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We propose and experimentally realize a new kind of bound states in the continuum (BICs) in a class of
systems constructed by coupling multiple identical one-dimensional chains, each with inversion symmetry.
In such systems, a specific separation of the Hilbert space into a topological and a nontopological subspace
exists. Bulk-boundary correspondence in the topological subspace guarantees the existence of a localized
interface state which can lie in the continuum of extended states in the nontopological subspace, forming a
BIC. Such a topological BIC is observed experimentally in a system consisting of coupled acoustic
resonators.
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Bound states in the continuum (BICs) are spatially
confined modes that coexist with a continuous spectrum
of extended states [1,2]. BICs were first proposed using
custom-made potentials which are hard to realize. Recently,
several mechanisms of forming BICs have been proposed
such as parameter fine-tuning [3–8], space symmetry incom-
patibility [9–16], separations of coordinate variables [17],
chiral symmetry [18–20], inverse construction [21,22], and
PT symmetry [23]. BICs have been experimentally demon-
strated in optical waveguides [6,9,19,20,22], atoms [7], and
photonic crystal slabs [4,24]. Recently, trapped light has been
observed within the radiation continuum in photonic crystal
slabs [4], and its robustness was explained in terms of
topological charges [25]. Because of their high-Q nature,
BICs can be used for low-threshold lasing, chemical sensing,
and narrow-band filtering [2].
Recently, topological matters have attracted a lot of

attention in condensed matter [26,27] and cold atoms
[28,29]. Promising application of topological matters and
related concepts can be found from classical wave systems
[30–37] to noise-robust quantum computation [38–46]. We
find a new mechanism to form a BIC based on the concept
of topological subspaces. We will construct a system in
which the Hilbert space can be partitioned into a topologi-
cal and a nontopological subspace, and a topological
interface state due to bulk-boundary correspondence of
the topological subspace can coexist with the continuum of
the nontopological subspace, forming a BIC.
We will show that there exists a class of quasi-

one-dimensional (1D) periodic systems in which nontopo-
logical bands coexist with topological bands characterized
by quantized Zak phases. The Zak phase [34,47] is a
geometric phase used to characterize the bulk topology of
1D systems, and it has quantized values (0 or π) when the
system has inversion symmetry. We consider a class of
systems constructed by coupling multiple identical 1D
chains, each with inversion symmetry. The interchain

couplings remove the inversion symmetry in the entire
system. Consequently, the Zak phase of each band is, in
general, not quantized. However, we show that certain
interchain couplings allow the Hilbert space of the whole
system to be separated into a nontopological and a
topological subspace. In the topological subspace, bulk-
boundary correspondence assures the existence of a spa-
tially confined midgap state occurring at the interface
between two topologically different phases. This confined
state can be used to create a BIC if its energy overlaps with
the continuum of the nontopological modes. The new
mechanism for BICs we propose here is very general,
robust, and simple to realize, due to its topological essence.
We experimentally implement the idea by using 1D
phononic crystals (PCs) consisting of coupled acoustic
resonators and demonstrate the existence of a topologi-
cal BIC.
Model.—We start by considering two identical

Su-Schrieffer-Heeger (SSH) chains [48] coupled indirectly
through another chain as shown in Fig. 1(a). There are five
“atoms” in a unit cell, which are labeled by numbers 1–5.
The labels t and s denote the intracell and intercell
hoppings, and β is the hopping between two adjacent
5th sites. r1 and r2 denote the interchain couplings. The
on-site energies are assumed to be ϵ5 for the 5th site and 0
for all the other sites. We take β ¼ 0 at first without a loss
of generality. We set the lattice constant a ¼ 1 as the unit
of length.
In momentum space, the Hamiltonian has the form

HðkÞ ¼

0
BBBBBB@

0 W 0 0 r1
W� 0 0 0 0

0 0 0 W r2
0 0 W� 0 0

r1 0 r2 0 ϵ5

1
CCCCCCA
; ð1Þ

PRL 118, 166803 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

21 APRIL 2017

0031-9007=17=118(16)=166803(5) 166803-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.118.166803
https://doi.org/10.1103/PhysRevLett.118.166803
https://doi.org/10.1103/PhysRevLett.118.166803
https://doi.org/10.1103/PhysRevLett.118.166803


whereW ¼ tþ se−ik. In the absence of interchain couplings,
namely, r1 ¼ r2 ¼ 0, the system has two doubly degenerate
SSH bands with E�ðkÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ s2 þ 2ts cos k

p
, which

have quantized Zak phases as required by the existence of
inversion symmetry in each chain, and a flat bandE ¼ ϵ5. The
presence of interchain couplings lifts the degeneracy
and breaks the inversion symmetry of the system, and
the prediction of quantized Zak phases does not apply [47].
The absence of inversion symmetry can be observed more
easily by arranging all the sites onto a 1D configuration [49].
The band structures for three typical situations are shown by
solid lines in Figs. 2(a)–2(c): (a) jtj > jsj; (b) jtj ¼ jsj;
(c) jtj < jsj. We calculate the Zak phase according to
θ ¼ i

