is, inside
the bandgap. The result is shown in Fig. 4b. It is seen that the
displacement amplitude rapidly decays away from the actuation
position (z¼ 0 mm). This means that unlike ordinary elastic rods,
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Figure 2 | Vibration modes of a rod and the band structures of meta-rods. (a) Shows schematic drawings of four fundamental vibration modes of an

ordinary rod. Two are flexural modes, characterized by the bending of the rod under excitation forces that are transverse to the rod. One is a longitudinal

mode, in which the particles dominantly oscillate along the rod, accompanied by a small degree of breathing. Torsional mode describes the rod’s twisting

oscillation along itself. Two different types of meta-rods are shown in b, c (top), together with their band structures (bottom). Here blue/red markers

highlight the flexural/longitudinal branches in sample-kz. Blue/red shaded regions are flexural/longitudinal bandgaps, respectively. In c, orange markers

highlight the torsional branch of sample-kx. A torsional bandgap is shaded in orange.
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transverse forces with frequencies inside the bandgap cannot
excite the flexural vibration in our sample.

Next, the same sample is subjected to a pushing and pulling
force exerted along the rod’s axis. To achieve this, the meta-rod is
fixed on a thick aluminum plate, which is connected to the
shaker, as shown in Fig. 3b. The shaker excites the longitudinal
branch in the meta-rod. The measured response function is
shown with red circles in Fig. 4a. A bandgap is found covering
B1.8–2.9 kHz, which is spectrally mismatched with the flexural
bandgap. Comparing the sample’s flexural and longitudinal
responses, an intriguing spectral regime can be found in
B1.2–1.6 kHz. In this regime, the meta-rod can only withstand
the longitudinal vibration. Transverse vibrations cannot

be sustained. The response difference between these two
polarizations exceeds 39dB around 1.4 kHz. Traditionally, such
a characteristic is expected only in fluids, and is not found in any
solid material. We have also carried out numerical simulations for
both excitations. The results are shown in Fig. 4a. Good
agreement with experiments is seen. Slight mismatches are
attributed to fabrication errors.

The underlying physics of this fluid-like elasticity can be
understood by the band structure, as shown in Fig. 2b. A force
transverse to the meta-rod excites a flexural branch, which can be
identified via its quadratic dispersion at the low-frequency
limit. In sample-kz, the transverse force will also excite one of
the TM(x, y), in which the motion of steel core/epoxy are in the
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Figure 3 | Experimental set-ups. An electromagnetic shaker is used for transverse excitation in a; and longitudinal excitation in b. Rotational excitation is

achieved by using an electric motor, which exerts a torque pulse about the meta-rod’s axis (x axis), as shown in c. Accelerometers are used to obtain the

elastic responses at different positions.
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Figure 4 | Fluid-like elastic characteristic of the meta-rod with periodicity in z. (a) Shows measured response functions. Red/blue represents

longitudinal/flexural response, respectively; makers/curves represent measured/simulated results. Spectrally mismatched bandgaps are clearly observed.

Specifically, a bandgap for flexural waves is seen in B1.2–1.6 kHz, which overlaps with longitudinal waves passband. The response difference exceeds 39 dB

(B1,350 Hz). This means only longitudinal waves can be sustained in this frequency regime, an intriguing elastic property like fluids. Slight mismatches

between experiment and simulations are attributed to fabrication errors. (b) Shows the out-of-plane displacement field of sample-kz under transverse

excitation. The frequency is 1,350 Hz, that is, inside the flexural bandgap. The colour map represents normalized displacement amplitude. The cyan

solid/dashed lines delineate the positions of the unit cells/steel cylinders, respectively. The aluminum plate for excitation is situated at z¼0 mm.
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xy-plane. This mode couples with flexural vibrations. Their
anti-crossing produces a polariton-like dispersion (blue markers,
Fig. 2b) and a bandgap (shaded blue in Fig. 2b.) Similarly, a force
along sample-kz excites the longitudinal branch together with
TM(z) (red markers, Fig. 2b). Owing to the thinner silicone
rubber at the two ends of the steel cylinder, the longitudinal
bandgap opens at much higher frequencies (shaded red in
Fig. 2b). The flexural bandgap, therefore, overlaps with the
longitudinal pass band, giving rise to a region that only sustains
longitudinal vibrations. Owing to the isotropy in sample-kz in the
xy-plane, this characteristic disregards the polarization of flexural
waves. Fluid-like elasticity is the consequence.

