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1 Introduction

Inflation [1–5] offers a physical picture for the origin of cosmic structures that is firmly
supported by observations. While we have successfully tested its paradigm [6, 7], the
microphysics of inflation is largely unknown. New cosmological surveys have been pur-
posely designed to address this fundamental gap in our understanding of early Universe
physics. A crucial observable that is related to the particle content of the primordial Uni-
verse is non-Gaussianity. This refers to the information contained in correlation functions
beyond the power spectrum. The tightest bounds to date on the non-Gaussianity of primor-
dial density fluctuations are provided by large-angle Cosmic Microwave Background (CMB)
anisotropies. These have been able to constrain the bispectrum amplitude in various momen-
tum configurations with a sensitivity of ∆fnl & O(10) [8]. Upcoming galaxy surveys aim at
∆fnl ' O(1) [9–11], a significant theoretical thresholds that marks the separation between
fundamentally different mechanisms for inflation.

Non-Gaussianity from squeezed momenta configurations, i.e. arising from coupling
among modes of widely different wavelengths, is particularly important for model-building.
Its detection would rule out all inflationary models where primordial fluctuations are en-
tirely determined by the time-evolution of a single degree of freedom (single-clock), favoring
a more complex dynamics. Squeezed non-Gaussianity thus represents a unique probe for
the spectrum of masses and interactions during inflation. Another critical implication of a
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physical coupling in the squeezed limit would be the presence of a super-cosmic variance bias
for local observables [12]. The latter would need to be accounted for in order to correctly
match observations to the inflationary Lagrangian.

A number of directions are being developed for testing squeezed non-Gaussianity in the
large scale structure (LSS). Besides the bispectrum, observables that are highly sensitive to
the existence of such a coupling include the scale-dependent halo bias [13]. Fossil-type signa-
tures, in the form of an off-diagonal correlation between different Fourier modes of the density
field [14–19], are also highly sensitive to the presence of a long-short wavelength coupling.

Squeezed non-Gaussianity can be probed on a vast range of scales: searches on large-
angle CMB scales and in the LSS (10−4 Mpc−1 . k . 1 Mpc−1) will be complemented
by CMB spectral distortions observations. The latter provide access to scales up to k ∼
104 Mpc−1, opening up a window over 10 additional inflationary e-folds [20–22]. The black-
body spectrum of the CMB can be distorted by any mechanism resulting in an exchange of
energy (or photons) with the CMB after z ' 2 × 106 (at earlier times, thermalization pro-
cesses would be highly efficient and any produced distortion would be quickly erased) [23].
One may use spectral distortion to shed light on both the early and late universe, inves-
tigating processes such as cosmological recombination [24], reionization and structure for-
mation [25–29], decaying or annihilating particles [30–34], initial states for inflation [35],
primordial anisotropies [36], primordial black holes [37], and other possibilities. Spectral
distortion also arises from dissipation of primordial fluctuations. Super-horizon fluctuations
crossing inside the Hubble radius after inflation are damped by photon diffusion when their
wavelengths fall below the photon mean free path. Specifically, modes with wave-numbers
between 1 and 50 Mpc−1 dissipate during the y distortion era (z . 5× 104), modes between
50 and 104 Mpc−1 dissipate during the µ distortion era (2× 106 & z & 5× 104).1 The power
spectrum of primordial fluctuations on these scales can thus be probed through spectral dis-
tortion [39–43]. A correlation of the anisotropic distortion with temperature anisotropies is a
direct probe of a squeezed primordial bispectrum as pointed out for the first time in [44, 45]
for µ distortion, whereas distortion-distortion correlations probe primordial trispectra [46].
In [47] a µ-distortion map was calculated from Planck data and correlated with the temper-
ature map to constrain fnl in the squeezed limit.

In recent work, [48] (see also [49]), we stress the importance of also including y dis-
tortion in this context, not only to enlarge the range of scales over which non-Gaussianity
is probed (which would eventually allow to test its scale-dependence without any a-priori
parameterization), but to also improve on the chances of detection if fnl were larger on y
scales compared to µ or large-angle CMB scales. Here a forecast for ∆fnl was provided on µ
and on y distortion scales for a bispectrum template common to a number of scenarios.

An interesting open problem on the data-analysis front is envisaging techniques [50, 51]
that would allow to disentangle the y signal of primordial fluctuations from the one produced
at late times by the Sunyaev-Zel’dovich effect. Another important question one should ad-
dress in order to understand the extent to which near-future experiments targeting spectral
distortion can test inflation through temperature-distortion correlations is to identify the
general conditions that lead to observable levels of non-Gaussianity on µ or y scales. We do
so in this paper, deriving also quantitative predictions for some interesting realizations that
are representative of wide classes of models.

This paper unfolds as follows: in sections 2 and 3 we briefly review how to probe
inflationary observables on small-scales with spectral distortions and discuss some inflationary

1Between the µ and the y eras, an intermediate type of distortion is generated, see e.g. [38].
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mechanisms naturally predicting a squeezed bispectrum that is potentially detectable through
temperature-distortion correlations; in sections 4 and 5 we analyze the predictions for scale-
dependent non-Gaussianity (henceforth sdnG) from concrete realizations for, respectively,
resonance production of cosmological fluctuations during inflation and the gauged hybrid
mechanism (the former is representative of models where the y − T correlation is larger
than µ − T , in the latter case instead fnl grows monotonically on small scales, leading to
a distortion-temperature correlation that is largest on µ scales); we offer our conclusions in
section 6. More details on the derivation of three-point correlations in the resonance model
are provided in appendix A.

2 Spectral distortion from diffusion damping: Gaussian and non-Gaussian
observables

After inflation, the Hubble radius grows over time faster than physical scales and fluctua-
tions that were initially stretched outside Hubble gradually re-enter. CMB photons undergo
multiple scatterings in the primordial plasma, performing a random walk with a charac-
teristic length scale, λD(z). When the wavelength of fluctuations falls below the photons
mean-free path, they are damped by photon diffusion. In the µ and y era, the scales that
undergo damping correspond, respectively, to modes 50 Mpc−1 . k . 104 Mpc−1 and to
1 Mpc−1 . k . 50 Mpc−1.2 The damping of primordial fluctuations can be described as a
mixing of photons with blackbody distributions of different temperatures (“hot” and “cold”
photons). The immediate result of a such a mixing is a y-distorted blackbody spectrum.
This converts into a µ-distorted one if Compton scattering is highly efficient. The resulting
distortions are given by [58]

〈µ〉 ≈
∫
d log kPζ(k)Wµ(k) , (2.1)

〈y〉 ≈
∫
d log kPζ(k)Wy(k) , (2.2)

where Pζ(k) is the primordial scalar power spectrum and Wµ(k) and Wy(k) are window func-
tions encoding acoustic damping and thermalization effects. In the pre-recombination era,
if one neglects the contribution of intermediate distortions (and assuming a sharp transition
from µ to y era), these can be well-approximated by

Wµ(k) ≈ 2.3
[
e−2k2/k2D(zµ) − e−2k2/k2D(zµy)

]
, (2.3)

Wy(k) ≈ 0.4
[
e−2k2/k2D(zµy) − e−2k2/k2D(zy)

]
, (2.4)

where kD ≈ 4 × 10−6(1 + z)3/2 Mpc−1 is the diffusion damping scale, zµ ≈ 2 × 106 and
zµy ≈ 5× 104 mark, respectively, the beginning and end of the µ era, and zy ≈ 1090.

The sensitivity limits of an experiment like PIXIE are very close to the detection limit
needed for a small-scale power spectrum with the same scale dependence as the one currently
detected from CMB temperature anisotropies. As a result, a small deviation from the latter
may be easily detected if it predicts additional power on small scales. This is the case in

2Distortions generated below 1 Mpc−1, i.e. after recombination, are much smaller than those generated on
smaller scales [54, 55]. Those produced on scales between 104 and 105 Mpc−1, on the other hand, generate
entropy in the primordial plasma [56, 57].
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Figure 1. Representation of the bispectrum in the squeezed limit for: (a) temperature correlation
(both long and short wavelength modes are on CMB scales); (b) y distortion-temperature correlation
(short-wavelength modes are in the [1, 50] Mpc−1 range); (c) µ distortion-temperature correlation
(short-wavelength modes are in the [50, 104] Mpc−1 range).

a large number of scenarios including, for instance, particle production, phase transitions,
massive fields [39–43].

