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Abstract

In this paper, we consider two regularized transformation-optics cloaking
schemes for electromagnetic (EM) waves. Both schemes are based on the blowup
construction with the generating sets being, respectively, a generic curve and a
planar subset. We derive sharp asymptotic estimates in assessing the cloaking per-
formances of the two constructions in terms of the regularization parameters and the
geometries of the cloaking devices. The first construction yields an approximate
full-cloak, whereas the second construction yields an approximate partial-cloak.
Moreover, by incorporating properly chosen conducting layers, both cloaking con-
structions are capable of nearly cloaking arbitrary EM contents. This work com-
plements the existing results in Ammari et al. (SIAM J Appl Math 73:2055–2076,
2013), Bao and Liu (SIAM J Appl Math 74:724–742, 2014), Bao et al. (J Math
Pure Appl (9) 101:716–733, 2014) on approximate EM cloaks with the generating
set being a singular point, and it also extends Deng et al. (On regularized full- and
partial-cloaks in acoustic scat- tering. Preprint, arXiv:1502.01174, 2015), Li et al.
(Commun Math Phys, 335:671–712, 2015) on regularized full and partial cloaks
for acoustic waves governed by the Helmholtz system to the more challenging EM
case governed by the full Maxwell system.

1. Introduction

1.1. Background

This paper is concerned with the invisibility cloaking of electromagnetic (EM)
waves via the approach of transformation optics. This method, which is based on
the transformation properties of the optical material parameters and the invariance
properties of the equations modeling the wave phenomena, was pioneered in [16]
for electrostatics. For Maxwell’s system, the same transformation optics approach
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was developed in [34]. In two dimensions, Leonhardt [24] used the conformal map-
ping to cloak rays in the geometric optics approximation. The obtained cloaking
materials are called metamaterials. The metamaterials proposed in [17,24,34] for
the ideal cloaks are singular, and this has aroused great interest in the literature
to deal with the singular structures. In [12,30], the authors proposed considering
the finite-energy solutions from singularly weighted Sobolev spaces for the under-
lying singular PDEs, and both acoustic cloaking and EM cloaking were treated.
In [11,13,20,21,27], the authors proposed avoiding the singular structures by in-
corporating regularization into the cloaking construction, and instead of an ideal
invisibility cloak, one considers an approximate/near invisibility cloak. The latter
approach has been further investigated in [3,4,28] for the conductivity equation and
Helmholtz system, modeling electric impedance tomography (EIT) and acoustic
wave scattering, respectively, and in [5–7] for the Maxwell system, modeling the
EM wave scattering. For all of the above mentioned work on regularized approx-
imate cloaks, the generating set is a singular point, and one always achieves the
full-cloak; that is, the invisibility is attainable for detecting waves coming from
every possible incident/impinging direction, and observations made at every pos-
sible angle. In a recent article [25], the authors proposed studying regularized
partial/customized cloaks for acoustic waves; that is, the invisibility is only attain-
able for limited/customized apertures of incidence and observation. The key idea
is to properly choose the generating set for the blowup construction of the cloaking
device. In [25], the authors only proved qualitative convergence for the proposed
partial/customized cloaking construction, and the corresponding result was further
quantified in [9] by the authors of the current article.

In this paper,we shall extend [9,25] on the regularized partial/customized cloaks
for acoustic wave scattering to the case of electromagnetic wave scattering. We
present two near-cloaking schemes with the generating sets being a generic curve
or a planar subset, respectively. It is shown that the first scheme yields an ap-
proximate full-cloak, whose invisibility effect is attainable for the whole aperture
of incidence and observation angles. The result obtained complements [5–7] on
approximate full cloaks. However, the generating set for the blowup construction
considered in [5–7] is a singular point, whereas in this study, the generating set is a
generic curve. The cloaking material in our full-cloaking scheme is less “singular”
than those in [5–7], but at the cost of losing some degree of accuracy on the invisi-
bility approximation. The second scheme would yield an approximate partial-cloak
with limited apertures of incidence and observation. We derive sharp asymptotic
estimates in assessing the cloaking performances in terms of the regularization
parameters and the geometries of the generating sets. The estimates are indepen-
dent of the EM contents being cloaked, which means that the proposed cloaking
schemes are capable of nearly cloaking arbitrary EM objects. Compared to [5–7]
on approximate full-cloaks, we need to deal with anisotropic geometries, whereas
compared to [9,25] on approximate partial-cloaks for acoustic scattering governed
by the Helmholtz system, we need to tackle the more challenging Maxwell system.
Finally, we refer the readers to [8,14,15,29,36] for surveys on the theoretical and
experimental progress on transformation-optics cloaking in the literature.
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1.2. Mathematical Formulation

Consider a homogeneous space with the (normalized) EM medium parameters
described by the electric permittivity ε0 = I3×3 and magnetic permeability μ0 =
I3×3. Here and also in what follows, I3×3 denotes the identity matrix in R

3×3.
For notational convenience, we also let σ0 := 0 · I3×3 denote the conductivity
tensor of the homogeneous background space. We shall consider the invisibility
cloaking in the homogeneous space described above. Following the spirit of [5–7],
the proposed cloaking device is compactly supported in a bounded domain �, and
takes a three-layered structure. Let �a � �c � � be bounded domains such that
�a , �c\�a and �\�c are connected, and they represent, respectively, the cloaked
region, conducting layer and cloaking layer of the proposed cloaking device. Let
�0 be a bounded open set in R

3, and it shall be referred to as a generating set in
the following. For δ ∈ R+, we let Dδ denote an open neighborhood of �0 such that
Dδ → �0 (in the sense of Hausdorff distance) as δ → +0. Dδ will be referred to
as the virtual domain, and shall be specified below. Throughout, we assume that
there exists a bi-Lipschitz and orientation-preserving mapping Fδ : R

3 → R
3 such

that

Fδ(Dδ/2) = �a, Fδ(Dδ\Dδ/2) = �c\�a, Fδ(�\Dδ)

= �\�c and Fδ|R3\� = Identity. (1.1)

Next, we describe the EM medium parameter distributions {R3; ε, μ, σ } in the
physical space containing the cloaking device, and {R3; εδ, μδ, σδ} in the virtual
space containing the virtual domain. The EM medium parameters are all assumed
to be symmetric-positive-definite-matrix valued functions, and they characterize,
respectively, the electric permittivity, magnetic permeability and electric conduc-
tivity. In what follows, {R3; ε, μ, σ } and {R3; εδ, μδ, σδ} shall be referred to as,
respectively, the physical and virtual scattering configurations. Let

{R3; ε, μ, σ } =

⎧
⎪⎪⎨

⎪⎪⎩

ε0, μ0, σ0 in R
3\�,

ε∗
c , μ

∗
c , σ

∗
c in �\�c,

ε∗
l , μ

∗
l , σ

∗
l in �c\�a,

ε∗
a, μ

∗
a, σ

∗
a in �a,

(1.2)

and

{R3; εδ, μδ, σδ} =
⎧
⎨

⎩

ε0, μ0, σ0 in R
3\Dδ,

εl , μl , σl in Dδ\Dδ/2,

εa, μa, σa in Dδ/2.

(1.3)

The virtual and physical scattering configurations are connected by the so-called
push-forward via the (blowup) transformation Fδ in (1.1). To that end, we next
introduce the push-forward of EM mediums. Let m and mδ , respectively, denote
the physical and virtual parameter tensors, where m = ε, μ or σ . Define the push-
forward (Fδ)∗mδ as

m = (Fδ)∗mδ :=
(

1

det(DFδ)
(DFδ) · mδ · (DFδ)

T
)

◦ F−1
δ , (1.4)
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where DFδ denotes the Jacobian matrix of the transformation Fδ . Throughout the
rest of our study, we assume that

{R3; ε, μ, σ } = (Fδ)∗{R3; εδ, μδ, σδ} := {R3; (Fδ)∗εδ, (Fδ)∗μδ, (Fδ)∗σδ}.
(1.5)

Next, we consider the time-harmonic EMwave scattering in the physical space.
Let

Ei (x) := peiωx·d, Hi := 1

iω
(∇ × Ei )(x), x ∈ R

3, (1.6)

where p ∈ R
3\{0}, d ∈ S

2 and ω ∈ R+. (Ei ,Hi ) in (1.6) is called a pair of EM
plane waves withEi the electric field andHi themagnetic field. p is the polarization
tensor, d is the incident direction and ω is the wavenumber of the plane waves Ei

and Hi . It always holds that

p ⊥ d, namely p · d = 0. (1.7)

Ei and Hi are entire solutions to the following Maxwell equations
{∇ × Ei − iωμ0Hi = 0 in R

3,

∇ × Hi + iωε0Ei = 0 in R
3,

The EM scattering in the physical space {R3; ε, μ, σ } due to the incident plane
waves (Ei ,Hi ) is described by the following Maxwell system

{∇ × E − iωμH = 0 in R
3,

∇ × H + iω(ε + i σ
ω
)E = 0 in R

3,
(1.8)

subject to the Silver-Müller radiation condition:

lim‖x‖→∞ ‖x‖((H − Hi ) × x̂ − (E − Ei )
) = 0, (1.9)

where x̂ = x/‖x‖ for x ∈ R
3\{0}. We seek solutions E,H ∈ Hloc(curl; R

3) to
(1.8); see [19,22,23,31] for the well-posedness of the scattering system (1.8). Here
and also in what follows, we shall often use the spaces

Hloc(curl; X) = {U |B ∈ H(curl; B); B is any bounded subdomain of X}
and

H(curl; B) = {U ∈ (L2(B))3; ∇ ×U ∈ (L2(B))3}.
It is known that the solution E to (1.8) admits the following asymptotic expan-

sion as ‖x‖ → ∞ (see, example, [10])

E(x) − Ei (x) = eiω‖x‖

‖x‖ A∞
(

x
‖x‖;Ei

)

+ O
(

1

‖x‖2
)

, (1.10)

where

A∞(x̂;p,d) := A∞
(

x
‖x‖;Ei

)

(1.11)
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is known as the scattering amplitude and x̂ denotes the direction of observation. It
is readily verified that

A∞(x̂;p,d) = ‖p‖A∞
(

x̂; p
‖p‖ ,d

)

. (1.12)

Therefore, without loss of generality and throughout the rest of our study, we shall
assume that ‖p‖ = 1, namely, p ∈ S

2.