By simply changing the orientation of the same unit cells,
sample-kx has distinctive features. Detailed experimental results of
numerical investigations and relevant discussions can be found in
the Supplementary Fig. 2 and Supplementary Note 2. In short, a
‘partially fluid-like’ region is observed in the frequency range
covering B1.7–2.5 kHz. In sample-kx, the longitudinal branch
couples with TM(x); and flexural branches interact with TM(z) or
TM(y), depending on the polarization. Also, the eigenfrequencies
of TM(x) and TM(y) are almost identical (they are degenerate in
an isolated cell), therefore, fluid-like elasticity only exists for the z-
polarized flexural waves. In practice, this characteristic can
potentially be utilized to switch from fluid-like to solid-like—
simply rotating sample-kx along its axis (x axis) by 903.

Torsional bandgap and negative moment of inertia. RMs are
found in our unit cell (Fig. 1c). RMs have long been theoretically
studied in phononic crystals and metamaterials37,39–43. Yet,
owing to the difficulty in excitation, direct observations of these
unique modes and their consequences are still lacking. The
meta-rod’s geometry offers an interesting opportunity to observe
and to appreciate the physical significance of RMs via torsional
vibration (Fig. 2a).

We choose sample-kx to investigate the effect of RM on
torsional vibration. First, the meta-rod’s torsional branch can be
excited by a dynamic torque about the x axis. The same torque
can also trigger RM(x), in which the steel cylinder and epoxy
rotate about the x axis in an anti-phase manner. RM(x) is found
at 1,646 Hz (Fig. 1c). Similarly, the anti-crossing due to counter-

rotating modes (RM(x) and the torsional branch) yields a
polaritonic dispersion. Through the torsional branch’s linear
dispersion signature and the system’s rotational displacement
profile, this can be identified in the band structure (orange
markers, right panel of Fig. 2c). A bandgap for torsional vibration
is also highlighted in orange in Fig. 2c. Experimentally, we verify
this torsional bandgap by rotational actuation with a set-up
shown in Fig. 3c, in which an electric motor is used to apply a
torque pulse to the meta-rod. The measured response function
indeed confirms the existence of such a bandgap, as shown in
Fig. 5a. The measured results show good agreement with
numerical simulation.

We can gain more insights about the meta-rod’s torsional
behaviours from its displacement profiles at certain key
frequencies, which are plotted in Fig. 5b. At the lower gap edge,
the meta-rod undergoes pronounced twisting. However, in each
unit cell, the steel cylinder vibrates in phase with respect to its
epoxy cladding. Inside the bandgap, torsional vibration exponen-
tially decays away from the actuation position. At the high gap
edge, we can clearly observe that all steel cylinders are rotating
out-of-phase with respect to the epoxy. These observations
resemble closely the mode profile of acoustic/elastic metamater-
ials with negative effective mass density6. In a similar spirit,
effective moment of inertia of the meta-rod per unit, I

$
, can be

defined as D~t ¼ I
$
�~a. Here D~t is the effective torque applied on

the unit, and~a is the effective angular acceleration of the unit. By
using the eigenfunction of RM(x), we can easily calculate the x
component of inertia Ix. The result is plotted in Fig. 5a as a
function of frequency. It can be seen that Ix is negative near
1.5 kHz. For torsional vibration, relevant wave parameters are the
moment of inertia and torsional rigidity. Torsional waves
exponentially decay if the rod has single negativity in moment
of inertia. This is in alignment with both observation and
analysis. The extraction scheme of effective moment of inertia is
shown in Supplementary Note 3.

A torsional bandgap is also numerically found in sample-kz

(Supplementary Fig. 3), wherein RM(z) has an important role.
However, we did not observe this bandgap experimentally. We
speculate that the discrepancy probably owes to the non-ideal
bonding between the steel/silicone/epoxy interface(s) around the
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accelerations at two ends of the sample, with rotational actuation situated at the top the sample (Fig. 3c). The measured (orange markers) and simulated

response functions (orange solid curves) are plotted in a as functions of frequency (left axis). A bandgap is seen near 1.3–1.6 kHz. The calculated

effective moment of inertia Ix is shown in orange dashed curves (right axis). It is seen that Ix turns negative inside the bandgap. Inset shows a drawing of

the sample-kx. (b) Shows the simulated displacement profile of the sample-kx at the lower gap edge (1.3 kHz), inside the bandgap (1.5 kHz), and at the

higher gap edge (1.7 kHz). Here actuation position is on the top of the meta-rod. Black cones indicate the amplitude and direction of the displacement

(in logarithmic scales). Colour fields represent the displacement component that is perpendicular to the slicing plane, with red/blue colours representing

positive/negative displacement, respectively.
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curvilinear surface, which may result in slipping in circumstances
of torsional vibration, and, therefore, leads to ineffectiveness of
excitation. Relevant discussions are included in Supplementary
Note 4.