The fractional variation of the distortion is proportional to the convolution of two density
perturbations. As a result, its correlations with the fluctuations in temperature corresponds
to a primordial bispectrum in the squeezed limit. One can easily derive this result in the
local model, where the curvature fluctuation is expanded as a power series of a Gaussian
random variable as ζ(~x) ≈ z(~x)+(3/5)fnl z

2(~x). Performing a long-short mode decomposition
ζ = ζL + ζS, one finds

ζS(~x) ≈ zS(~x)

[
1 +

6

5
fnl ζL(~x)

]
. (2.5)

The fractional variation of the distortion (d ≡ µ, y) is given by ∆d/d ≈ δ〈ζ2
S〉/〈ζ2

S〉 ≈
(12/5) fnl ζL. Correlating the latter with the large-angle temperature fluctuation, ∆T/T ≈
ζL/5 gives the following result in terms of the temperature autocorrelation

Cd−Tl ≈ −12 fnlC
TT
l . (2.6)

For a squeezed-limit bispectrum template Bζ(k1, k2, k3) ≈ (12/5) fnl Pζ(kL)Pζ(kS), and under
a few simplifying assumptions, one finds the following forecast for the smallest detectable
amplitude on µ and y scales [48]3

f
(µ)
nl ' 102

(µmin

10−9

)( 〈µ〉
2× 10−8

)−1

, (2.7)

f
(y)
nl ' 102

(
ymin

2× 10−10

)(
〈y〉

4× 10−9

)−1

, (2.8)

where µmin and µmin are the smallest detectable monopoles for a given experiment. These are
given by µmin ' 10−8, ymin ' 2×10−9, for a PIXIE-like experiment [52] and by µmin ' 10−9,
ymin ' 2 × 10−10, for a PRISM-like experiment [53]. Even though they were derived for a
sample bispectrum template, these preliminary forecasts suggest that an experiment with a
sensitivity like PIXIE will only be able to detect non-Gaussianity on small scales if fnl on
those scales is larger than the current large-scale upper bounds. For this reason, in the rest
of the paper we will be focusing on models predicting a squeezed-limit amplitude fnl that is
significantly enhanced on small scales (as in configuration b or also c of figure 1) w.r.t. large
scales (e.g. in configuration a).

3Note that very recent findings [59] estimate that the minimum fnl amplitude on y-scales would be about
two orders of magnitude larger if one accounts for the y − T correlation generated at late times.
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3 Enhanced squeezed non-Gaussianity on small scales from inflation

For a primordial non-Gaussian signal on y or µ scales to be possibly observable with upcom-
ing experiments (e.g. PIXIE) two conditions should be met: (i) modes of widely different
wavelengths should be correlated; (ii) the correlation should be enhanced on smaller scales
w.r.t. typical CMB scales. In what follows we discuss a number of mechanisms satisfying
these two conditions.

3.1 Realizing a coupling between long and short wavelengths

In standard single-field slow-roll inflation (SFRS), as in all single-clock inflation set-ups, the
effect of a long-wavelength mode on short-wavelength modes is a (unobservable) background
rescaling on the short modes [60–64]. This can be easily understood as follows. Consider
for example the scalar bispectrum in the squeezed limit (k3 � k1 ' k2). The k3 mode
crosses outside Hubble earlier than k1 and k2 and it is frozen by the time the other two
modes reach horizon size (a correlation cannot arise earlier than that time in the basic SFSR
scenario). As such, k3 generates a rescaling of the background a → a eζ3 ' a(1 + ζ3),
which entails anticipating the horizon exit of k1 and k2 by an amount δt ' −ζ3/H. As
a result, the two point correlation for the hard modes in the presence of the soft mode is
〈ζ1ζ2〉ζ3 ∼ (d〈ζ1ζ2〉/dt)δt ∼ (1/H)(d〈ζ1ζ2〉/dt)ζ3, from which it follows

〈ζ1ζ2ζ3〉 ∼ (1− ns)Pζ(k1)Pζ(k3) . (3.1)

This is the formulation, to leading-order, of the single-clock consistency conditions (ccs) for
the scalar bispectrum, which can be also rewritten as

Bζ(kL, kS , kS) ' −Pζ(kL)Pζ(kS)
∂ ln[k3

SPζ(kS)]

∂ ln kS
, (3.2)

where k3 ≡ kL � k1 ' k2 ≡ kS . The result in eq. (3.1) follows from a gauge choice.
Projecting to the coordinate frame that is appropriate for late time observers, one finds

Bobs(kL, kS , kS) ' Bζ(kL, kS , kS) + Pζ(kL)Pζ(kS)
∂ ln

[
k3
SPζ(kS)

]
∂ ln kS

+O
(
kL
kS

)2

. (3.3)

The r.h.s. of the previous equation is therefore equal to zero in single-clock inflation to
leading order in kL/kS . For a physical (and potentially observable) primordial correlation in
the squeezed limit to be generated, at least one of these two conditions (that are caveats in the
derivation of eq. (3.1)) characterizing single-clock inflation should be violated: (a) correlations
cannot be generated on sub-horizon scales; (b) modes are frozen on super-horizon scales.

An entirely reasonable expectation is that multiple fields were around during inflation
and might have played a role in the background dynamics or by contributing to cosmological
fluctuations. This is certainly the case, for instance, in the case of a string-theory embedding.
In multi-field inflation, condition (b) is violated if sufficiently light isocurvature degrees of
freedom couple to the adiabatic mode during inflation: isocurvature fluctuations (δσ) that
do not immediately decay after Hubble crossing would indeed feed super-horizon curvature
perturbations [65], ζ̇k ∼ (θ̇/H)δσk for k � aH, with θ̇/H quantifying the magnitude of the
curvature-isocurvature coupling. A non-zero coupling corresponds to a curved trajectory in
field space: the adiabatic (parallel) and entropic (perpendicular) directions are expected to

– 5 –



J
C
A
P
1
2
(
2
0
1
6
)
0
1
5

mix when the trajectory performs a turn.4 With a straight trajectory, the predictions for
the adiabatic mode correlators for multi-field models would generally fall in the single-clock
category, and would therefore be indistinguishable from those of SFSR in the squeezed limit.

Another instance in which (b) does not apply is when modes cross outside Hubble during
a non-attractor fast-roll, often also dubbed as “ultra-slow” roll, phase (see e.g. [68–70]). The
simplest example is that of an inflaton rolling on a potential that is transiently flat. In
this case, one has φ̈ + 3Hφ̇ = 0, which implies ε ' φ̇2 ∝ a−6 and η ≡ ε̇/εH ' −6. As a
result, the curvature fluctuation on super-horizon scales undergoes a rapid growth during
this stage, ζ ∼ ε−1/2 ∝ a3 [71]. Another simple case is that of an inflaton rolling upward for
a few e-folds along its potential (non-attractor stage, with ε rapidly decreasing over time and
η ' O(1)) and then rolling back downward (attractor stage) [72]. As a result, for modes that
exit during the non-attractor stage, a physical correlation may be generated among long and
short wavelengths.

Condition (a) is violated in a number of set-ups. A very important case is that of a
modified initial state for primordial perturbations. The standard choice is given by Bunch-
Davies initial conditions: deep inside the horizon the space-time curvature is negligible in
comparison with the scale defined by the wavenumber (k/a� H), the vacuum state should
therefore be equivalent to the Minkowski vacuum. A non-Bunch Davies initial state is not
an unreasonable expectation for inflation. First off, inflation is normally formulated in terms
of an effective low-energy description of the early Universe, only valid up to a cut-off energy
scale. A given pre-inflationary dynamics can leave its imprint in the form of an excited
initial state for inflation. Some examples include a non-attractor [73] or anisotropic pre-
inflationary phase [74, 75], loop-quantum cosmology scenarios [76], inflation from bubble
nucleation [77–79]. If the initial state is excited, a physical correlation can arise among hard
and soft modes before the latter cross outside Hubble [80–85].

Another mechanism that violates (a) by triggering the excitation of sub-horizon fluctua-
tions involves the generation of resonances between perturbations and oscillations in the back-
ground [86]. An oscillating background introduces a new scale represented by its frequency,
ωbck. A distinct phenomenology arises when the latter is larger than Hubble, ωbck � H. The
frequency of fluctuations redshifts with time, ωpert(t) = k/a(t), therefore modes starting off
with a frequency larger than the background frequency ωbck eventually reach ωpert(t∗) ' ωbck.
At time t∗ the system is then driven to oscillate with a much greater amplitude.

Several models have been proposed in this direction. In the context of axion inflation,5

for instance, a sinusoidal contribution to the potential is expected from instanton effects (see
e.g. [87]). Interestingly, in [88] it is shown how, in the presence of a potential with a sinusoidal
correction, a sub-horizon curvature fluctuation initially in a Bunch-Davies state transitions to
an excited state as soon as its frequency matches that of the potential. Many other examples
of the sort have been proposed in string theory contexts (see e.g. [89, 90], and [91] for a
string-theory inspired multi-field inflation) and in brane inflation (as e.g. in [92]).