Definition 1.1. Let �p ⊂ S
2, �d ⊂ S

2 and �x̂ ⊂ S
2. {�; ε, μ, σ } is said to be a

near/approximate-cloak if

‖A∞(x̂;p,d)‖ � 1 for x̂ ∈ �x̂ , p ∈ �p, d ∈ �d . (1.13)

If �p = �d = �x̂ = S
2, then it is called an approximate full-cloak, otherwise it is

called an approximate partial-cloak.

According to Definition 1.1, the cloaking layer {�\�c; ε∗
c , μ

∗
c , σ

∗
c } together with

the conducting layer {�c\�a; ε∗
l , μ

∗
l , σ

∗
l } makes the target EM object {�a; ε∗

a,

μ∗
a, σ

∗
a } nearly invisible to detecting waves (1.6) with d ∈ �d and p ∈ �p, and

observation in the aperture �x̂ . �d and �x̂ shall be referred to as, respectively, the
apertures of incidence and observation of the partial-cloaking device. For practical
considerations, throughout the current study, we assume that the cloaking device is
not object-dependent; that is, the cloaked content {�a; ε∗

a , μ
∗
a, σ

∗
a } is arbitrary but

regular, namely, ε∗
a, μ

∗
a, σ

∗
a are all arbitrary symmetric positive definite matrices.

In Definition 1.1, (1.13) is rather qualitative, and in the subsequent study, we shall
quantify the near-cloaking effect and derive sharp estimate in assessing the cloaking
performance. To that end, the following theorem plays a critical role (cf. [6,7]).

Theorem 1.1. Let (E,H) ∈ Hloc(curl; R
3)2 be the (unique) pair of solutions to

(1.8). Define the pull-back fields by

Eδ = (Fδ)
∗E := (DFδ)

TE ◦ Fδ, Hδ = (Fδ)
∗H := (DFδ)

TH ◦ Fδ.

Then the pull-back fields (Eδ,Hδ) ∈ Hloc(curl; R
3)2 satisfy the following Maxwell

equations ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇ × Eδ − iωμ0Hδ = 0 in R
3\Dδ,

∇ × Hδ + iωε0Eδ = 0 in R
3\Dδ,

∇ × Eδ − iωμδHδ = 0 in Dδ,

∇ × Hδ + iω
(
εδ + i σδ

ω

)
Eδ = 0 in Dδ

(1.14)

subject to the Silver–Müller radiation condition:

lim‖x‖→∞ ‖x‖((Hδ − Hi ) × x̂ − (Eδ − Ei )
) = 0. (1.15)

In Particular, since Fδ = Identity in R
3\�, one has that

A∞(x̂;Ei ) = Aδ∞(x̂;Ei ), x̂ ∈ S
2, (1.16)

where Aδ∞(x̂;Ei ) denotes the scattering amplitude corresponding to the Maxwell
system (1.14).
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Hence, by Theorem 1.1, in order to assess the cloaking performance of the
cloaking device {�; ε, μ, σ } in (1.2) associated with the physical scattering system
(1.8)–(1.9), it suffices for us to investigate the virtual scattering system (1.14)–
(1.15). Here, it is noted for emphasis that by (1.5), one has

{Dδ/2; εa, μa, σa} = (F−1
δ )∗

{
�a; ε∗

a , μ
∗
a, σ

∗
a

}
. (1.17)

Since {�a; ε∗
a , μ

∗
a, σ

∗
a } is arbitrary and regular and Fδ is bi-Lipschitz andorientation-

preserving, it is clear that {Dδ/2; εa, μa, σa} is also arbitrary and regular.
In summarizing our discussion so far, in order to construct a near-cloaking de-

vice, one needs to firstly select a suitable generating set �0 and the corresponding
virtual domain Dδ; and secondly the blowup transformation Fδ in (1.1); and thirdly
the virtual conducting layer {Dδ\Dδ/2; εl , μl , σl}; and finally assess the cloaking
performance by studying the virtual scattering system (1.14)–(1.15). In this arti-
cle, we shall be mainly concerned with extending the full- and partial-cloaking
schemes proposed in [9,25] for acoustic waves to the more challenging case with
electromagnetic waves. There the generating sets are either a generic curve or a
planar subset, and the blowup transformations are constructed via a concatenating
technique. Hence, in the current study, we shall mainly focus on properly design-
ing the suitable conducting layers and then assessing the cloaking performances by
studying the corresponding virtual scattering system (1.14)–(1.15).

The rest of the paper is organized as follows. In Section 2, we collect some pre-
liminary knowledge on boundary layer potentials, which shall be used throughout
our study. Sections 3 and 4 are, respectively, devoted to the study of the full- and
partial-cloaking schemes.

2. Boundary Layer Potentials

Our study shall heavily rely on the vectorial boundary integral operators for
Maxwell’s equations. In this section, we review some of the important properties
of the vectorial boundary integral operators for the later use.

2.1. Definitions

Let D be a bounded domain in R
3 with a C1,1-smooth boundary ∂D and a

connected complement R
3\D. Let ∇∂D· denote the surface divergence on ∂D and

Hs(∂D) be the usual Sobolev space of order s ∈ R on ∂D. Let ν be the exterior unit
normal vector to ∂D and denote by THs(∂D) := {a ∈ Hs(∂D)3; ν · a = 0}, the
space of vectors tangential to ∂D which is a subset of Hs(∂D)3. We also introduce
the function space

THs
div(∂D) : =

{
a ∈ THs(∂D); ∇∂D · a ∈ Hs(∂D)

}
,

endowed with the norm

‖a‖THs
div(∂D) = ‖a‖THs (∂D) + ‖∇∂D · a‖Hs (∂D).
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Next, we recall that, for ω ∈ R+ ∪ {0}, the fundamental outgoing solution Gω

to the PDO (� + ω2) in R
3 is given by

Gω(x) = − eiω‖x‖

4π‖x‖ . (2.1)

In what follows, if ω = 0 we simply write Gω as G.
For a density function a ∈ THs

div(∂D), we define the vectorial single layer
potential associated with the fundamental solution Gω introduced in (2.1) by

Sω
D[a](x) :=

∫

∂D
Gω(x − y)a(y) dσy, x ∈ R

3. (2.2)

For a scalar density ϕ ∈ Hs(∂D), the single layer potential is defined similarly by

Sω
D[ϕ](x) :=

∫

∂D
Gω(x − y)ϕ(y) dσy, x ∈ R

3. (2.3)

The following boundary operator shall also be needed:

Mω
D : L2

T (∂D) −→ L2
T (∂D)

a −→ Mω
D[a](x) = p.v. νx × ∇ ×

∫

∂D
Gω(x, y)a(y) dσy, (2.4)

where L2
T (∂D) := TH0(∂D), and p.v. signifies the Cauchy principle value. In

what follows, we denote by AD , SD and MD the operators A0
D , S0

D and M0
D ,

respectively.

2.2. Boundary Integral Identities

Here and throughout the rest of the paper,wemake use of the following notation:
for a function u defined on R

3\∂D, we denote

u|±(x) = lim
τ→+0

u(x ± τν(x)), x ∈ ∂D,

and

∂u

∂ν

∣
∣
∣
∣±

(x) = lim
τ→+0

〈∇xu(x ± τν(x)), ν(x)〉, x ∈ ∂D,

if the limits exist, where ν is the unit outward normal vector to ∂D.
It is known that the single layer potential Sω

D satisfies the trace formula (cf.
[10,31])

∂

∂ν
Sω
D[ϕ]

∣
∣
∣± =

(

±1

2
I + (Kω

D)∗
)

[ϕ] on ∂D, (2.5)

where (Kω
D)∗ is the L2-adjoint of Kω

D and

Kω
D[ϕ] := p.v.

∫

∂D

∂Gω(x − y)
∂ν(y)

ϕ(y) dσy, x ∈ ∂D.