Discussion
The elastic properties of our meta-rods are vastly different from
rods made of traditional solid materials. Yet they all arise through
a simple mechanism: the anti-crossing between local resonances
in metamaterial units and a certain vibration branch of the rod.
Two types of eigenmodes are considered: translational and
rotational. For TMs, the structure is in fact quite similar to the
design first reported by Liu et al.26, that is, a spherical metal core
evenly coated with a layer of silicone rubber, and embedded in an
epoxy cube. Clearly, the unit cell in ref. 26 has a high-degree of
symmetry, and is isotropic in all three spatial dimensions.
Although a low-frequency bandgap can be created due to
negativity of mass density, the selection of vibration modes
cannot be realized. Here by breaking spatial symmetry, the
metamaterial becomes anisotropic. The consequence is that the
bandgaps for different polarizations are spectrally mismatched,
which manifest fluid-like behaviour in a certain frequency regime,
despite that all constituents are solid. This unique phenomenon is
a direct consequence of the richer freedoms of polarizations
existing in elastic metamaterials than that in acoustic
and electromagnetic metamaterials. Moreover, because this
characteristic is achieved via symmetry breaking, it is robust
against perturbations in material properties as well as flaws
in fabrication. These factors translate into the ease of
implementation. We further demonstrate with numerical
studies the robustness of these functionalities in systems with
different geometric shapes (Supplementary Figs 6,7 and
Supplementary Note 6), and different materials (Supplementary
Figs 8,9 and Supplementary Note 7). These results show that the
polarization bandgaps and the related functionalities can be easily
attained with a large variety of material choice and geometry
configurations. Such an unusual property expands the horizon of
elastic wave manipulations. For example, it may improve
impedance matching between solids and fluids as well as soft
tissues, in which transverse or shear waves cannot propagate. It
may also be exploited as a polarizer for elastic waves.

We note that similar fluid-like behaviours were theoretically
shown to arise in two-dimensional systems via intricate
hybridization of multipole local resonances37. However, the
microstructure is highly complex, therefore, presents a
tremendous fabrication challenge. The approach adopted here is
much more convenient and practical. Dirac-cone dispersion
in phononic crystals was also theoretically shown capable of
similar characteristics44. Nevertheless, the system relies on a zero
refractive index as well as accidental degeneracy, which imposes
high requirement of system parameters, making it less robust
against perturbations, and, therefore, is also difficult to realize.
In addition, lattice constants in phononic crystals are at the same
order of wavelength, whereas the lattice constant in our design is
deep sub-wavelength. On the other hand, ‘pentamode’
metamaterials, essentially skeletons of elongated struts joint
together at their tips so as to maintain rigidity, also demonstrated
vastly different transverse and compressional elastic
modulus14,16. These delicate structures are not fully solid, and
require advanced fabrication techniques17–19. Existing
experimental investigations focused more on their static
mechanical properties15–18,45 and shock responses21.

The metamaterial units can also be assembled into a
three-dimensional periodic lattice. It is seen that the properties
associated with TMs also emerge: spectrally mismatched
polarization bandgaps for longitudinal and shear waves are

found, and fluid-like elasticity exists. However, the effects of RMs
mostly disappear, since torsional branches do not exist in a bulk
solid. In a three-dimensional lattice, the fluid-like property can be
perfectly accounted for by effective medium. Here TMs have
dipolar symmetry hence they introduce anomalous effective
mass densities6,37,46,47. Owing to the mismatched
eigenfrequencies of TM(z) and TM(x, y), the effective mass
density tensor is extremely anisotropic: we found that certain
component(s) of the mass density tensor can become negative
while other components remain positive. Similar to indefinite
permittivity in electromagnetic systems48, these ‘indefinite
effective mass densities’ directly associate with the elastic wave
propagation. In fluid-borne acoustics, such indefinite mass
density usually can be realized by layer structures and lead to
hyperbolic dispersions49–52, that is, sound cannot propagate in
the direction wherein the effective mass is negative. Likewise,
elastic waves cannot propagate a medium with single-negative
effective mass12,13. However, in the context of elastic waves, the
physical consequences of this indefinite mass density is richer,
and can be used to attain polarization control. Numerical results
of a three-dimensional array and detailed discussions are
presented in the Supplementary Figs 4,5 and Supplementary
Note 5.