It is also important to stress that single-clock ccs are formally derived from invariance
of the Lagrangian under space-diffeomorphisms [93–96]. When the latter are broken, one
expects a multi-clock dynamics. A representative case is solid inflation [97, 98], which is

4See also [66, 67] for recent work on the squeezed limit of correlation functions in multi-field inflation.
5Inflationary models endowed with axions have been introduced with the purpose of ensuring that the

flatness of the inflationary potential is protected against large renormalization thanks to a nearly exact axionic
shift symmetry. This is especially important for large field inflation, where it is more challenging to protect
the smallness of the slow-roll parameters over a large enough range in field space.
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driven by an expanding solid. In contradistinction with most inflationary scenarios (cer-
tainly all those captured by the effective theory of inflation [99, 100]), in solid inflation
time-diffeomorphism invariance is preserved whereas space-diffs are broken. Homogeneity
and isotropy are restored by the introduction of internal symmetries for the solid, but the
phenomenology of the model is very distinct and can lead, among other signatures, to ob-
servable correlations in the squeezed limit (see also [101] for an effective theory set-up where
both time and space diffs are broken).

3.2 Realizing a strong scale-dependence for the bispectrum

Scale-dependence of cosmological fluctuations is an important probe of the inflationary dy-
namics. In standard SFSR inflation, curvature fluctuations are entirely determined by the
evolution of the inflaton background. Modes freeze out on super-horizon scales, as a result
their amplitude at late times is well-approximated by their amplitude at horizon crossing-
time. Different k-modes cross outside the Hubble radius at different times, however their
amplitude is predicted to remain nearly constant across the inflationary scales because the
background is in a slow-roll evolving regime.

In the presence of a change in the dynamical evolution during inflation occurring at
given scales or within a range of scales, the scale-dependence of cosmological fluctuations
may be affected at the linear or also at the non-linear levels. This can happen in a variety
of scenarios.

One possibility is that the slow-roll evolution is disrupted by a step in the poten-
tial [102–112]. Disruption (or interruption) of slow-roll may also occur during phase transi-
tions, as in a number of grand unified theories and in string theory motivated inflationary
models [113–115].

Features and bumps can appear in correlation functions at characteristic scales if massive
(miso ' H or larger) fields were active during inflation at the background level or if they
also contributed to cosmological fluctuations. In the case of a turning trajectory in field
space, massive isocurvature modes couple to the adiabatic mode and they affect curvature
fluctuations in ways that depend on the mass of the heavy fields and on the characteristics
of the turn.

If the trajectory has a sudden turn, for example, features and bumps in two and higher-
order correlation functions are predicted to appear around a characteristic scale correlated
with the time at which the turn happens [116–120]. On the other hand, a constant turn
causes no scale-dependence in the power spectrum, although it can potentially affect the
one of higher order correlation functions, depending on the specific set-up. Under certain
adiabaticity assumptions, and for very heavy (miso � H) fields, the system is effectively
equivalent to single field model where the inflaton has a speed of sound undergoing a transient
reduction [121–123]. If the isocurvature field mass is instead in the intermediate range (miso '
H), one falls into the class of quasi-single-field inflation, interpolating between the single
and the multi-field regimes. In this case an effective single-field theory description is no
longer accurate, the predictivity of single-field models is nevertheless preserved since the
isocurvature degrees of freedom are not very long lived on super horizon scales. In the
case of a constant-turn trajectory, a standard scale-dependence is predicted for the power
spectrum: the effect of the heavy fields in this case is that of a mere rescaling of the power
spectrum amplitude. A non-standard scaling with momenta in the squeezed-limit is instead
predicted in this case for the bispectrum if the masses of the isocurvature modes are not
much heavier than Hubble [124, 125].
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Another interesting inflationary set-up, often motivated by string theory, is that of an
inflaton coupled to fields with time-varying masses that become very light at some point
during the inflationary evolution, as in [126–132]. As a result, bursts of particles arise that
can affect the background evolution. Particle production in these models indeed normally
occurs at the expense of the inflaton kinetic energy, thus “slowing down” the rolling along
the inflationary potential. The produced particle can not only back-react on the background
evolution itself, but also affect the fluctuations with the appearance of bumpy features in
correlation functions.

Other general set-ups leading to the appearance of features at characteristic length scales
in the correlation functions include inflation with modified initial states [133–137] and models
where resonances occur between quantum fluctuations and oscillations in the background,
the general mechanisms and motivations for which were briefly reviewed in section 3.1.

3.3 Some representative cases combining all the desirable features

Models predicting a signal that may be observable in the near future through distortion-
temperature anisotropies correlations should predict a physical coupling among hard and
soft modes, in addition to a non-Gaussianity amplitude fnl that grows on small scales. The
growth may be monotonic (in this case the signal would be enhanced on configurations b and,
even more, c of figure 1, in comparison with a) or may receive most of its contribution from
intermediate scales (configuration b). In the latter case probing the distortion-temperature
correlation on y-scale would be even more important as those may be the scales where the
signal is more strongly enhanced. In the following, we discuss some classes of models equipped
with these desirable features.

Curvaton-type models. This is a class of inflationary models characterized by the pres-
ence of one or more “curvatons”, light (mcurv � H) weakly-coupled spectator fields [138–145].
After the decay of the inflaton, the Hubble rate quickly drops over time until it falls below
the value of mcurv. At that point the curvaton behaves like non-relativistic matter, oscillat-
ing and eventually decaying into radiation. During the oscillatory phase, the total energy
density contributed by the curvaton background decreases over time more slowly than ra-
diation; as a result the curvaton contribution to the total energy density of the Universe
may become sizable by the time it decays. Upon decay, its isocurvature fluctuations (δσ)
are converted into curvature fluctuations (ζ), contributing by an amount proportional to the
fraction r ≈ [ρcurv/ρtotal]decay of the curvaton energy density at the time of decay.

Depending on the model, the contribution from inflaton field fluctuations may be sub-
dominant (“pure curvaton”), e.g. if the energy scale of inflation is sufficiently low, or non-
negligible (“mixed curvaton”). Local-type non-Gaussianity arises from the non-linear evolu-
tion of the curvaton fluctuations. For the pure curvaton case one finds (see e.g. [146–149])

ζ~k =
2

3
r
σ
′
osc

σosc

δσ~k(tk) +
1

9

[
3r

(
1 +

σoscσ
′′
osc

σ′2osc

)
− 4r2 − 2r3

](
σ
′
osc

σosc

)2

(δσ ? δσ)~k(tk) +O(δσ3) ,

(3.4)
where σosc is the background value of the curvaton field at the beginning of the oscillation and
tk is the horizon crossing time during inflation. Notice that the non-Gaussian part depends
more strongly than the Gaussian part on the dynamics of the background field. From here,
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one finds

fnl =
5

4r

(
1 +

σoscσ
′′
osc

σ′2osc

)
− 5

3
− 5r

6
. (3.5)

The scale dependence of fnl is due to the dependence of σosc from the background value of
the curvaton at tk. The potential of the curvaton can be generically written as a quadratic
plus a self-interaction contributions, V (σ) = (1/2)m2

σσ
2 + λm4

σ(σ/mσ)n. The closer the
curvaton is to the time of decay, the smaller its field values and the safer it is to approximate
the potential with its quadratic contribution. At earlier times though, as one can see from
eq. (3.5), self-interactions have important phenomenological implications6 (in the quadratic
case one finds σoscσ

′′
osc/σ

′2
osc = 0). The effect due to self-interactions is then more important

in the r � 1 limit.
The specific scale-dependence of the non-Gaussianity is very much dependent on the

given realization and model parameters, including the form of the self-interacting potential
(for n ≥ 6, for instance, fnl undergoes oscillations as a function of σ(tk)), leading to an
amplitude |fnl| that can vary strongly with scales (see also e.g. [154]).