The jump relations in the following proposition are also known (see [10,31]).
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Proposition 2.1. Let a ∈ TH−1/2
div (∂D). Then Sω

D[a] is continuous on R
3 and its

curl satisfies the following jump formula,

ν × ∇ × Sω
D[a]∣∣± = ∓a

2
+ Mω

D[a] on ∂D, (2.6)

where

ν(x) × ∇ × Sω
D[a]∣∣±(x) = lim

t→+0
ν(x) × ∇ × Sω

D[a](x ± tν(x)), ∀x ∈ ∂D.

Equipped with the above knowledge, the solution pair (Eδ,Hδ) in R
3\Dδ to (1.14)

can be represented using the following integral ansatz,

Eδ(x) = Ei (x) + ∇x × Sω
Dδ

[a](x), x ∈ R
3\Dδ, (2.7)

Hδ(x) = 1
iω∇x × Eδ(x) = Hi (x) + 1

iω∇x × ∇x × Sω
Dδ

[a](x), x ∈ R
3\Dδ,

z (2.8)

where by (2.6) the vectorial density function a ∈ TH−1/2
div (∂Dδ) satisfies

(
− I

2
+ Mω

Dδ

)
[a](x) = ν × (Eδ − Ei )(x)

∣
∣
∣+, y ∈ ∂Dδ. (2.9)

3. Regularized Full-Cloaking of EM Waves

In this section, we consider a regularized full-cloaking scheme of the EMwaves
by taking the generating set to be a generic curve. As discussed in the introduction,
this scheme was considered in our earlier work [9] for acoustic waves. For self-
containedness, we briefly discuss the generating set �0 and the virtual domain Dδ

for the proposed cloaking scheme in the sequel, which can also be found in [9]. Let
�0 be a smooth simple and non-closed curve in R

3 with two endpoints, denoted
by P0 and Q0, respectively. Denote by N (x) the normal plane of the curve �0 at
x ∈ �0. We note that N (P0) and N (Q0) are, respectively, defined by the left and
right limits along �0. Let q ∈ R+. For any x ∈ �0, we let Sq(x) denote the disk
lying on N (x), centered at x and of radius q. It is assumed that there exists q0 ∈ R+
such that when q � q0, Sq(x) intersects �0 only at x. We let D f

q be given as

D f
q := Sq(x) × �0(x), x ∈ �0, (3.1)

where �0 is identified with its parametric representation �0(x); see Fig. 1 for a
schematic illustration. Clearly, the facade of D f

q , denoted by S f
q and parallel to �0,

is given by

S f
q :=

{
x + q · n(x); x ∈ �0,n(x) ∈ N (x) ∩ S

2
}

, (3.2)

and the two end-surfaces of D f
q are the two disksSq(P0) andSq(Q0). Let Da

q and
Db
q be two semi-balls of radius q and centred, respectively, at P0 and Q0. Let Saq and

Sbq be the two hemispheres such that ∂Da
q = Saq ∪Sq(P0) and ∂Db

q = Sbq∪Sq(Q0).
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Fig. 1. Schematic illustration of the domain Dq for the regularized full-cloak

It is assumed that Sq := S f
q ∪ Sbq ∪ Saq is a C1,1-smooth boundary of the domain

Dq := Da
q ∪ D f

q ∪ Db
q .

Henceforth, we let δ ∈ R+ be the asymptotically small regularization parame-
ter and let Dδ denote the virtual domain used for the blowup construction of the
cloaking device. We also let

Sδ := S f
δ ∪ Sbδ ∪ Saδ (3.3)

denote the boundary surface of the virtual domain Dδ . Without loss of generality,
we assume that q0 ≡ 1. We shall drop the dependence on q if one takes q = 1.
For example, D and S denote, respectively, Dq and Sq with q = 1. It is remarked
that in all of our subsequent arguments, D can always be replaced by Dτ0 , with
0 < τ0 � q0 being a fixed number.

In what follows, if we utilize z to denote the space variable on �0, then for
every y ∈ D f

q , we define a new variable zy ∈ �0 which is the projection of y onto
�0. Meanwhile, if y belongs to Da

q (respectively Db
q ), then zy is defined to be P0

(respectively Q0). Henceforth, we let ξ denote the arc-length parameter of �0 and
θ , which ranges from 0 to 2π , be the angle of the point on N (ξ) with respect to the
central point x(ξ) ∈ �0.Moreover, we assume that if θ = 0, then the corresponding
points are those lying on the line that connects �0(ξ) to �1(ξ), where �1 is defined
to be

�1 := {x + n1(x); x ∈ �0,n1(x) ∈ N (x) ∩ S
2 − a fixed vector for a given x}.

With the above preparation, we introduce a blowup transformation which maps
y ∈ Dδ to ỹ ∈ D as follows:

A(y) = ỹ := 1

δ
(y − zy) + zy, y ∈ D f

δ , (3.4)

whereas

A(y) = ỹ :=
{

y−P0
δ

+ P0, y ∈ Da
δ ,

y−Q0
δ

+ Q0, y ∈ Db
δ .

(3.5)

Next, we present the crucial design of the lossy layer in (1.3). Define the Jacobian
matrix B by

B(y) = ∇yA(y), y ∈ Dδ. (3.6)
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Set the material parameters εδ , μδ and σδ in the lossy layer Dδ\Dδ/2 to be

εδ(x) = εl(x) : = δr |B|B−1, μδ(x) = μl(x) := δs |B|B−1,

σδ(x) = σl(x) : = δt |B|B−1, for x ∈ Dδ\Dδ/2, (3.7)

where r , s and t are all real numbers and | · | stands for the determinant when related
to a square matrix.

We are now in a position to present the main theorem on the approximate
full-cloak constructed by using Dδ described above as the virtual domain.

Theorem 3.1. Let Dδ be as described above with ∂Dδ = Sδ defined in (3.3). Let
(Eδ,Hδ) be the pair of solutions to (1.14), with {�; εδ, μδ, σδ} ⊂ {R3; εδ, μδ, σδ}
defined in (1.3), and {Dδ\Dδ/2; εδ, μδ, σδ} given in (3.7). Define

β = min{1,−1 + r + s,−1 + t + s}, β ′ = min{1,−2 + r + s,−2 + t + s}.

If r , s and t are chosen such that β ′ − t/2 � 1/2, then there exists δ0 ∈ R+ such
that when δ < δ0,

‖Aδ∞(x̂;p,d)‖ � C(δβ−t/2+1 + δ2) (3.8)

where C is a positive constant depending on ω and D, but independent of εa, μa,
σa and x̂, p, d.

Remark 3.1. Following our earlier discussion, one can immediately infer by The-
orems 1.1 and 3.1 that the push-forwarded structure in (1.2),

{�; ε, μ, σ } = (Fδ)∗{�; εδ, μδ, σδ}

produces an approximate full-cloaking device within at least δ-accuracy to the ideal
cloak. Indeed, if we set s = 3, r = 0 and t = −1 then one has β = 1, β ′ = 0
and the accuracy of the ideal cloak will be δ2, which is the highest accuracy that
one can obtain for such a construction. In Particular, it is emphasized that in (3.8),
the estimate is independent of εa , μa , σa , and this means that the cloaked content
{�a; ε∗

a , μ
∗
a, σ

∗
a } in (1.2) can be arbitrary but regular. Finally, as remarked earlier,

we refer to [25] for the construction of the blowup transformation Fδ , of which we
always assume the existence in the current study.

The subsequent three subsections are devoted to the proof of Theorem 3.1. For
our later use, we first derive some critical lemmas.

3.1. Auxiliary Lemmas

In this subsection we present some auxiliary lemmas that are essential for our
analysis of the far-field estimates. To begin with, we show the following properties
of the blowup transformation defined in (3.4).
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Lemma 3.1. (Lemma 4.1 in [9]) Let A be the transformation introduced in (3.4)
and (3.5) which maps the region Dδ to D. Let B(y) be the corresponding Jacobian
matrix of A(y) given by (3.6). Then we have

B(y) =
{

1
δ
I3×3 −

(
1
δ

− 1
)
z′
y(ξ)z′

y(ξ)T , y ∈ D f
δ ,

1
δ
I3×3, y ∈ Da

δ ∪ Db
δ ,

(3.9)

where the superscript T denotes the transpose of a vector or amatrix. Furthermore,

B(y)νy = 1

δ
νy, y ∈ ∂Dδ, (3.10)

where νy stands for the unit outward normal vector to ∂Dδ at y ∈ ∂Dδ .

Remark 3.2. In view of the Jacobian matrix form (3.9), one can also find that the
eigenvalues of B(x), x ∈ Dδ are either 1 or 1/δ. Hence for any vector fieldV ∈ R

3,
there holds

‖V‖2 � 〈B(x)V,V〉 � δ−1‖V‖2 (3.11)

uniformly for x ∈ Dδ . It can also be easily seen from (3.9) that

|B(y)| = δ−2, y ∈ D f
δ . (3.12)

For the sake of simplicity, we define

E+
δ := Eδ − Ei , H+

δ := Hδ − Hi , in R
3\Dδ. (3.13)

Furthermore, we introduce the following notations

Ẽ(x̃) := E(A−1(x̃)) = E(x), H̃(x̃) := H(A−1(x̃)) = H(x), (3.14)

and define the corresponding fields after change of variables by

Ê(x̃) := ((B̃T )−1Ẽ)(x̃), Ĥ(x̃) := ((B̃T )−1H̃)(x̃), (3.15)

where

B̃(x̃) := B(A−1(x̃)) = B(x).