H
dkhuðkÞj∂kuðkÞi, where juðkÞi is the eigenstate of

HðkÞ. We find that the Zak phases are not quantized for the
three bands shown by red curves. However, two bands in
Figs. 2(a) and 2(c) shown by blue curves still possess
quantized Zak phases of 0 and π even though the system
has no inversion center. The separation of quantized
and nonquantized bands becomes more transparent if we
block-diagonalize HðkÞ by using U−1HðkÞU ¼ HBDðkÞ,
where

HBDðkÞ ¼

0
BBBBBB@

0 W 0 0 0

W� 0 0 0 0

0 0 0 W R

0 0 W� 0 0

0 0 R 0 ϵ5

1
CCCCCCA
; ð2Þ

U ¼ 1

R

0
BBBBBB@

−r2 0 r1 0 0

0 −r2 0 r1 0

r1 0 r2 0 0

0 r1 0 r2 0

0 0 0 0 R

1
CCCCCCA
; ð3Þ

and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22

p
. It is interesting to point out that the two

quantized blue bands shown in Figs. 2(a) and 2(c) have the
SSH dispersions E ¼ E�ðkÞ, which come from the upper
2 × 2 block. As these two bands have quantized Zak phases,
the associated subspace can be considered “topological.”
We emphasize that the existence of a topological subspace
holds for arbitrary values of r1 and r2. The lower 3 × 3 block
represents the nontopological subspace. The survival of a set
of SSHbands in the presence of r1 and r2 is due to the fact that
identical SSH chains outnumber the coupling channels [49].
Thus, the block-diagonalization explicitly separates the
Hilbert space into a topological and a nontopological sub-
space. The closing of the gap between two blue bands at
jtj ¼ jsj in Fig. 2(b) implies a topological phase transition in
the topological subspace.
The existence of quantized Zak phases in the topological

subspace implies a hidden symmetry. The unitary matrix U
transforms the basis of old “orbitals” jii to a new one, i.e.,
ji0i ¼ P

5
j¼1Ujijji, where i ¼ 1, 2, 3, 4, 5. Explicitly, the

basis for the2 × 2SSHblock inEq. (2)are two“superorbitals,”

j10i ¼ ð−r2j1i þ r1j3iÞ=R;
j20i ¼ ð−r2j2i þ r1j4iÞ=R; ð4Þ

(a) (b)

(c) (d)

FIG. 2. Solid curves (lefty axis) in (a)–(c) show theband inversion
and quantized Zak phases for the 2nd and 4th bands (blue) when
hopping parameters are changed from (a) jtj > jsj with t ¼ −55.7,
s ¼ −13.6, through (b) the transition point with t ¼ s ¼ −34, to
(c) jtj < jsj with t ¼ −13.6, s ¼ −55.7. Zak phases for the three
bands labeled by red are not quantized. The same values are chosen
for other parameterswithε5 ¼ 110.2,β ¼ 0, and r1 ¼ r2 ¼ −33.7.
(d)Solid curves show thebandstructurewithparameters t ¼ −13.6,
s ¼ −56.9, r1 ¼ r2 ¼ −26.5, ε5 ¼ −22, and β ¼ 13.5. All the
parameters aboveareobtainedbyfitting toCOMSOLcalculatedbands
marked by circles (right y axis).
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FIG. 1. (a) Two identical SSH chains coupled by a coupler
atom per unit cell. The hopping parameters and indices of
the atom orbitals are labeled. The on-site energies are ϵ1 ¼ ϵ2 ¼
ϵ3 ¼ ϵ4 ¼ 0 and ϵ5. (b) A unit cell consisting of coupled acoustic
cavities. (c) Photos of the coupled acoustic cavities with β ¼ 0 for
the measurement of the topological interface state in the midgap.
The regions encircled by a red rectangle are the interface. (d) and
(e) show the virtual lattices in the topological and the non-
topological subspace, respectively.
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where hi0jj0i ¼ δij; i; j ¼ 1, 2, and δij is the Kronecker delta
function. The hidden symmetry [49] becomes evident if we
consider the subsystem as a virtual SSHmodel with each unit
cell comprising two superorbitals j10i andj20i, as shown in
Fig. 1(d) [49]. The virtual lattice explicitly possesses inversion
symmetry, leading to quantized Zak phases for the associated
twoblue bands. For comparison, thevirtual lattice correspond-
ing to the 3 × 3 block in Eq. (2) is also shown in Fig. 1(e),
which possesses no inversion symmetry; therefore, the Zak
phases for theassociated three redbandsarenotquantized [49].
Equation (4) reveals that the wave functions in the