More models with fields endowed with time-varying masses. In [155] it was shown
that in the presence of a spectator field that is heavy (M � H) up to a given time t∗ and
lighter afterwords (m � H), one finds a sizable local non-Gaussianity for modes crossing
outside Hubble during the second phase and a negligible one during the first phase. A
local non-Gaussianity in this set-up is sourced by the non-linearities in the spectator field
fluctuations. For modes exiting during the first phase, (t ≤ t∗), the spectator field fluctuations
are suppressed by an H/M factor; in additions to this, they redshift like matter (δσ ∼ a−3).
When the mass becomes small (t� t∗), these modes nearly freeze to a value

|δσk(tend)|2 ∼ H2

k3

H

M

(
k

a∗H

)3( a∗H

aendH

)3−2νm

, (3.6)

where ν2
m ' 3/2−m2/(3H2) and tend is the end of inflation. Modes exiting during the second

phase, between t∗ and the end of inflation, freeze on superhorizon scales immediately and
their super-horizon fluctuations at the end of inflation reads

|δσk(tend)|2 ∼ H2

k3

(
k

aendH

)3−2νm

. (3.7)

In the following phase (phase three, tend ≤ t ≤ tdec), the Hubble radius (initially larger than
m) decreases quickly over time up to the point where it becomes smaller than the spectator
field mass again, causing it to behave as non-relativistic matter and eventually decay (at
tdec). The power spectrum of the spectator field for tend ≤ t ≤ tdec is then given by (3.6)
or (3.7) (depending on when the specific mode exited during inflation), multiplied by an
extra ∼ (a/aend)3 factor to account for the damping during oscillations. The total curvature
fluctuation after the inflaton has decayed into radiation is given by ζ ≈ ζrad +δρσ/4ρtot where
δρσ/4ρtot = (m2/2)|δσ~k|

2/4ρtot.
If the non-Gaussianity in the squeezed limit from the inflaton field is negligible (this is

certainly the case if, for instance, the couplings between inflaton and spectator field during

6Self-interactions can often arise from curvaton models embedded in MSSM set-ups [150–152]. They are
also expected to arise at loop level even when absent at tree-level: even though weakly coupled, the curvaton
will eventually decay and therefore it is expected to be coupled to other fields [153].
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inflation are very weak), the main contribution to the squeezed bispectrum comes from the
spectator field modes exiting during the second phase, amounting to an amplitude [155]

fnl ≈ 2× 10−3η1/2
σ P

−1/2
ζ , (3.8)

with ησ ≡ 2m2/3H2.
A crucial difference between this and the curvaton model is that the spectator field

transitions from a heavy to a light regime during inflation, whereas in the curvaton case the
field is light throughout inflation. A consequence of this choice is also that δρσ ∼ δσ for the
curvaton, whereas δρσ ∼ δσ2 in [155] (the background value of the curvaton quickly decreases
in time during the first, massive, phase). An example for a concrete realization of this set-up
includes an inflaton field (φ), a scalar spectator σ and an additional scalar field χ, with a
potential [155]

V = V (φ) +
1

2

(
g2χ2 +m2

)
σ2 +

1

2

(
−m2

χ + h2φ2
)
χ2 +

1

4
λχ4 . (3.9)

With this potential, one can have a two-stage inflation where χ is initially frozen to 〈χ〉2 =
m2
χ/λ, which implies an effective mass M2 ∼ (g2m2

χ/λ) for σ (this can be chosen to be larger
than H2). When 〈φ〉2 becomes larger than m2

χ/h
2, 〈χ〉 ' 0 and the mass of the spectator

field becomes equal to m2, which is assumed to be small during inflation.

Sdng from isocurvature-inflaton interactions. In the two classes of models just de-
scribed, local non-Gaussianity is only generated from the isocurvature field after inflation,
the couplings between curvaton and inflaton being small during inflation; another possibility
is that those couplings are instead important.

One could for instance think about a scenario where a QsF-type (in the simplest case
this includes an inflaton and an isocurvature degree of freedom with a mass miso ≈ H) phase
is preceded by an effectively single-field phase. This would be the case if the trajectory in
field space is straight at first, and performs a turn later on. For modes that cross outside
the Hubble radius during the phase characterized by a curved trajectory one expects a non-
zero correlation in the squeezed limit. For relatively small values of the isocurvaton mass,
miso . 3H/2, and for a soft turn, the predictions for the squeezed bispectrum in the minimal
QsF model [124, 125] would likely be a good approximation at those scales that cross outside
Hubble during the turning phase

fnl ' α(ν)P−1/2
ζ

(
−V

′′′

H

)(
θ̇

H

)3

, (3.10)

where α is a function of the isocurvaton mass (ν ≡
√

9/4−m2/H2), θ̇ is the angular velocity
along the trajectory in field space (here approximated as a constant for the whole duration of
the turn) and V is the potential of the isocurvature field. Remarkably, the amplitude in (3.10)
can be sizable since the isocurvature field, unlike the inflaton, needs not be in slow-roll (all
that is required is that (V

′′′
/H) . 1 for the perturbative expansion to hold).

An exact treatment would also need to account for the behavior of the fluctuations
at the point where the turn begins: here one expects some superimposed features in the
correlation functions (these would be an additional signature one would be searching for in
the data). In the case of a slow turn, the features would only appear on a very limited
range of scales near the turning point; as a result, if the turn last for a sufficient number of
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e-folds one may be able to safely neglect the effects of the initial bending of the trajectory.
One could envisage the case where the trajectory becomes curved on scales of 0.1Mpc−1 or
smaller, thus incorporating the smallest scales we can detect from CMB anisotropies along
with the y and µ-distortion scales.7

We have so far discussed the possibility of generating sdNG in the squeezed limit with
an enhancement on smaller scales in a variety of multi-field classes. If the additional fields are
heavier than Hubble and behave as an oscillating background during inflation, a sdnG can
arise from the resonance between the oscillating background and the inflaton perturbations
on sub-horizon scales (a phenomenon of limited duration in time). We will consider this
possibility in section 4, where we show how in this case the squeezed signal from distortion-
temperature correlations can be large on y scales (as opposed to µ scales). In section 5
we present a model where fnl grows monotonically towards smaller scales and the strongest
enhancement is therefore expected on µ scales.

4 Resonant features from heavy fields

As discussed in section 3, in the presence of an oscillatory background with a frequency ωbck,
fluctuations with frequency ωpert ∼ k/a, larger than ωbck at the onset of the oscillations,
eventually reach a point, during inflation, where their frequency resonates with the external
one, causing the amplitude of fluctuations to undergo a transient amplification. For this
effect to be appreciable, the frequency of the background oscillations should be much larger
than Hubble. This implies that the mode numbers of fluctuations that are affected by the
resonance are sub-Hubble as well. This resonance effect can be interpreted as an excitation
of sub-horizon fluctuations, which leads to the expectation that correlations are produced
in these models even before modes reach Hubble size, thus also allowing for a correlation
among modes of different wavelengths to arise before the long-wavelength mode becomes
super-horizon and freezes. The resonance is generally a transient effect and a non-trivial
correlation among different wavelengths can only arise in finitely squeezed configurations,
limited by the time-scale of the oscillation.

In [156, 157] resonances are signatures of heavy fields (m � H).8 The fields oscillate
with a frequency proportional to their mass and eventually decay, producing sharp peaks in
the correlation functions at some given scales.

In the simplest case of a bi-dimensional field space, with an inflaton (φ) and a heavy
field (χ), and endowing the inflationary Lagrangian with an approximate shift symmetry in
order to protect the flatness of the potential from large quantum corrections, it is natural to
include derivative couplings of the inflaton [156, 157] and the action is given by

S = −
∫
d4x
√
−g
[

1

2
(∂φ)2+

1

2
(∂χ)2+V (φ)+

m2
χ

2
χ2+Kn+Kd+Kp+O(Xφ2/Λ2

n, X
3/Λ8

d)

]
, (4.1)

7Notice that for a physical correlation to arise in the squeezed limit from isocurvature modes as in QsF
inflation, the long-wavelength mode needs to be sourced by the isocurvature mode, as a result we only expect
a squeezed-limit signal if the long-wavelength mode crosses outside the horizon when the trajectory begins
to turn.

8For earlier work on resonant signals from oscillation of heavy field see [158, 159]. See also [160] for more
recent developments.
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where X ≡ −(∂φ)2 and

Kn =
λn

2Λn
χ∂φ2 , (4.2)

Kd =
λd1

4Λ4
d

(∂χ)2(∂φ)2 +
λd2

4Λ4
d

(∂χ · ∂φ)2 , (4.3)

Kp =
λp

4Λ4
d

(∂χ · ∂φ)(∂φ)2 . (4.4)

Kn and Kd arise at leading order in Λn and Λd if one assumes both a parity, φ → −φ, and
a shift symmetry, φ → φ + c, and enforces the conditions χ � Λn and φ̇, χ̇ � Λ2

d at the
background level. If the Lagrangian is not invariant under parity, interactions as Kp are
also permitted.

Derivative couplings have been shown [156, 157] to strongly affect the evolution of the
adiabatic fluctuations through the resonance, while at the same time producing a negligible
effect on the inflationary background because of the slow-roll evolution of the inflaton field.
The assumption behind this finding is that the contribution of the heavy field to the total
energy density is negligible w.r.t. the inflaton potential. The latter condition translates into
a condition χ̇2 +m2χ2 �M2

PH
2, where MP = 2.4× 1018 GeV is the reduced Planck mass.