We mention that sometimes we write B and B̃ in the sequel and omit their de-
pendences for simplicity. The following lemma is of critical importance for our
subsequent analysis.

Lemma 3.2. (Corollary 3.58 in [32]) Let x̃ = A(x) with B(x) = ∇A(x). Then for
the bounded domain Dδ and any vector field V ∈ H(curl; Dδ),

V̂(x̃) := (B̃T )−1Ṽ(x̃), Ṽ(x̃) := V(x), x ∈ Dδ,

there hold the following identities

|B̃|−1B̃(∇ × V)(A−1(x̃)) = ∇x̃ × V̂(x̃), (3.16)

and ∫

∂Dδ

(νx × V) · Wdσx =
∫

∂D
(νx̃ × V̂) · Ŵdσx̃ (3.17)

where W ∈ H(curl; Dδ) and Ŵ(x̃) := (B̃T )−1W̃(x̃) := (BT )−1W(x).



276 Youjun Deng, Hongyu Liu & Gunther Uhlmann

Noting that

dσy =
{

δ dσỹ, y ∈ S f
δ ,

δ2 dσỹ, y ∈ Sbδ ∪ Saδ ,
(3.18)

with which one can show that the following Lemma applies

Lemma 3.3. Let Dc, c ∈ {a, b} be defined at the beginning of this section. For
r ∈ R+, let Da

r,δ denote the semi-spheroid with Sr (P0) being its base and the

other semi-axis being δ. Let Db
r,δ be defined similarly with the base beingSr (Q0).

Define D1,δ := D f ∪ Da
1,δ ∪ Db

1,δ and denote by A1 the blowup transformation

from x ∈ Dδ to x̃ ∈ D1,δ with A1
∣
∣
D f

δ

= A
∣
∣
D f

δ

. Let V and V̂, B be similarly defined

as those in Lemma 3.2. Then for any W ∈ H(curl; D), one has
∫

∂D1,δ

νx̃ × Ṽ · W(x̃) dσx̃ = δ−1
∫

∂D1,δ

νx̃ × V̂ · Ŵ(x̃) dσx̃ , (3.19)

∫

∂Dc
νx̃ × Ṽ · W(x̃) dσx̃ = δ−2

∫

∂Dc
νx̃ × V̂ · Ŵ(x̃) dσx̃ c ∈ {a, b}, (3.20)

where Ŵ(x̃) := (B̃T )−1W(x̃).

Proof. The proof follows directly from (3.17), (3.18) by using a change of variables
in the corresponding integrals. ��
Lemma 3.4. Suppose ã(x̃) = a(x) for x ∈ ∂Dδ and x̃ ∈ ∂D. Let ιδt (x) and ι1,δt (x̃),
t = 1/2 or 1, be two regions respectively defined by

ιδt (x) :=
{
y
∣
∣
∣|zx − zy | < δt , y ∈ ∂Dδ

}
,

ι1,δt (x̃) :=
{
ỹ
∣
∣
∣|zx̃ − zỹ | < δt , ỹ ∈ ∂D

}
.

Define

Mω

S f \ι1,δ1/2 (x̃)
[ã](x̃) := p.v. νx̃ × ∇zx̃ ×

∫

S f \ι1,δ1/2 (x̃)
Gω(zx̃ − zỹ)ã(ỹ) dσỹ,

and

Mδ,c[ã](x̃) := p.v. − 1

4π
νx̃ ×

∫

Sc∩ι1,δ(x̃)

κ(x̃, ỹ)
‖κ(x̃, ỹ)‖3 × ã(ỹ) dσỹ,

where

κ(x̃, ỹ) = x̃ − ỹ + (1/δ − 1)(zx̃ − zỹ).

Then there holds the following result:

Mω
Dδ

[a](x) = δMω

S f \ι1,δ1/2 (x̃)
[ã](x̃) +Mδ,c[ã](x̃) +R1(‖ã‖TH−1/2(∂D)), (3.21)
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where the remainder termR1(‖ã‖TH−1/2(∂D)) satisfies

lim
δ→0

‖R1(‖ã‖TH−1/2(∂D))‖/(δ‖ã‖TH−1/2(∂D)) = 0. (3.22)

Define

Lω
Dδ

(x) := νx × ∇x × ∇x × Sω
Dδ

[a](x),
then there holds

Lω
Dδ

[a](x) = δLω

S f \ι1,δ1/2 (x̃)
[ã](x̃) + 1

δ
Aδ,c[ã](x̃) + R2(‖ã‖TH−1/2(∂D)), (3.23)

where

Lω

S f \ι1,δ1/2 (x̃)
[ã](x) := νx̃ × ∇zx̃ × ∇zx̃ ×

∫

S f \ι1,δ1/2 (x̃)
Gω(zx̃ − zỹ)ã(ỹ) dσỹ,

and

Aδ,c[ã](x̃) = − 1

4π
νx̃ ×

∫

Sc∩ι1,δ(x̃)

1

‖κ(x̃, ỹ)‖3
(

κ(x̃, ỹ)κ(x̃, ỹ)T

‖κ(x̃, ỹ)‖2 − I

)

ã(ỹ) dσỹ,

and the remainder termR2(‖ã‖TH−1/2(∂D)) satisfies (3.22).

Proof. We shall follow the similar strategy of Lemma 4.2 in [9]. Let x ∈ ∂Dδ and
we separate ∂Dδ into four different regions:

∂Dδ = (
∂Dδ\ιδ1/2(x)

) ∪ (
(Saδ ∪ Sbδ ) ∩ ιδ(x)

) ∪ (
S f
δ ∩ ιδ(x)

) ∪ (
ιδ1/2(x)\ιδ(x)

)
.

We consider y ∈ ∂Dδ in those four different regions, respectively. We compute

Mω
Dδ

[a](x) = νx × ∇x ×
∫

∂D f
δ \ι

δ1/2 (x̃)
Gω(x − y)a(y) dσy

+ νx × ∇x ×
∫

Scδ ∩ιδ(x̃)
Gω(x − y)a(y) dσy

+ νx × ∇x ×
∫

S f
δ ∩ιδ(x̃)

Gω(x − y)a(y) dσy

+ νx × ∇x ×
∫

ι
δ1/2 (x̃)∩ιδ(x̃)

Gω(x − y)a(y) dσy

:= I1 + I2 + I3 + I4.

In the following, we shall estimate I1, I2, I3 and I4 separately. For x, y ∈ ∂Dδ , one
has

x − y = (x − zx ) − (y − zy) + zx − zy = δ((x̃ − zx̃ ) − (ỹ − zỹ)) + (zx̃ − zỹ).

Hence, we have the following expansion for y ∈ ∂D f
δ \ιδ1/2(x),

‖x − y‖ = ‖zx̃ − zỹ‖ + δ
〈
(x̃ − zx̃ ) − (ỹ − zỹ),

zx̃ − zỹ
‖zx̃ − zỹ‖

〉 + O(δ3/2).
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Similarly,
〈
x − y, νx

〉 = 〈
zx̃ − zỹ, νx

〉 + δ
〈
(x̃ − zx̃ ) − (ỹ − zỹ), νx

〉
,

‖x − y‖−1 = ‖zx̃ − zỹ‖−1 − δ
〈
(x̃ − zx̃ ) − (ỹ − zỹ),

zx̃ − zỹ
‖zx̃ − zỹ‖3

〉 + O(δ3/2),

eiω‖x−y‖ = eiω‖zx̃−zỹ‖
(
1 + iωδ

〈
(x̃ − zx̃ ) − (ỹ − zỹ),

zx̃ − zỹ
‖zx̃ − zỹ‖

〉) + O(δ3/2).

With those expansions to hand, we proceed to compute for y ∈ ∂D f
δ \ιδ1/2(x),

∇xGω(x − y) = (x − y)eiω‖x−y‖

4π‖x − y‖2
(

1

‖x − y‖ − iω

)

= (zx̃ − zỹ)eiω‖zx̃−zỹ‖

4π‖zx̃ − zỹ‖2
(

1

‖zx̃ − zỹ‖ − iω

)

+ O(δ)

= ∇zx̃ Gω(zx̃ − zỹ) + O(δ).

By using vector calculus identities, one has

I1 =
∫

∂D f
δ \ι

δ1/2 (x̃)
∇xGω(x − y)νx · a(y) dσy

−
∫

∂D f
δ \ι

δ1/2 (x̃)
νx · ∇xGω(x − y)a(y) dσy

= δ

∫

S f \ι1,δ1/2 (x̃)
∇zx̃ Gω(zx̃ − zỹ)νx̃ · ã(ỹ) dσỹ

− δ

∫

S f \ι1,δ1/2 (x̃)
νx̃ · ∇zx̃ Gω(zx̃ − zỹ)ã(ỹ) dσỹ + O(δ2‖ã‖TH−1/2(∂D))

= δMω

S f \ι1,δ1/2 (x̃)
[ã](x̃) + O(δ2‖ã‖TH−1/2(∂D)).