The meta-rod has another particularly interesting aspect in its
ability to resist shaking that is transverse to its axis, that is,
flexural vibration, at a deep sub-wavelength scale. In the
particular geometry of a rod, our design may hold great potential
in civil engineering. Flexural vibration is a major source of
potential damage for manmade structures during earthquakes. In
the experiment demonstrated in Fig. 3a, we emphasize that the
long thin meta-rod was fixed only at the bottom to a plate that
shakes horizontally—a configuration that faithfully reflects many
free-standing structures, such as pillars, skyscrapers, towers,
chimney, and so on. Yet this meta-rod shows resilience to lateral
shaking within the frequency regime of the flexural bandgap. It
can be seen in Fig. 4b that the vibration decays within one unit
cell, whose dimension is at the deep sub-wavelength scale
(wavelength of flexural wave at B1.3 kHz in epoxy exceeds one
meter). Therefore, counter-intuitively, the parts of the meta-rod
that are further away from the ground (z¼ 0) are more stable.
The vibration shielding functionality of meta-rods has been
videotaped and is demonstrated in Supplementary Movie 1.
In comparison, existing seismic protective solutions employ
sophisticated systems such as the massive roof-loaded ‘seismic
damper’ to protect skyscrapers. ‘Seismic shields’ installed in the
earth22,24 will have to mitigate both surface waves and body
waves, and have to deal with complexities such as the soil and
rock properties53,54. Our results suggest elastic metamaterials/
meta-rods as an interesting alternative. A similar vibration
shielding effect can also be obtained for longitudinal vibrations
(a demonstration in Supplementary Movie 2). We note that the
condition of anisotropy is not necessary for vibration shielding
applications. Using isotropic unit cells can bring longitudinal and
flexural bandgaps to overlap, creating a full bandgap capable of
stopping vibrations of all polarization types.

On the other hand, RMs and the negative effective moment
of inertia provide intriguing possibilities to mitigate torsional
vibrations, which have been recognized as a potential hazard in
machineries with rotating parts, such as drills, propulsion shafts,
and so on.

Methods
Sample fabrication. The metamaterials were fabricated one unit cell at a time.
Unit cells were joined together by acrylic super-glue. The materials are: Wacker
silicone rubber RTV-2 Elastosil M4440, Clear Casting Floral Arrangements
decorative epoxy resin.
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Measurements. For the measurement of the response spectra under transverse
and longitudinal excitations, we used a waveform generator (Agilent 33220A) to
send a pulse covering 0.5–3.5 kHz to an electromagnetic shaker (Brüel and Kjær
Vibration Exciter type-4809) through a power amplifier. The samples were super-
glued onto an aluminum plate. For transverse excitation, the sample and the
aluminum plate were supported by two parallel low-friction sliding tracks, which
confined the motion to one single direction. A facet of the aluminum plate was
then firmly attached to the shaker. For longitudinal excitation, a thicker aluminum
plate was used so that the plate’s bending modes located at frequencies higher than
our range of interest. The center of the plate was directly connected to the shaker.
Two tri-axial accelerometers (Dytran 3023A) were adhesive-bonded to relevant
positions. Details of experimental set-ups can be more easily seen in Fig. 3a,b.
The accelerometers measured the vibration along the excitation directions. The
exterior of our samples are relatively rigid and deformation is minimal. Still, to
obtain best results, we measured 24 points on the top surface of the sample, and
used the arithmetic mean to calculate the response functions. The signals were
recorded by a digital oscilloscope (Agilent DSO6014A).

To measure the torsional response, the meta-rod was fixed on a rotational stage
at its axial center at the bottom. The top was fixed to a DC motor that was
connected to the waveform generator. The two accelerometers measured the
tangential accelerations at the top and the bottom of the sample.

The vibrational profile (Fig. 4b) was acquired as follows. A piece of aluminum
kitchen foil (thickness B0.02 mm) was adhered to cover the facet of the sample to
be measured, which increased the reflectivity. A laser Doppler vibrometer
(Graphtec AT500-05) was mounted on a two-dimensional motorized translation
stage to scan the surface point by point. Our translational stage has limited travel
range that only covers four unit cells. The laser beam was perpendicular to the
measured surface, and was parallel to the excitation force. The sample was excited
by the shaker driven by a sinusoidal signal, and the measured data was recorded by
a lock-in amplifier (Stanford Research SR830).

Simulations. Numerical simulations were performed using the three-dimensional
solid mechanics module in COMSOL Multiphysics (v4.3a). The band structure and
eigenmodes were solved using eigenfrequency study, whereas the frequency
response functions were solved by frequency-domain study. Parameters used in
simulations are: for the epoxy, the Young’s modulus E¼ 3.8 GPa, Poisson ratio
n¼ 0.350, mass density r¼ 1,130 kg m� 3; for the steel cylinders, E¼ 180 GPa,
n¼ 0.250, and r¼ 7,850 kg m� 3; for the silicone rubber, E¼ 3.3 MPa, n¼ 0.477,
and r¼ 1,245 kg m� 3. In the calculation of frequency response functions,
dissipation is added to Young’s modulus of silicone rubber, that is, E¼ 3.3þ 0.3i
MPa. For the purpose of clear viewing, the displacement profiles shown in Fig. 5b
were obtained without dissipation.

Data availability. The data in this study are available from the corresponding
authors on request.
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