The effects of Kn and Kd on the scalar bispectrum have been accounted for in details
in [156, 157], although not in the context of spectral distortion-temperature correlations.
In what follows, we will focus primarily on Kp. The enhancement coming from the latter
is indeed even more interesting than Kd,n because it is larger: for both Kn and Kd cubic
self-interactions for the inflaton field are mediated by gravity and therefore expected to be
subleading w.r.t. the parity violating term, for which there is a direct cubic interaction (see
appendix A for a comparison among the various contributions).

4.1 Background evolution and power spectrum

The background and the power spectrum analysis were performed in [156, 157]. With the
conditions previously defined for the background fields, χ � Λn and φ̇, χ̇ � Λ2

d, and in-
troducing the slow-roll parameters εV ≡ (M2

P /2)(V
′
/V )2 � 1 and |ηV | ≡ M2

PV
′′
/V � 1,

the background equation of motion for the inflaton is well-approximated by the standard
3Hφ̇ ' −V ′ .

The heavy field background evolves in time as χ(t) ' χ0e
−Γt cos(mt)θ(t− t0), where the

decay constant is assumed to be H � Γ� m, and θ(t− t0) is the Heaviside function (having
defined t = t0 as the onset of the oscillation). For any given (physical) momentum k/a(t)
larger than the external frequency m at the onset of the oscillation, k � m, there comes a
time t∗k such that k/a(t∗k) ≈ m. The horizon crossing time for the same mode is defined
by the condition k/a(tk) = H. Since by definition m � H, we have a(t∗k) � a(tk), i.e. the
resonance can only affect subhorizon modes.

The correction to the amplitude of the scalar power spectrum from vacuum fluctuations
due to the interactions in the Lagrangian has the following form

∆〈δφ~k1(t)δφ~k2(t)〉 ' i
∫ t

0
dt′〈
[
H

(2)
I (t′), δφ~k1(t)δφ~k2(t)

]
〉 , (4.5)

where the second order Hamiltonian H
(2)
I is obtained from the expansion of the Ki interaction

terms (i = n, d, p) in (4.1) [156, 157]. The derivative couplings can be safely treated as a
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correction to the free Lagrangian if the couplings qn ≡ λnχ0/Λn, qdj ≡ λdjm
2χ2

0/(2Λ4
d)

(j = 1, 2) and qp ≡ λpmχφ̇/(2Λ4
d) are assumed to be small. Contributions as (4.5) can

therefore be appreciably large only in the vicinity of those wave-numbers for which (4.5) has
a peak due to resonances. It is straightforward to show (see also appendix A for details) that,
as a result of the resonance between the heavy field background and the fluctuations in the
inflation field, the amplitude of the power spectrum exhibits a peak for wave-numbers close

to kp ' ma0e
√
H/m/2. In the limit where the decay rate is small, Γ �

√
Hm, the overall

correction to the curvature power spectrum (using ζ ∼ (H/φ̇)δφ) takes the simple form

∆P(i)
φ

Pφ
' qi

√
m

H
, (4.6)

where i = n, d, p and Pφ ≡ Pφ(k3/2π2). As stressed in [156, 157], a few conditions have to be
in place to ensure that the perturbative method is valid. These include setting qi

√
M/H < 1

and m < Λi, the latter stemming from the requirement that loop corrections originating from
the derivative interactions do not exceed the tree-level nor the resonance contributions from
the same interactions.

4.2 Squeezed limit bispectrum

The resonance of the inflaton fluctuations with the oscillating massive field gives rise to an
amplification of the bispectrum amplitude when K ≡ k1 + k2 + k3 ' kp [156, 157] (see also
figure 2 and appendix A for more details). The expression for the scalar bispectrum was
computed for Kn and Kq in [156, 157]. In the following we compute the contribution from
parity violating derivative interactions such as Kp. Using the in-in formula (see e.g. eq. (A.1))
one finds

Bp(k1, k2, k3) ' qp
32

(
e−2Γ/

√
mH − 1

) cos(θ∗)

ε2V

(m
Γ

)(m
H

)2
(
H

Mp

)4

× 1

k3
pk1k2k3

3−
k1

(
~k2 · ~k3

)
+ k2

(
~k1 · ~k3

)
+ k3

(
~k1 · ~k2

)
k1k2k3

 (4.7)

where we defined 〈ζ~kζ~k2ζ~k3〉 = (2π)3δ(3)(~k + ~k2 + ~k3)B(k1, k2, k3) and θ∗ ' (m/H)[1 +
ln(K/(a0m))] is the phase function at the resonance. This expression has been derived under
the assumption that the three modes are all sub-horizon around t∗, defined by K/a(t∗) ' m.

The final result for the bispectrum amplitude in the finitely squeezed configuration,
with k1 ' k2 � k3 > kp(H/m) (the lower bound on k3 must hold in the range of momenta
for which (4.7) applies) and K ' kp, is given by

fnl =

(
5

12

)(
1− e−2Γ/

√
mH
)
qp cos Θ∗

m

Γ

(m
H

)2
(
k3

kp

)2

. (4.8)

For Γ�
√
mH one finds

fnl '
5

6
qp

(m
H

)5/2
(
k3

kp

)2

, (4.9)

where fnl was defined according to eq. (5.23). Notice that this is not the conventional
definition of fnl used for CMB-scales constraints, however it is a convenient parameterization
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Figure 2. Representation of the integral in eq. (A.2) for the bispectrum, with a peak appearing
around K ' ma0, with K = k1 + k2 + k3.

for our purposes as it highlights the behavior (and amplitude) of the bispectrum in squeezed
configurations.

The power spectrum from the parity violating interaction has the following form

∆P
P
≈ qp

√
m

H
. (4.10)

Considering the limiting values ∆P/P ' 1 and m ' 2πΛd, one can show that

qp '
(
H

m

)4
√
fχ
εV

(
(2π)4

√
2
√

3

2 · 8π2P

)
, (4.11)

where fχ ≡ ρχ/ρ ' (χ̇2 + m2χ2)/(6M2
PH

2) (notice that both fχ and εV are assumed to be
much smaller than unity) and P ' 2.4× 10−9. From here we have

m

H
'
(
fχ
εV

)1/7
(

(2π)4
√

2
√

3

2 · 8π2P

)2/7

(4.12)

Notice that this is valid for k3 > (H/m)kp. The latter condition can be rewritten as

k3

kp
>

(
εV
fχ

)1/7
(

(2π)4
√

2
√

3

2 · 8π2P

)−2/7

' 10−3

(
εV
fχ

)1/7

. (4.13)

Replacing (4.11) and (4.12) in eq. (4.9) one finds

fnl ' 4× 105

(
fχ
εV

)2/7(k3

kp

)2

. (4.14)

Notice that eq. (4.13) places a lower bound of 0.4 on fnl. Correlations between µ and T would
mostly fall outside the range defined by (4.13), whereas setting kp ≈ 2ky, with ky defined on
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Figure 3. Representation of fnl values as a function of model parameters, fχ/εV , and of the ratio of
the CMB (k3) to the distortion scale (kd ≈ kp/2). The range of k3/kp has been chosen in such a way
as to satisfy the finitely squeezed limit defined in eq. (4.13).

y scales, can lead to values fnl & O(102) or larger. This is shown in figure 3 where we plot
the value of fnl as a function of fχ/εV and for different k3/kp. The results are also shown in
(k3, kd) space, (kd ≈ kp/2), for different values of fχ/εV (figure 4).

Let us compare these findings with the minimum detectable values of fnl reported in
eqs. (2.7)–(2.8). For a power spectrum with amplitude P ' 2.4× 10−9(k/0.002 Mpc−1)ns−1,
with ns ' 0.96, one finds 〈µ〉 ' 1.9 × 10−8 and 〈y〉 ' 4.2 × 10−9 [48]. As a result, the

minimum detectable values are f
(µ)
nl ' f

(y)
nl ' 103 for an experiment with a sensitivity like

PIXIE’s, and f
(µ)
nl ' f

(y)
nl ' 102 for a PRISM-like experiment.

We conclude that for kp ' 2 ky the model can predict observable levels of non-
Gaussianity from (y)distortion-temperature correlations. For the µ-T correlation, one would
need larger fχ/εV values for eq. (4.13) to be satisfied and for the amplitude to be observable
(see also figure 3). One could for example relax the assumption fχ � 1, however in that case
it would be necessary to also account for the back-reaction of the χ field on the evolution of
the inflaton field.