Next, note that if y ∈ Scδ ∩ ιδ(x), c ∈ {a, b}, then
〈x − y, νx〉
‖x − y‖ = 〈x̃ − ỹ + (1/δ − 1)(zx̃ − zỹ), νx〉

‖x̃ − ỹ + (1/δ − 1)(zx̃ − zỹ)‖ ,

and therefore

I2 =
∫

Scδ ∩ιδ(x̃)
∇xGω(x − y)νx · a(y) dσy −

∫

Scδ ∩ιδ(x̃)
νx · ∇xGω(x − y)a(y) dσy

= − 1

4π

∫

Sc∩ι1,δ(x̃)

x̃ − ỹ + (1/δ − 1)(zx̃ − zỹ)

‖x̃ − ỹ + (1/δ − 1)(zx̃ − zỹ)‖3 νx̃ · ã(ỹ) dσỹ

+ 1

4π

∫

Sc∩ι1,δ(x̃)

〈x̃ − ỹ + (1/δ − 1)(zx̃ − zỹ), νx〉
‖x̃ − ỹ + (1/δ − 1)(zx̃ − zỹ)‖ ã(ỹ) dσỹ

= Mδ,c[ã](x̃)
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By using exactly the same strategy in Lemma 4.2 in [9], one can show that I3 and
I4 can be absorbed into the remainder term R1(‖ã‖TH−1/2(∂D)).

To prove (3.23), we first note that

∇x × ∇x × Sω
Dδ

[a](x) = ω2Sω
Dδ

[a](x) + ∇x∇x · Sω
Dδ

[a](x). (3.24)

By using a similar analysis to these above for the two terms in the RHS of (3.24),
one can show (3.23).

The proof is complete. ��

3.2. Asymptotic Expansions

In order to tackle the integral equation (2.9), we first derive some crucial as-
ymptotic expansions. Henceforth, we denote ã(ỹ) := a(y) for ỹ = A(y), y ∈ Dδ

and ỹ ∈ ∂D. The same notation shall be adopted for x and x̃.
For x ∈ R

3\Dδ with sufficiently large ‖x‖, we can expand Eδ − Ei from (2.7)
in z ∈ �0 as follows:

(Eδ − Ei )(x) = ∇ × Sω
Dδ

[a](x) = ∇ ×
∫

∂Dδ

Gω(x − y)a(y) dσy

= ∇ ×
∫

∂Dδ

Gω(x − zy)a(y) dσy − ∇ ×
∫

∂Dδ

∇Gω(x − zy) · (y − zy)a(y) dσy

+∇ ×
∫

∂Dδ

(y − zy)T∇2Gω(x − ζ(y))(y − zy)a(y) dσy

:= R1 + R2 + R3, (3.25)

where ζ(y) = ηy + (1 − η)zy ∈ Dδ for some η ∈ (0, 1), and the superscript T
signifies the matrix transpose. We next estimate the three terms R1, R2 and R3 in
(3.25). The term R3 in (3.25) is a remainder term from the Taylor series expansion
and it verifies the following estimate:

‖R3‖L∞(S2)3 = δ2
∥
∥
∥∇ ×

∫

∂Dδ

(ỹ − zỹ)
T∇2Gω(x − ζ(y))(ỹ − zỹ)a(y) dσy

∥
∥
∥
L∞(S2)3

� Cδ3
1

‖x‖‖ã‖TH−1/2(∂D). (3.26)

In the sequel, we shall need the expansion of the incident plane wave Ei in z ∈ �0,
and there holds

Ei (y) = Ei (zy) + ∇Ei (zy) · (y − zy) +
∞∑

|α|=2

∂α
y E

i (zy)(y − zy)α, (3.27)

where the multi-index α = (α1, α2, α3) and ∂α
y = ∂

α1
y1 ∂

α2
y2 ∂

α3
y3 with y = (y1, y2, y3).

Since for y ∈ ∂Dδ , νy = νỹ, one further has that

νy × Ei (y) = νỹ ×
∞∑

|α|=0

δα∂α
y E

i (zy)(ỹ − zỹ)
α.
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In what follows, we define

�̃(ỹ) := �(y) = νy × Eδ(y)
∣
∣
∣
+
∂Dδ

. (3.28)

Theorem 3.2. Let Eδ be the solution to (1.14), then there holds for x ∈ R
3\D,

∫

S f
Gω(x−zỹ)ã(ỹ) dσỹ = −2

∫

S f
Gω(x−zỹ)�̃(ỹ) dσỹ+O(δ(‖�̃‖TH−1/2(∂D)+1)).

(3.29)
If one assumes that �(y) = 0, y ∈ ∂Dδ , then there holds for x ∈ R

3\D,

(Eδ − Ei )(x) = 2δ2∇ ×
(∫

S f
Gω(x − zỹ)νỹ × (∇Ei (zỹ)(ỹ − zỹ)

)
dσy

+
∫

Sa∪Sb
Gω(x − zỹ)νỹ × Ei (zỹ) dσỹ

−
∫

S f

(∇Gω(x − zỹ) · (ỹ − zỹ)
)
νỹ × Ei (zỹ)(ỹ) dσỹ

)

+ O(δ3).

Proof. Recall that − I
2 + Mω

Dδ
is invertible on TH−1/2

div (∂Dδ) (see, example [18]).
By (2.9), we see that

a(x) =
(

− I

2
+ Mω

Dδ

)−1 [

νy × (Eδ − Ei )(y)
∣
∣
∣
+
∂Dδ

]

(x).

Using the results in Lemma 3.4, the invertibility of − I
2 +MSc on TH

−1/2
div (Sc) (the

invertibility can be shown by following a complete similar argument to the proof of
Theorem 4.2 in [9], along with the use of Proposition 4.7 in [2]), and the expansion
of Ei in (3.27), we have for x ∈ S f

δ \ι1,δ(P0) ∪ ι1,δ(Q0) that

ã(x̃) = −2�̃(x̃) + 2νx̃ × Ei (zx̃ ) + O(δ(‖�̃‖TH−1/2(∂D) + 1)), (3.30)

and for x ∈ S f
δ ∩ (ι1,δ(P1) ∪ ι1,δ(Q0)) we have

ã(x̃) = −2�̃(x̃) + O(‖�̃‖TH−1/2(∂D) + 1). (3.31)

Noting that

∫

S f
Gω(x − zỹ)(νỹ × Ei (zỹ)) dσỹ =

∫

�0

Gω(x − zỹ)
∫ 2π

0
νỹ dϑ × Ei (zỹ) dr = 0,

(3.32)

where (r, ϑ) stand for the polar coordinates, and this together with (3.30) and (3.31)
readily implies (3.29).

Next, if �̃(ỹ) = �(y) = 0, then it can be seen from (3.21), (3.30) and (3.31)
that

‖ã‖TH−3/2(∂D) � C,
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where C is a positive constant depending only on D and ω. By using our earlier
results in (3.25) and (3.26), one can first show that

Sω
Dδ

[a](x) =
∫

∂Dδ

Gω(x − y)a(y) dσy

∫

∂Dδ

Gω(x − zy)a(y) dσy

= −
∫

∂Dδ

(∇Gω(x − zy) · (y − zy)
)
a(y) dσy + O(δ3)

= δ

∫

S f
Gω(x − zỹ)ã(ỹ)dσỹ + δ2

(∫

Sa∪Sb
Gω(x − zỹ)ã(ỹ) dσỹ

−
∫

S f

(∇Gω(x − zỹ) · (ỹ − zỹ)
)
ã(ỹ) dσỹ

)

+ O(δ3). (3.33)

By using (3.30) we have for y ∈ S f
δ that

ã(ỹ) = 2νỹ × Ei (zỹ) + 2δνỹ × (∇Ei (zỹ)(ỹ − zỹ)
) + O(δ2). (3.34)

Substituting (3.34) into (3.33) and using (3.32) one can easily obtain

Sω
Dδ

[a](x) = 2δ2
(∫

S f
Gω(x − zy)νỹ × (∇Ei (zỹ)(ỹ − zỹ)

)
dσy

+
∫

Sa∪Sb
Gω(x − zỹ)νỹ × Ei (zỹ) dσỹ

−
∫

S f

(∇Gω(x − zỹ) · (ỹ − zỹ)
)
νỹ × Ei (zỹ)(ỹ) dσỹ

)

+ O(δ3),

which then completes the proof by using (2.7). ��
We continue with the estimates of R1 and R2 in (3.25) for the proposed full-

cloaking structure with arbitrary but regular εa ,μa and σa in Dδ/2. In what follows,
we letC denote a generic positive constant. Itmay change fromone inequality to an-
other inequality in our estimates. Moreover, it may depend on different parameters,
but it does not depend on εa , μa , σa and p, d, x̂.