topological subspace vanish on the 5th sites and are
antisymmetric between two SSH chains if r1 ¼ r2.
These special properties will be used to experimentally
differentiate a topological interface mode from nontopo-
logical modes.
Realization of the tight-binding model.—The tight-

binding model can be realized using coupled acoustic
resonators. The unit cell is shown in Fig. 1(b). We choose
a dipole mode of a cylindrical cavity to represent the
“orbitals” [49]. The cavities are made of hard plastics and
filled with air. They all have the same radius of 3 cm. The
height of the interchain cavity 5 is treated as a tuning
parameter, whereas the height for the rest is 8.0 cm.
Hoppings among the cavities are facilitated by small
connecting tubes, with radii Rt ¼ 9 mm, Rs ¼ 4 mm,
and Rr ¼ 6 mm for hoppings t, s, and r, respectively.
For simplicity, we choose r1 ¼ r2 ¼ r. In this special case,
the wave functions in the topological and nontopological
subspace are odd and even, respectively, but we note that
the topological or nontopological states do not have parity
symmetry in the general case. The lattice constant is
a ¼ 16 cm, and the interchain distance is D ¼ 15 cm.
The separation between two neighboring cavities on an
SSH chain is a=2. With these parameters, we compute the
band structure using COMSOL. The band structures for the
case of β ¼ 0 are shown in Figs. 2(a) and 2(c) by circles,
where the eigenfrequency is shown on the right vertical
axis. The band structures from the tight-binding fitting
are shown on the left vertical axis by the solid curves in
Figs. 2(a) and 2(c). The excellent agreement shows that our
coupled acoustic cavities can be faithfully described by the
tight-binding model.
Topological interface mode.—We first demonstrate the

existence of a topological interface state due to bulk-
boundary correspondence in the topological subspace.
We use the unit cell with β ¼ 0 to construct an interface
as shown in Fig. 3(a). A fabricated sample is shown in
Fig. 1(c), in which the left PC has Zak phase 0 while the
right one has Zak phase π, joining at the interface by two
weak bonds. The height of middle cavities is 7.6 cm.
The topological interface state is numerically identified at
f ¼ 2187 Hz in the eigenspectrum and shown by a blue dot
in Fig. 3(b). In fact, there is another localized state inside
the gap at f ¼ 2173 Hz (red dot) which has even parity and

comes from the nontopological subspace [49]. Actually,
there is a second nontopological interface state marked by
the upper red dot in Fig. 3(b), which is not of interest
here [49].
In the experiment, we excite the states in the topological

and nontopological subspace by antiphase and in-phase
excitations, respectively. The topological interface mode
is selectively excited experimentally at 2186 Hz by an
antiphase excitation, which decays exponentially away
from the interface. It has odd parity and very small
amplitudes in the middle cavities, 2 orders of magnitude
smaller than those on the two SSH chains. Using an in-
phase excitation, another nontopological interface mode is
also identified experimentally at 2173 Hz, which has even
parity and has significant amplitudes in the middle cavities.
The detailed results are shown in Sec. G of Supplemental
Material.
Topological BIC.—We next show that a BIC can be

constructed by embedding the topological interface state in
a continuous spectrum of extended states in the nontopo-
logical subspace. This can happen if the nontopological
band between two SSH bands overlaps with the topological
interface state. To realize this, we change the height of the
middle cavities to 8.1 cm and connect the neighboring
middle cavities with small tubes of radius Rβ ¼ 6mm. This
newly added connection brings a hopping β ¼ 13.5 and
changes the (5, 5) matrix element in Eqs. (1) and (2) from
ϵ5 to ϵ5 þ 2β cos k. Thus, the separation of Hilbert space as
well as the existence of SSH bands remains intact. Now the
3rd nontopological band lies in the middle of two SSH
bands, as shown in Fig. 2(d).
The interface is constructed according to Fig. 3(c), and a