5 Gauged hybrid inflation realization of the kinetic coupling

As a second example of models that may predict a strong scale-dependent non-Gaussianity,
we consider scenarios with kinetic mixing between the inflaton and another light field. As
we will show in the following, a time dependence in the kinetic coupling leads to a scale-
dependent fnl. Moreover, this scale dependence is expected to be logarithmic. However,
since the running of a logarithmic scale dependence is not that big, we may be unable to
create a small enough signal in the CMB temperature anisotropies window, fnl ∼ O(1),
while obtaining a big enough signal at small scales (e.g. fnl ∼ O(100) for detection by a
PIXIE-like experiment).

In order to obtain bispectrum predictions in the desired ranges, one can incorporate such
a coupling in a Hybrid realization of inflation. In these models there are two possibilities
to generate the curvature perturbation, i.e. during inflation and at the surface of the end of
inflation. A cancellation may easily occur between these two contributions at some particular
scale, here the CMB scale, while generating a big signal on small scales.
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Figure 4. Plot of the squeezed non-Gaussianity amplitude in the (k3, kd) plane, where kd ≈ kp/2,
for different values of fχ/εV .

In the following, we consider a multi-field inflationary model where there is a kinetic
coupling between two of them and there is also a waterfall field which is coupled to both of
the above fields and is responsible to terminate inflation abruptly. As we will see in more
detail, the surface of end of inflation in this model is an ellipse in field space and there is a
fluctuation associated with the angle of this ellipse.

We will also restrict our attention to a vector realization of the additional field. We fur-
ther assume a complex waterfall field, which is coupled directly to the gauge field. As we will
show, due to the mixture of the gauge kinetic coupling as well as the induced perturbations
at the surface of end of inflation, one can obtain an enhancement of fnl at small scale while
being consistent with CMB constraints for the local fnl. Moreover, since we are living in a
multi-field set-up, we do expect an enhancement in the squeezed limit non-Gaussianity.

It is important to emphasize that while we chose to focus on a vector realization of
the additional light field, one can simply relax this assumption and replace this field with a
scalar, thus enlarging this class of models.

It is also important to mention that, in order to have a well defined inflationary direction,
a nearly scale invariant power in the direction of the light field and a controllable change in
the spectral index, the window of allowed functions of the gauged kinetic coupling should be
narrowed, with f(a) ∝ a−2c.
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5.1 Gauged hybrid model

This model is based on the action [161, 162]

S =

∫
d4x
√
−g
[
M2
P

2
R− 1

2
∂µφ

µφ− 1

2
DµψD

µψ̄ − f2(φ)

4
FµνF

µν − V (φ, ψ, ψ̄)

]
, (5.1)

where φ denotes the inflaton field and ψ is the complex waterfall field. The covariant
derivative is defined by Dµψ = ∂µψ + i eψAµ. The gauge field strength is defined by
Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ. The gauge kinetic coupling f(φ) is chosen in such a
way as to break the conformal invariance, so that the gauge field survives the expansion at
the background and perturbations levels.

Since the waterfall field is a complex scalar field, one can write it as

ψ(x) = χ(x) eiθ(x) , (5.2)

where χ(x) denotes the radial part and θ(x) is the angular part.

It is convenient to consider the configurations in which the potential has an axial sym-
metry and V (ψ, ψ̄, φ) = V (χ, φ). In this way, the potential is just a function of the radial
part of the waterfall field and it has the standard hybrid inflation form with the waterfall
term being replaced with the radial part of ψ(x) [163]

V (φ, χ) =
λ

4

(
χ2 − M2

λ

)2

+
g2

2
φ2χ2 +

m2

2
φ2 . (5.3)

Here λ and g are dimensionless couplings while m and M has the dimension of mass.

By choosing the unitary gauge, θ(x) = 0, one can neglect the phase of the waterfall in
the background and perturbations analysis. One can also assume without loss of generality
that the background gauge field points along the x direction, with background components
Aµ = (0, A(t), 0, 0).

Before we go through the details of the calculations, we should emphasize that in prin-
ciple we could assume that the vector field is off at the background level, it is only excited
through the quantum fluctuations and therefore it contributes to the curvature perturbation
through its coupling with the inflaton field. However, due to the following reasons, in our
current setup, it is really important to turn it on at the background level. In the variety
of different realizations of (multiple) Hybrid inflation, in general, we are generating two dif-
ferent, distinguished, sources for the fluctuations: one during inflation and the other from
the surface of end of inflation. Though the former correction could be achieved even in the
absence of the vev for some fields and through their coupling with the other fields, in order
to create the latter correction, at the surface of end of inflation, it is really necessary to have
them all on at the background level. These considerations are generic to any realizations
of Hybrid inflation. Now let us take a closer and more precise look at the gauged Hybrid
inflation. In this particular realization, it is required to turn on the gauge field for the fol-
lowing two reasons. First of all, it can modify the background trajectory of the inflaton field
and therefore change the surface of the end of inflation. Eq. (5.7) presents how it happens.
Secondly, it also creates a scale dependent correction to the curvature perturbation which
turns out to be very important for our purposes. We emphasize that this particular scale
dependence is absent in the absence of the vev for the vector field.

– 17 –



J
C
A
P
1
2
(
2
0
1
6
)
0
1
5

The system reduces to a Bianchi type I universe which is given by

ds2 = −dt2 + e2α(t)
(
e−4σ(t)dx2 + e2σ(t)(dy2 + dz2)

)
≡ −dt2 + a(t)2dx2 + b(t)2(dy2 + dz2) . (5.4)

Here α(t) denotes the average number of e-foldings, α̇ refers to the isotropic Hubble expansion
rate and σ̇(t) represents the anisotropic expansion rate.

The total energy density from gauge field plus inflaton field is given by

E = V (φ, χ) + e−2N+4σ

(
1

2
f2(φ)Ȧ2 +

e2χ2

2
A2

)
, (5.5)

where the scalar fields kinetic energy has been neglected (slow-roll limit). In addition, to
simplify the notation, we defined α(t) = N(t) (number of e-foldings).

Let us consider the vacuum dominated regime where χ is very heavy during inflation
and reaches its instantaneous minimum χ = 0 very quickly after the beginning of inflation.
Then similarly to the standard Hybrid inflation model, as soon as the inflaton field reaches its
critical value, φ = φc ≡ M

g , the waterfall field becomes tachyonic and thus rolls down quickly

to its global minimum |χ| = µ ≡ M/
√
λ, φ = 0. At that point, inflation ends abruptly. In

our current setup, the coupling of the gauge field to the waterfall modifies the surface of end
of inflation. More specifically, the effective mass of waterfall in our model is

∂2E
∂χ2

∣∣∣∣
χ=0

= g2(φ2 − φ2
c) + e2e−2N+4σA2 . (5.6)

In the absence of the gauge field, the moment of waterfall instability is determined when
φ = φc = M/g. However, in the presence of gauge field the condition of waterfall instability
is modified. More specifically, the condition of waterfall phase transition from eq. (5.6) can
be rewritten as

φ2
f +

e2

g2
A2
f = φ2

c , (5.7)

in which φf and Af refer to the field values at the surface of end of inflation. In the following,
we choose the convention in such a way that the time of end of inflation corresponds to
N ≡ Nf = 0 and we count the number of e-foldings in such a way that N(t) = −

∫ tf
t dtH < 0.

In order to solve the flatness and the horizon problem in FRW cosmology, one needs at least
60 e-foldings so at the onset of inflation we need to have N ≡ Ni ' −60.

In the vacuum dominated regime so the potential driving inflation is approximately
given by

V ' M4

4λ
+

1

2
m2φ2 . (5.8)

Next we consider the background evolution of inflaton and gauge fields (we refer the reader
to [164] for more details on its derivation). Since the aim is using the δN formalism, instead
of presenting the evolution of the fields in terms of N , we present the number of e-folds in
terms of either the φ or the Aµ field. The final result is

N(φ) ' pc
2 (I − 1)

ln

(
φ

φf

)
(5.9)

N(A) ' 1

3
ln

(√
3

2R

(
A−Af
MP

)
+ 1

)
, (5.10)
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where pc ≡
(

M4

2λm2M2
P

)
and R denotes the ratio of the energy density of the gauge field over

the total energy density during inflation. φf and Af denote the values of the fields at the
end of inflation.

A crucial assumption to get the above formulas is to consider the following ansatz for
the gauge kinetic coupling, f ' (a/af )−2 = e−2N .