We first note that, by using (3.30) and (3.31), there holds

‖ã‖TH−1/2(∂D) � C(‖�̃‖TH−1/2(∂D) + 1). (3.35)

Next, by taking expansion around z ∈ �0 and using (3.29) one can show that for
δ ∈ R+ sufficiently small and ‖x‖ sufficiently large,

‖R1‖ =
∥
∥
∥∇ ×

∫

∂Dδ

Gω(x − zy)a(y) dσy

∥
∥
∥

� δ

∥
∥
∥∇ ×

∫

S f
Gω(x − zỹ)ã(ỹ) dσỹ

∥
∥
∥ + Cδ2

1

‖x‖‖ã‖TH−1/2(∂D)

� Cδ

∥
∥
∥∇ ×

∫

S f
Gω(x − zỹ)�̃(ỹ) dσỹ

∥
∥
∥ + Cδ2

1

‖x‖ (‖�̃‖TH−1/2(∂D) + 1)

� Cδ
1

‖x‖‖�̃‖TH−1/2(S f ) + Cδ2
1

‖x‖ (‖�̃‖TH−1/2(∂D) + 1). (3.36)
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By using Taylor’s expansions again and (3.30), one can show the following esti-
mation for R2:

‖R2‖ =
∥
∥
∥∇ ×

∫

∂Dδ

∇Gω(x − zy) · (y − zy)a(y) dσy

∥
∥
∥

� Cδ2
1

‖x‖ (‖�̃‖TH−1/2(S f ) + 1) + Cδ3
1

‖x‖ (‖�̃‖TH−1/2(∂D) + 1). (3.37)

Hence, by applying the estimates in (3.26), (3.36) and (3.37) to (3.25), we have

‖Eδ − Ei‖ � C
δ

‖x‖‖�̃‖TH−1/2(S f ) + Cδ2
1

‖x‖ (‖�̃‖TH−1/2(∂D) + 1) (3.38)

for ‖x‖ sufficiently large. With (3.38) at hand, one readily has

Lemma 3.5. The scattering amplitudeAδ∞(x̂;p,d) corresponding to the scattering
configuration described in Theorem 3.1 satisfies

‖Aδ∞(x̂;p,d)‖ � Cδ‖�̃‖TH−1/2(S f ) + Cδ2(‖�̃‖TH−1/2(∂D) + 1), (3.39)

where C depends only on D and ω.

3.3. Proof of Theorem 3.1

By Lemma 3.5, it is straightforward to see that in order to derive the estimate of
the scattering amplitudeAδ∞, it suffices for us to derive the corresponding estimates
of ‖�̃‖TH−1/2(S f ) and ‖�̃‖TH−1/2(∂D). To that end, we shall need the following
lemma, whose proof can be found in [7].

Lemma 3.6. Let BR be a central ball of radius R such that Dδ � BR. Then the
solutions Eδ, Hδ ∈ Hloc(curl; R

3) to (1.14) verify
∫

Dδ\Dδ/2

σlEδ · Eδ dx +
∫

Dδ/2

σaEδ · Eδ dx

=
∫

∂BR

(ν × E+
δ ) · (ν × ν × H+

δ ) dσx + �
∫

∂Dδ

(ν × Ei ) · (ν × ν × H+
δ )

∣
∣
∣+ dσx

+ �
∫

∂Dδ

(ν × E+
δ )

∣
∣
∣+ · (ν × ν × Hi ) dσx . (3.40)

Remark 3.3. It is remarked that the last two terms in the RHS of (3.40) in [7] were

�
∫

∂BR

(ν × Ei ) · (ν × ν × H+
δ )dσx + �

∫

∂BR

(ν × E+
δ ) · (ν × ν × Hi ) dσx .

Here, we modify the two terms for the convenience of the present study.

Define a boundary operator � such that

�(ν × Eδ|∂BR ) = ν × Hδ|∂BR : TH−1/2
div (∂BR) → TH−1/2

div (∂BR). (3.41)

It is well-known that � is a bounded operator in TH−1/2
div (∂BR) (cf. [10,31]). By

using Lemma 3.6, one can show:
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Lemma 3.7. LetEδ andHδ be solutions to the system (1.14), where Dδ is the virtual
domain described at the beginning of this section, then we have

∫

D f
δ \Dδ/2

‖Eδ‖2 dx �Cδ1−t
(
‖ν × E+

δ ‖2
TH−1/2

div (∂BR)
+ δ‖ã‖TH−1/2(∂D)

)
, (3.42)

and
∫

Dc
δ\Dδ/2

‖Eδ‖2 dx �Cδ2−t
(
‖ν × E+

δ ‖2
TH−1/2

div (∂BR)
+ δ‖ã‖TH−1/2(∂D)

)
, c ∈ {a, b},

(3.43)

where the constant C depends only on D, ω and R.

Proof. First, by (3.40) and the fact that� is bounded in TH−1/2
div (∂BR), there holds

∫

Dδ\Dδ/2

σlEδ · Eδ dx � C‖ν × E+
δ ‖2

TH−1/2
div (∂BR)

+ R1 + R2,

where by using (2.8) and (3.23) one further has

R1 =
∣
∣
∣�

∫

∂Dδ

(ν × Ei ) · (ν × ν × H+
δ )

∣
∣
∣+dσx

∣
∣
∣ =

∣
∣
∣�

∫

∂Dδ

Ei · (ν × H+
δ )

∣
∣
∣+ dσx

∣
∣
∣

� δ

ω

∣
∣
∣

∫

Sa∪Sb
Ei (zx̃) · Aδ,c[ã](x̃) dσx̃

∣
∣
∣ + Cδ2‖ã‖TH−1/2(∂D),

and by using (3.21),

R2 =
∣
∣
∣�

∫

∂Dδ

(ν × E+
δ )

∣
∣
∣+ · (ν × ν × Hi ) dσx

∣
∣
∣ =

∣
∣
∣�

∫

∂Dδ

E+
δ

∣
∣
∣+ · (ν × Hi ) dσx

∣
∣
∣

� Cδ2‖ã‖TH−1/2(∂D).

Combining those with (3.9), (3.11), together with the use of the definition of σl in
(3.7), we can complete the proof. ��

It is remarked that in the estimate (3.43), the dependence on the artificial R of
the generic constant C can obviously be absorbed into the dependence on D.

In what follows, we shall estimate ‖�̃‖TH−1/2(S f ) and ‖�̃‖TH−1/2(Sa∪Sb) sepa-

rately. Clearly, it suffices to estimate ‖�̃‖H−1/2(S f )3 and ‖�̃‖H−1/2(Sa∪Sb)3 , respec-

tively. We recall that the H−1/2(∂D)3-norm of the function �̃(x̃) is defined as
follows:

‖�̃‖H−1/2(∂D)3 = sup
‖ϕ‖H1/2(∂D)3�1

∣
∣
∣

∫

∂D
�̃(x̃) · ϕ(x̃) dσx̃

∣
∣
∣. (3.44)

We refer to [1,26,35] for more relevant discussions on the Sobolev spaces. To
proceed,wefirst present the following important auxiliary Sobolev extension result:
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Lemma 3.8. (Lemma 3.4 in [7]) Suppose D is a simply connected domain with
a C1,1-smooth boundary ∂D. Then for any ψ ∈ H1/2(∂D)3, there exists W ∈
H2(D)3 such that

ν × W = 0 on ∂D,

ν × (ν × (∇ × W)) = ν × (ν × ψ) on ∂D,

‖W‖H2(D)3 � C‖ψ‖H1/2(∂D)3 ,

W = 0 in D1/2,

where C is a constant depending only on D.

We proceed with the proof of Theorem 3.1.

Lemma 3.9. Let �̃ be defined in (3.28), where (Eδ,Hδ) are the solutions to (1.14)
with the corresponding εδ , μδ and σδ given by (3.7). Then there hold

‖�̃‖TH−1/2(S f ) � Cδ−1+β‖Eδ‖L2(Dδ\Dδ/2)3
, (3.45)

and

‖�̃‖TH−1/2(Sc) � Cδ−3/2+β ′ ‖Eδ‖L2(Dδ\Dδ/2)3
, c ∈ {a, b}, (3.46)

where β = min{1,−1+r+s,−1+ t+s} and β ′ = min{1,−2+r+s,−2+ t+s}.

Proof. It suffices to show that the same estimates in (3.45) and (3.46) hold for
‖�̃(x̃)‖H−1/2(Sc)3 , c ∈ { f, a, b}. First, we let D1,δ be the region defined in Lemma
3.3. For any test function ψ ∈ H1/2(∂D1,δ)

3, we introduce an auxiliary function
W ∈ H2(D1,δ)

3 which fulfils the conditions in Lemma 3.8. Let �1(x̃) be defined
by

�1(x̃) :=
{

�(x̃), x̃ ∈ S f ,

ν × Ẽδ, x̃ ∈ ∂D1,δ\S f .

It then follows from the properties of W that

∫

∂D1,δ

�̃1(x̃) · ψ(x̃) dσx̃ = −
∫

∂D1,δ

(ν × Ẽδ) · (ν × (ν × ψ)) dσx̃

= −
∫

∂D1,δ

Ẽδ · (ν × (∇ × W)) dσx̃ .

From its construction, it is readily seen that ν × W|∂D1,δ = 0. Define

ĈurlW := (B̃T )−1(∇ × W),
̂Curl Êδ := (B̃T )−1(∇ × Êδ). (3.47)
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By using (3.12), (3.16), (3.19) and integration by parts, one has
∫

∂D1,δ

�̃(x̃) · ψ(x̃) dσx̃ = −δ−1
∫

∂D1,δ

Êδ ·
(
ν × ĈurlW

)
dσx̃

= −δ−1

(∫

∂D1,δ

Êδ ·
(
ν × ĈurlW

)
dσx̃ −

∫

∂D1,δ

W ·
(
ν × ̂Curl Êδ

)
dσx̃

)

= δ−1

(∫

D1,δ

W ·
(
∇ × ̂Curl Êδ

)
dx̃ −

∫

D1,δ

Êδ ·
(
∇ × ĈurlW

))
dx̃

)

= δ−1
∫

D1,δ\D1/2,δ/2

W ·
(
∇ × ̂Curl Êδ

)
dx̃ − δ

∫

D1,δ\D1/2,δ/2

Ẽδ ·
(
∇ × (∇ × W)

)
dx̃.