fabricated sample is shown in Fig. S1 [49]. As shown in
Fig. 3(d), the topological interface state marked by the blue
dot is clearly embedded in the continuum of the middle
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FIG. 3. Interface structures and their eigenspectra for β ¼ 0 [(a)
and (b)] and β ≠ 0 [(c) and (d)]. There are three sites at the
interface and ten cells on each side in (a) and (c). The odd (even)
interface modes are marked by blue (red) dots in (c) and (d). The
topological (odd) interface mode is inside the gap in (c) and
inside the continuum in (d).
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nontopological band and is therefore a BIC. Experimentally,
we separately excite the states in the topological and non-
topological subspaces using antiphase and in-phase sources,
respectively. This is achieved by placing two antiphase or
in-phase loudspeakers on the two SSH chains at the seventh
unit cell away from the interface. The pressure response is
measured at the interface. The spectral responses to antiphase
and in-phase excitations are shown in Figs. 4(a) and 4(b) in
log scale, respectively. In Fig. 4(a), we show the pressure
measured on the two SSH chains (blue and red curves). For
comparison, we also measured the pressure response of a
periodic structure with ten unit cells using an antiphase
excitation and showed the profile of the pressure response by
the gray shaded region in Fig. 4(a). The band gap at about
2200 Hz is clearly demonstrated for the periodic structure.
The small peak marked by a green arrow at 2190 Hz on the
red curve inside the band gap (2175–2230 Hz) unambigu-
ously shows the BIC. In addition, the response at the middle
cavity is much smaller than those on the SSH chains. In
Fig. 4(b), in the same spectral range near 2200 Hz, we see a
pronounced band of high pressure responses instead of a
band gap. Also, the pressure in the middle cavity is on a par
with or even exceeds that on the SSH chains. We measured
the pressure amplitudes of each site so as to clearly
demonstrate that they are localized at the BIC frequency
2190Hz.We used both antiphase and in-phase excitations by
exciting the system at the PC interface. Figure 4(c) shows the
antiphase field profile, indicating the exponential decay of
the pressure on the two SSH chains away from the interface

(blue and red)with the decay constantmatchingwellwith the
analytic tight-binding result j lnðs=tÞj−1 [49] for the topo-
logical zero energy interface mode (green). Agreeing with
the theoretical prediction, the field amplitude in the middle
cavities is much smaller. Under the in-phase excitation, we
see in Fig. 4(d) that the field amplitudes are of the same
magnitude for both SSH chains and the middle cavities. The
fields are extended across the system with a much smaller
decay constant compared to the antiphase situation. This
small decay is due to dissipation. In the insets in Figs. 4(c)
and 4(d), the phase differences jΔθj ¼ jθ1 − θ2j between the
two SSH chains are shown, which demonstrate the parity of
the excited modes. The combination of Figs. 4(c) and 4(d)
confirms the eigenspectrum shown in Fig. 3(d) and shows
clearly the existence of a topological bound state in a
nontopological continuum.
In summary, we theoretically and experimentally dem-

onstrated a topological BIC, attributed to the separation of
the Hilbert space into a topological subspace and a non-
topological one. We emphasize that the topological BIC
actually exists for any pair of unequal r1 and r2 in which
the system does not have any obvious symmetries [49]
and also in generalized models with multiple chains and
next-nearest-neighbor hoppings [49]. The topological
subspace-induced BIC can also be implemented in cold
atoms in deep lattices [28,29] and optical systems such as
weakly coupled optical waveguide arrays [9,19,20] and
high dielectric photonic crystals where the tight-binding
description holds. The concept of a topological subspace
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FIG. 4. (a),(b) The response spectra with an (a) antiphase and (b) an in-phase excitation. The green arrow in (a) marks the topological
BIC at 2190 Hz. The gray shaded region in (a) denotes the pressure response without an interface. (c),(d) The field distributions of the
(c) odd interface state and (d) the even extended state at 2190 Hz. The green line in (c) shows the tight-binding fitting result. The insets in
(c) and (d) show the phase difference of pressure responses on the two SSH chains, which demonstrates the odd and the even parity of
the excited modes, respectively.
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and BICs may also be useful to other communities such as
quantum computation [38–40].
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