The last step to obtain δN is to account the contributions from the surface of the end
of inflation in δN . We parameterize the surface of end of inflation in eq. (5.7) via [162]

φf = φc cos γ , Af =
g φc
e

sin γ . (5.11)

Notice that γ is an independent variable so in the computation of δN one also needs to
take into account the perturbations in γ(φ,A), i.e. the contribution of the surface of end of
inflation in δN .

Having presented the background evolution of the fields as well as derived the surface
of the end of inflation, we are ready to use the δN formalism as well as cosmic perturbations.

5.2 Power spectrum

As already mentioned, using the δN formalism the curvature perturbation becomes R(x, t) =
δN(φ,A). Then it is straightforward to calculate the power spectrum of the curvature per-
turbation as

PR = N2
φPδφ + Ȧ2N2

Ȧ
PδȦ/Ȧ +N2

APδA , (5.12)

where the expressions for the Nφ, NȦ and NA are given in appendix B. Before we proceed,
let us calculate the two point correlation function of the gauge field

δ ~̇A

Ȧ
=

1

MP

√
3

2R

H√
2k3

∑
λ

~ελ (k < aH) . (5.13)

Using eq. (5.13) we find

PδȦ/Ȧ =
k3

1

2π2

〈
δȦ(k1)

Ȧ

δȦ(k2)

Ȧ

〉
=

3H2 sin2 θ

8π2M2
PR

δ(3)(k1 + k2), (5.14)

in which cos θ = n̂.k̂ represents the angle between the preferred direction (in our notation
the x-direction) and the wave-number. The curvature power spectrum can be rewritten as

PR = P(0)
R

(
1 +

∆PR
P(0)
R

)
, (5.15)

P(0)
R = N2

φ∗Pδφ∗ =

(
pcH∗
4πφ∗

)2
[

1 +
epcMP

gφc

tan γ

cos γ

√
2R

3

]2

, (5.16)

∆PR
P(0)
R

=


√

48R
ε N(k)− e

g tan γ

1 + epcMP
gφc

tan γ
cos γ

√
2
3R

2

sin2 θ

'

(√
48R

ε
N(k)− e

g
tan γ

)2

sin2 θ , (5.17)
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Figure 5. Evolution of g∗ as a function of scale. Here we assumed that (R/ε) = 7.5× 10−5.

where the slow-roll parameter, ε, is given by

ε '
2φ2

f

p2
cM

2
P

. (5.18)

Notice that the corrected power spectrum has two contributions, one form the gauge kinetic
coupling, the other from the surface of the end of inflation. It is then possible to choose the
parameters in such a way as to produce a cancellation between these two contributions at
some specific scales, which here we select it to be within the CMB scale, from 0.005Mp−1 ≤
k ≤ 0.1Mp−1 (in the following we take for instance k = 0.03Mpc−1). In order to cancel out
the above mentioned contributions we would need√

48R

ε
N(k = 0.03Mpc−1) =

e

g
tan γ (5.19)

Furthermore, we assume that N(k = 0.03Mpc−1) = −60. For the next references we define
N∗ ≡ N(k = 0.03Mpc−1).

At any scale we can rewrite the corrected power spectrum as

g∗ ≡ −
∆PR
P(0)
R

(
1

sin2 θ

)
=

(
48R

ε

)
(N(k)−N∗)2 . (5.20)

Requiring g∗ < 0.01 [165], one finds an upper bound (R/ε) = (c − 1)/2c < 7.5 × 10−5. In
order to check this precisely, in figure 5 we plot the scale dependence of g∗ as a function of
k in the whole window of the CMB and of the smaller scales.

5.3 Bispectrum

The result for the bispectrum is [164]

BR(k1,k2,k3) '
(

3ε

R

)[√
g∗(k1)g∗(k2)

(2R

ε
Nk3 −

e2Rpc
6g2

(sin2 γ + 1)

cos4 γ

M2
P

φ2
c

− e 2Rpc
3gε

tan γ

cos γ

MP

φc

√
6R
)(
C(k1,k2)P0(k1)P0(k2)

)
+ 2perm.

]
' 6
(√

g∗(k1)g∗(k2)Nk3

)(
C(k1,k2)P0(k1)P0(k2)

)
+ 2perm.

)
, (5.21)
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Figure 6. Evolution of fnl in the squeezed limit as a function of scale. We fix k3 = 0.005Mpc−1.

where C(k1,k2) is given by

C(k1,k2) ≡
(

1− (k̂1.n̂)2 − (k̂2.n̂)2 + (k̂1.n̂) (k̂2.n̂) (k̂1.k̂2)

)
. (5.22)

Using the standard definition of fnl

fnl(k1,k2,k3) = lim
k1→0

5

12

Bζ(k1,k2,k3)

Pζ(k1)Pζ(k2)
, (5.23)

one obtains its value in the squeezed limit

fnl

∣∣∣
k3�k1'k2

= −10g∗(k1)N(k3)C(k1,k2) ' −10g∗(k1)N(k3) , (5.24)

where we have neglected an O(1) term coming from C(k1,k2). Due to the numerical behavior
of g∗, which goes up toward the small scales, we have selected k1 to be associated with the
short mode, while the number of e-folds to be associated with the long mode. In order to study
the CMB spectral distortion, we should select the short mode within the µ or y scale and the
long mode in the CMB temperature anisotropies window (here we select k3 = 0.005Mpc−1).

The numerical behavior of fnl is presented in figure 6: an enhancement on fnl is achieved
towards the smaller scales.

6 Conclusions

Probing cosmological correlations in the squeezed limit is crucial for gaining insight into the
microphysics of inflation, as well as testing its alternatives, and for understanding how to
correctly map observations to models.

CMB spectral distortions provide the opportunity to test inflation on a range of scales
that is complementary w.r.t. the ones we have access to thanks to CMB temperature and po-
larization anisotropies or through the LSS. Primordial fluctuations re-entering Hubble during
the µ or y-distortion era undergo dissipation by photon diffusion, resulting in a distortion
of the CMB black-body spectrum. Correlating distortion and temperature anisotropies is a
promising novel direction for testing primordial non-Gaussianity in the squeezed limit. Re-
markably, this is done on scales smaller than those to which the current bounds on fnl apply.
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Inflationary models predicting (i) a correlation in the squeezed limit for cosmological
perturbations and (ii) a larger value for fnl in the squeezed limit on µ or y-distortion scales
than the current Planck bounds place on large scales, may be efficiently constrained with an
experiment having detection limits at the level of the proposed PIXIE.

We discussed a variety of mechanisms that satisfy the two conditions above and de-
rived quantitative predictions for the squeezed bispectrum on small scales for two concrete
inflationary realizations that are representative of large classes of models. One of these is a
scenario where a correlation among long and short-wavelength modes is generated via a reso-
nance between sub-horizon inflaton fluctuations and an oscillatory background. The latter is
specifically due to heavy fields (coupled to the inflaton) that oscillate and decay, generating
bumps in the correlation functions at specific scales. We find that the squeezed non-Gaussian
signal in this model is above detection limits on y-distortion scales (between 1 and 50 Mpc−1),
without violating the Planck bounds. The signal is weaker on µ scales: non-Gaussianity is
enhanced in so-called “not-so squeezed” configurations, resulting in a y − T correlation that
can be much larger than µ − T . Another example for which we evaluate the order of mag-
nitude of the squeezed bispectrum is the gauged hybrid model, another multi-field scenario,
but one in which the production of a squeezed correlation is determined by a completely dif-
ferent mechanism: a time-dependent kinetic mixing between the inflaton and another light
field, within a hybrid inflation set-up. In this case fnl grows monotonically at smaller scales,
resulting in a signal that is largest on µ scales.

As we commented at length in section (3), there exist other interesting and well-
motivated scenarios that would be ideal candidates for experimental tests by means of
distortion-temperature correlations. It would be interesting to perform for these models
a quantitative analysis similar to the one that has been presented for the resonance and for
the gauged hybrid models. One should also point out that, similarly to what happens on
large scales, also on small scales information on fnl would be very helpful in disentangling
inflationary models that are degenerate in their predictions for the two point function but
show qualitative differences at the level of higher order statistics.
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A Derivation of correlation functions in the resonance model

The expectation value of an operator Θ at time t can be computed using the in-in for-
mula [166]

〈Θ(t)〉 =

〈
0
∣∣∣ [T̄ exp

(
i

∫ t

t0

dt
′
HI(t

′
)

)]
ΘI(t)

[
T exp

(
−i
∫ t

t0

dt
′′
HI(t

′′
)

)] ∣∣∣ 0〉 . (A.1)
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This will be employed for the power spectrum and for the bispectrum computations in the
resonance model, by expanding the interaction Hamiltonian respectively to quadratic and
cubic order.