(3.48)

For x ∈ Dδ\Dδ/2, there holds

∇x × Eδ = iωμlHδ, ∇x × Hδ = −iω
(
εl + i

σl

ω

)
Eδ. (3.49)

By using change of variables and (3.16) in Lemma 3.2, one can derive from (3.49)
that

|B̃|B̃−1∇x̃ × Êδ = iωμ̃lH̃δ, |B̃|B̃−1∇x̃ × Ĥδ = −iω
(
ε̃l + i

σ̃l

ω

)
Ẽδ,

which holds in D\D1/2. By combining (3.7), (3.15) and (3.47), one can further
show that in D\D1/2,

∇ × ̂Curl Êδ = ω2
(

δr+s + iδt+s 1

ω

)

Ẽδ. (3.50)

Thus by plugging (3.50) into (3.48) one has
∫

∂D1,δ

�̃(x̃) · ψ(x̃) dσx̃ =ω2(δ−1+r+s + iδ−1+t+s 1

ω
)

∫

D1,δ\D f
1/2,δ/2

W · Ẽδ dx̃

− δ

∫

D1,δ\D f
1/2,δ/2

Ẽδ ·
(
∇ × (∇ × W)

)
dx̃,

which in combination with the fact that

‖Ẽδ‖
L2(D1,δ\D f

1/2,δ/2)
3

= δ−1‖Eδ‖L2(Dδ\Dδ/2)3
,

immediately yields that

∣
∣
∣

∫

∂D1,δ

�̃(x̃) · ψ(x̃) dσx̃
∣
∣
∣ � Cδβ‖Ẽδ‖L2(D1,δ\D1/2,δ/2)3

‖W‖H2(D1,δ\D1/2,δ/2)3

� Cδ−1+β‖Eδ‖L2(Dδ\Dδ/2)3
‖W‖H2(D1,δ\D1/2,δ/2)3

,

(3.51)
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where β = min{1,−1 + r + s,−1 + t + s}. By using Lemma 3.8, the definition
(3.44) and the fact that

‖W‖H2(D1,δ\D1/2,δ/2)3
� C‖ψ‖H1/2(∂D1,δ)3

,

one readily has from (3.51) that

‖�̃‖H−1/2(S f )3 � ‖�̃‖H−1/2(∂D1,δ)3
� Cδ−1+β‖Eδ‖L2(Dδ\Dδ/2)3

,

which proves (3.45).
Next, we proceed to the proof of (3.46). In the sequel, we let B

a
r be a ball of

radius r ∈ R+ centred at P0 and B
b
r be a ball of radius r and centred at Q0. For

c ∈ {a, b}, we set S
c
r = ∂B

c
r . In what follows, we drop the dependence on r if

r = 1. Moreover, in order to simplify the exposition and without loss of generality,
we assume that B

c ⊂ D. Then by using exactly the same strategy as in the first
part of the current proof, with D1,δ replaced by the ball B

c, along with the use of
(3.20), one can show that for c ∈ {a, b},

∫

Sc
�̃(x̃) · ψ(x̃) dσx̃

= δ−2
∫

Bc\Bc
1/2

W ·
(
∇ × ̂Curl Êδ

)
dx̃ − δ

∫

Bc\Bc
1/2

Ẽδ ·
(
∇ × (∇ × W)

)
dx̃,

which together with (3.50) and the fact

‖Ẽδ‖L2(Bc\Bc
1/2)

3 � δ−3/2‖Eδ‖L2(Dδ\Dδ/2)3
, c ∈ {a, b},

readily yields that
∣
∣
∣

∫

Sc
�̃(x̃) · ψ(x̃) dσx̃

∣
∣
∣ �Cδ−3/2+β ′ ‖Eδ‖L2(Dδ\Dδ/2)3

‖W‖H2(Bc\Bc
1/2)

3,

where β ′ = min{1,−2 + r + s,−2 + t + s}. By using the fact that

‖W‖H2(Bc\Bc
1/2)

3 � C‖ψ‖H1/2(Sc)3, c = {a, b},
one readily has

‖�̃‖H−1/2(Sc)3 � ‖�̃‖H−1/2(Sc)3 � Cδ−1+β‖Eδ‖L2(L2(Dδ\Dδ/2)3
,

which proves (3.45).
The proof is complete. ��

Proof of Theorem 3.1. It is straightforward to see from (3.39) that we only need
to derive the estimates of ‖�̃‖TH−1/2(S f ) and ‖�̃‖TH−1/2(∂D). To that end, we have
by using (2.7), (3.13), (3.29) and (3.35) that

‖ν × E+
δ ‖

TH−1/2
div (∂BR)

� C‖ν × ∇ × SDδ [a]‖TH−1/2
div (∂BR)

� Cδ‖ã‖TH−1/2(S f ) + Cδ2‖ã‖TH−1/2(∂D)

� Cδ‖�̃‖TH−1/2(S f ) + Cδ2(‖�̃‖TH−1/2(∂D) + 1). (3.52)
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Next, by combining (3.52), (3.35), (3.42), (3.43), (3.45) and (3.46), together with
the use of the facts that both � and �− are bounded, and β ′ � β (see Lemma 3.9),
one can further deduce that

‖�̃‖TH−1/2(∂D) � Cδ−1+β‖Eδ‖L2(Dδ\Dδ/2)3
+ Cδ−3/2+β ′ ‖Eδ‖L2(Dδ\Dδ/2)3

� Cδ−3/2+β ′+1/2−t/2
(
‖ν × E+

δ ‖2
TH−1/2

div (∂BR)

+ O(δ‖ã‖TH−1/2(∂D))
)1/2

� Cδβ ′−t/2−1(δ‖�̃‖TH−1/2(S f ) + δ2‖�̃‖TH−1/2(∂D) + δ2)

+ Cδβ ′−t/2−1/2(‖�̃‖1/2
TH−1/2(∂D)

+ 1),

which in turn yields (noting that β ′ − t/2 � 1/2)

‖�̃‖TH−1/2(∂D) � Cδβ ′−t/2−1/2(‖�̃‖1/2
TH−1/2(∂D)

+ 1).

Hence one has
‖�̃‖TH−1/2(∂D) � Cδβ ′−t/2−1/2. (3.53)

It is remarked that in (3.53), the generic constant obviously depends on R, but as
was remarked earlier that such a dependence can be absorbed into the dependence
on D. Next, by using (3.45) and (3.53), there holds

‖�̃‖TH−1/2(S f ) � Cδ−1+β‖Eδ‖L2(Dδ\Dδ/2)3

� Cδ−1+β+1/2−t/2
(
‖ν × E+

δ ‖2
TH−1/2

div (∂BR)
+ O(δ‖ã‖TH−1/2(∂D))

)1/2

� Cδ−1/2+β−t/2(δ‖�̃‖TH−1/2(S f ) + δ2) + Cδβ−t/2,

and thus
‖�̃‖TH−1/2(S f ) � Cδβ−t/2. (3.54)

By plugging (3.53) and (3.54) into (3.39), one finally has (3.8).
The proof is complete.

4. Regularized Partial-cloaking of EM Waves

In this section, we consider the regularized partial-cloaking of EM waves by
taking the generating set �0 to be a flat subset on a plane in R

3. In order to ease
our exposition, we stick our subsequent study to a specific example considered in
[9,25] for the partial-cloaking of acoustic waves, where �0 is taken to be a square
on P2 := {x = (x1, x2, x3) ∈ R

3 : x3 = 0}. The virtual domain is constructed as
follows; see Fig. 2 for a schematic illustration. Let n ∈ S

2 be the unit normal vector
to �0. Let

D0
q := �0(x) × [x − τ · n, x + τ · n], x ∈ �0, 0 � τ � q, (4.1)
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where we identify �0 with its parametric representation �0(x). We denote by D1
q

the union of the four side half-cylinders and D2
q the union of the four corner quarter-

balls in Fig. 2. Let
Dq := D0

q ∪ D1
q ∪ D2

q . (4.2)

Set S1q and S2q to denote

S1q := ∂Dq ∩ ∂D1
q , S2q := ∂Dq ∩ ∂D2

q ,

and

D f
q := D1

q ∪ D2
q .

The upper and lower-surfaces of Dq are respectively denoted by

�1
q := {x + q · n; x ∈ �0} and �2

q := {x − q · n; x ∈ �0}.