The amplitude of the leading-order power spectrum contribution from the derivative
interactions is proportional to the following integral

A(k) ∼
∫ t

0
dt′Ω(t′) sin(2kτ ′) , (A.2)

where Ω(t′) indicates the background value of the massive field χ (or its time derivative,
χ̇, depending on which of the Ki interactions one considers), oscillating with frequency m,
and the sin function in (A.2) comes from the two mode functions in (4.5), for which the
subhorizon approximation has been employed to simplify the integrand. The position of the
peak in the power spectrum and the corresponding wave number can be derived analytically.

First one computes the stationary point of the phase function in (A.2) finding that
the resonance occurs at time t∗ defined by k/a(t∗) = m/2. The duration of the resonance
is easily derived from the second derivative of the phase function, giving δt ∼ 1/

√
Hm.

This is a characteristic time-scale for the system, independent on the specific mode number.
Integrating in the vicinity of the resonance, one obtains an analytic form for A(k) that shows

a characteristic peak at k ≈ kp = ma0e
√
H/m (having set the scale factor equal to one at the

onset of the massive field oscillation). Modes close to kp contribute with a larger correction
to the power spectrum.

Notice that this characteristic scale can be interpreted as that of the mode that resonates
with the external frequency at time tsystem ' 1/

√
Hm: the resonance condition is indeed

k/a(t∗) = m, from which it follows k = kp if a(t∗) ' etsystem . Notice also that consistency
requires that Γ <

√
Hm for the scale kp to lie in the interval of modes that can resonate with

the external frequency. The smallest mode number to be affected by the resonance is equal
to m at the onset of the oscillations, i.e. k/a(t = 0) = kmin = m; the largest one reaches value
m at the time when the massive field decays, kmax/a(tend) = k/eHΓ−1

= m. One can see that
kp > kmin always applies and kp < kmax is satisfied as long as the decay rate is sufficiently
small, Γ <

√
mH.

The calculation for the bispectrum can be performed with the same techniques. The
amplitude is proportional to an integral as in eq. (A.2), where now k ≡ k1 +k2 +k3. One finds
that the amplitude has its maximum amplitude when k ' kp. Looking at squeezed triangle
configurations with k1 ' k2 � k3, k ' kp implies k1, k2 ' kp/2 and k3 � kp. For modes to
be subhorizon one needs to impose the condition ti > t∗, where ti is the horizon crossing time
for ki, having set i = 1, 2, 3, and t∗ is defined by k/a(t∗) ' m (this is the region from which
the majority of the contribution for integrals as (A.2) arises). The condition ti > t∗ implies
a(ti) > a(t∗), which in turn translates into ki/H > k/m ' kp/m and therefore one can probe
a resonance effect in the finitely squeezed (as opposed to arbitrarily squeezed) limit, i.e. for
k3 > kp(H/m).

The third order interacting Hamiltonian from the Kp term is given by

H
(3)
I =

∫
d3x a3

(
λpχ̇

4Λ4
j

)[
−δφ̇3 + δφ̇

(∂iδφ)2

a2

]
. (A.3)
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The bispectrum to leading order is given by

〈δφ~k1δφ~k2δφ~k3〉H(3) ' (2π)3δ(3)(~k1 + ~k2 + ~k3)uk1(τ)uk2(τ)uk3(τ)

×

[
3α

∫
dτ ′a(τ ′)χ̇ u

′∗
k1(τ ′)u

′∗
k2(τ ′)u

′∗
k3(τ ′)

+ 2α

∫
dτ ′ a(τ ′)χ̇~k2 · ~k3 u

′∗
k1(τ ′)u

′∗
k2(τ ′)u

′∗
k3(τ ′)

+ [k1 ↔ k2] + [k1 ↔ k3]

]
, (A.4)

where α ≡ −λp/4Λ4
j and the mode functions are given by

uk(τ) =
iH√
2k3

(1 + ikτ) e−ikτ . (A.5)

The massive field background oscillates as χ(t) ' χ0e
−Γt cos(mt). Using the subhorizon

approximation and approximating the full integrals in (A.4) with their contributions from
around the resonance, one finds

〈δφ~k1δφ~k2δφ~k3〉H(3) ≈
m

Γ
cos(θ∗)

χ0

a3
∗

H3λp
16 Λ4

j

F (k)
1

k1k2k3

×

3−
k1

(
~k2 · ~k3

)
+ k2

(
~k1 · ~k3

)
+ k3

(
~k1 · ~k2

)
k1k2k3

 , (A.6)

where θ∗ ≡ (m/H)(1 + ln(K/a0m)) is the phase at the stationary point, a∗ ≡ a(t∗) and the
function F is defined as

F (k) ≡


(

k
a0m

)−Γ/m
e−Γ/

√
mH − 1, if −

√
m
H < m

H ln
(

k
a0m

)
<
√

m
H(

k
a0m

)−Γ/m (
e−Γ/

√
mH − eΓ/

√
mH
)
, if m

H ln
(

k
a0m

)
>
√

m
H .

(A.7)

The peak for the bispectrum occurs at k ' kp ≡ (a0m/2)e
√
H/m, around which the func-

tion is well-approximated by F (k) ≈ e−2Γ/
√
mH − 1, hence eq. (4.7). Before proceeding to

the squeezed limit, we pause for a moment to analyse the momentum dependence of the
bispectrum from the parity violating interactions. The bispectrum we computed has the
following form

Bp(k1, k2, k3) = C × 1

k3
pk1k2k3

3−
k1

(
~k2 · ~k3

)
+ k2

(
~k1 · ~k3

)
+ k3

(
~k1 · ~k2

)
k1k2k3

 , (A.8)

where we factored out the overall momentum-independent coefficient into the C symbol.
Eq. (A.8) can be rewritten as

Bp(k1, x2, x3) = C× 1

k3
pk

3
1

1

x2x3

[
3− 1

2

{
1−x2

2−x2
3

x2x3
+
−1+x2

2−x2
3

x3
+
−1−x2

2+x2
3

x2

}]
, (A.9)
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Figure 7. Plot of Θ(x2−x3)Θ(x3−1+x2)x22x
2
3F (x2, x3), where F (x2, x3) ≡ k3pk

3
1

C Bp(k1, x2, x3), with
x2 ≡ k2/k1, x3 ≡ k3/k1.

where x2 ≡ k2/k1, x3 ≡ k3/k1. The momentum dependence of (A.9) is plotted in the [x2, x3]
plane in figure 7, showing a slight enhancement of the signal in the region around x2 ≈ x3 ≈ 1
(equilateral limit).

Let us now compute the amplitude of the bispectrum in the configuration that is relevant
for temperature-distortions cross-correlations. Adopting the usual convention for the defini-
tion

〈ζ~k1ζ~k2ζ~k3〉(2π)7δ(3)(~k1 + ~k2 + ~k3)
3

10
fnl (Pζ)2

∑
i=1,2,3 k

3
i

Πj=1,2,3k3
j

, (A.10)

where Pζ ≡ H2/(8π2M2
p εV ). Combining (A.6) and (A.10) and taking the limit of a finitely

squeezed triangle (k1 ' k2 ≈ kp � k3 > (H/m)kp), one arrives at eq. (4.8).

Let us sketch a quick comparison among the contributions to the bispectrum from Kn,
Kd and Kp. From [156, 157] one has from Kn (the same applies to Kd)

∆B(n) ≈ εm
H

∆P(n)
ζ

Pζ
, (A.11)

where ∆P(n)
ζ is the correction to the power spectrum due to Kn itself and ∆B is defined as

a dimensionless bispectrum

〈ζ~k1ζ~k2ζ~k3〉 ∼
P

k2
1k

2
2k

3
2

∆B(k1, k2, k3) . (A.12)

Using this definition along with our result in (4.8), from Kp we find

∆B(p) ≈ k3

kp

(m
H

)2 ∆P(p)
ζ

Pζ
, (A.13)

in the limit kp ' k1 ' k2 � k3. Considering, for simplicity, the limiting case ∆Pζ/Pζ ≈ 1
both for (A.11) and (A.13), and using k3 > kp(H/m), one finds ∆B(p) & O(1) × (m/H),
which is larger than (A.11).
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B More details on Gauged hybrid inflation

Here we present the final expression for Nφ, NȦ and NA.

Nφ =
pc

2(I − 1)

1

φ
+

εMP pc
6φc g (I − 1)

tan γ

cos γ

fφ
f

√
6R (B.1)

NȦ =

(
− 2NI

(I − 1)
+

ε pc
6g(I − 1)

tan γ

cos γ

MP

φc

√
6R

)(
1

Ȧ

)
(B.2)

NA =
ε pc

2gφc(I − 1)

tan γ

cos γ
. (B.3)
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