Define S0q := �1
q∪�2

q .We then have ∂Dq = S0q∪S1q∪S2q . Similar to our notations in
Section 3, we let δ ∈ R+ denote the asymptotically small regularization parameter
and Dδ be the virtual domain. Clearly, we have

∂Dδ = S0δ ∪ S1δ ∪ S2δ . (4.3)

In what follows, if q ≡ 1, we drop the dependence on q of Dq , S0q , S
1
q and S2q , and

simply write them as D, S0, S1, and S2. In concluding the description of the virtual
domain for the partial-cloaking construction, we would like to emphasize that our
subsequent study can be easily extended to a much more general case where the
generating set �0 can be a bounded subset on a plane with a convex and piecewise
smooth boundary (in the topology induced from the plane).

We introduce a blowup transformation A which maps Dδ to D exactly as that
in [25]. We stress that in D0

δ the blow-up transformation takes the following form

A(y) = ỹ :=
(
e3eT3

δ
+ e1eT1 + e2eT2

)

y, y ∈ D0
δ .

where y ∈ D0
δ and ỹ ∈ D0, and the three Euclidean unit vectors are as follows

e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T .

We are now in position to introduce the lossy layer for our partial-cloaking device:

εδ(x) = εl(x) := δr |B|B−1, μδ(x) = μl(x) := δs |B|B−1,

σδ(x) = σl(x) := δt |B|B−1, for x ∈ Dδ\Dδ/2,
(4.4)

where B(x) := ∇xA(x) is the Jacobian matrix of the blowup transformation A. It
is obvious that

B = e3eT3
δ

+ e1eT1 + e2eT2 in D0
δ , (4.5)
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Fig. 2. Schematic illustration of the domain Dq for the regularized partial-cloak

is a constant matrix and

Bn = n
δ
, Be1 = e1, Be2 = e2 in D0

δ . (4.6)

Thus one has

|B| = 1/δ, in D0
δ .

Furthermore, for x ∈ Dδ , one can show by direct calculations that (3.10) and (3.11)
are also valid for the B defined above.

We are now in a position to present the main theorem of this section in quanti-
fying our partial-cloaking construction.

Theorem 4.1. Let Dδ be defined in (4.2) with its boundary given by (4.3). Let
(Eδ,Hδ) be the pair of solutions to (1.14) with {�; εδ, μδ, σδ} ⊂ {R3; εδ, μδ, σδ}
defined in (1.3) and {Dδ\Dδ/2; εδ, μδ, σδ} given in (4.4). Let Aδ∞(x̂;p,d) be the
scattering amplitude of Eδ . Define

β j = min{1,− j + r + s,− j + t + s}, j = 0, 1, 2,
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and for ε ∈ R+ with ε � 1,

�p := {p ∈ S
2; ‖p × n‖ � ε}, �d := {d ∈ S

2; |d · n| � ε}. (4.7)

If r , s and t are chosen such that β2 − t/2 � 3/2, then there exists δ0 ∈ R+ such
that when δ < δ0,

‖Aδ∞(x̂;p,d)‖ � C(ε + δ), p ∈ �p, d ∈ �d , x̂ ∈ S
2, (4.8)

where C is a positive constant depending on ω and D, but independent of εa, μa,
σa and x̂, p, d.

Remark 4.1. Similar to Remark 3.1, one readily has from Theorems 1.1 and 4.1
that the push-forwarded structure in (1.2) produces an approximate partial-cloaking
device which is capable of nearly cloaking an arbitrary EM content. As an illustra-
tive example, one can take r = 0, s = 7/2 and t = −1 in Theorem 4.1 to achieve
an approximate partial-cloak.

Remark 4.2. Since p · d = 0 (cf. (1.7)), one has

(d · n)p = d × (p × n), (4.9)

from which one can infer that the definition of �d in (4.7) is redundant. However,
we specified it for clarity and definiteness.

4.1. Auxiliary Lemmas and Asymptotic Expansions

We shall follow a similar strategy of the proof for Theorem 3.1 in proving
Theorem 4.1. In what follows, we adopt similar notations as those in Section 3. If
we let z denote the space variable on �0, then for any y ∈ ∂Dq , we define zy to be
the projection of y onto �0. We also define ã(ỹ) := a(y) and ỹ := A(y) ∈ D for
y ∈ Dδ .

The following lemma is a counterpart to Lemma 3.4 in Section 3.

Lemma 4.1. Let Dδ be described in (4.2) and (4.3). Let ιδ(x), ι1,δ(x̃) be two regions
defined similarly as those in Lemma 3.4. Set

κ(x̃, ỹ) := x̃ − ỹ + (1/δ − 1)(zx̃ − zỹ).

Define

Mω

S0\ι1,δ(x̃)[ã](x̃) := p.v. νx̃ × ∇zx̃ ×
∫

S0\ι1,δ(x̃)
Gω(zx̃ − zỹ)ã(ỹ) dσỹ, (4.10)

and

Mδ,2[ã](x̃) := p.v. − 1

4π
νx̃ ×

∫

S2∩ι1,δ(x̃)

κ(x̃, ỹ)
‖κ(x̃, ỹ)‖3 × ã(ỹ) dσỹ .
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Define

Lω
Dδ

[a](x) := νx × ∇x × ∇x × Sω
Dδ

[a](x),
Lω

S0\ι1,δ(x̃)[ã](x) := νx̃ × ∇zx̃ × ∇zx̃ ×
∫

S0\ι1,δ(x̃)
Gω(zx̃ − zỹ)ã(ỹ) dσỹ,

Aδ,2[ã](x̃) := − 1

4π
νx̃

×
∫

S2∩ι1,δ(x̃)

1

‖κ(x̃, ỹ)‖3
(

κ(x̃, ỹ)κ(x̃, ỹ)T

‖κ(x̃, ỹ)‖2 − I

)

ã(ỹ) dσỹ .

Then one has

Mω
Dδ

[a](x) = Mω

S0\ι1,δ(x̃)[ã](x̃) + Mδ,2[ã](x̃) + O(δ‖ã‖TH−1/2(∂D)), (4.11)

and

Lω
Dδ

[a](x) = Lω

S0\ι1,δ(x̃)[ã](x̃) + 1

δ
Aδ,2[ã](x̃) + O(δ‖ã‖TH−1/2(∂D)). (4.12)

Proof. By following a similar argument to that in the proof of Lemma 3.4, one can
compute for y ∈ (S0δ ∪ S1δ )\ιδ(x) that

‖x − y‖ = ‖x − zx − (y − zy) + zx − zy‖ = ‖zx̃ − zỹ‖ + O(δ),

and

〈x − y, νx〉 = 〈zx − zy, νx̃〉 + O(δ), eiω|x−y| = eiω|zx̃−zỹ | + O(δ).

One also notes that for y ∈ S2δ ∩ ιδ(x)

‖x − y‖ = δ‖x̃ − ỹ‖, eiω‖x−y‖ = 1 + O(δ).

By using the above facts, the proof can then be completed by using the similar
expansion method as that in the proof of Lemma 3.4. ��

Next, by straightforward calculations, one can show that for Dδ described in
(4.2) and (4.3), there holds the following far-field expansion for x ∈ R

3\Dδ ,

Sω
Dδ

[a](x) =
∫

∂Dδ

Gω(x − y)a(y)dσy =
∫

S0
Gω(x − zỹ)ã(ỹ)dσỹ

+ δ

∫

S1
Gω(x − zỹ)ã(ỹ) dσỹ + δ

∫

S0
(ỹ − zỹ) · ∇Gω(x − zỹ)ã(ỹ)dσỹ

+ O
(
δ2‖x‖−1‖ã‖TH−1/2(∂D)

)
. (4.13)

With the above expansion, we can show the following theorem.
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Theorem 4.2. Let Eδ be the solution to (1.14) with Dδ described in (4.2) and (4.3).

Define �̃(ỹ) := �(y) = νy × Eδ(y)
∣
∣
∣
+
∂Dδ

, then there holds for x ∈ R
3\D

(Eδ − Ei )(x) =
∫

�0

Gω(x − zỹ)M[n × Ei (z)](zỹ) dσzỹ
+O

(
‖x‖−1

(
‖�̃‖TH−1/2(S0) + δ(‖�̃‖TH−1/2(∂D) + 1)

))
,

(4.14)

where

M :=
(

− I

4
+ Mω

�0

)−1

Mω
�0

(
I

4
+ Mω

�0

)−1

(4.15)

withMω
�0

defined by

Mω
�0

[�(z)](zx̃ ) := n × ∇zx̃ ×
∫

�0

Gω(zx̃ − zỹ)�(zỹ) dσzỹ . (4.16)

Proof. We first recall that the solution to (1.14) can be represented by (2.7) and
(2.8), where the density function a satisfies (2.9). Next, by using the fact that

− I

2
+ Mω

S0 : TH−1/2(S0) → TH−1/2(S0)

is invertible (as mentioned in the proof of Theorem 3.2, the invertibility can be
shown by following a complete similar argument to the proof of Theorem 4.2 in
[9], along with the use of Proposition 4.7 in [2]), and using (2.9), (4.11), together
with the use of the expansion of Ei in z, one has, by direct calculations, that

ã(ỹ) =
(

− I

2
+ Mω

S0

)−1 [
ν × Ei (z) + �̃

]
(ỹ) + O(δ(‖�̃‖TH−1/2(∂D) + 1))

=
(

− I

2
+ Mω

S0

)−1 [
ν × Ei (z)

]
(ỹ)

+ O
(
‖�̃‖TH−1/2(S0) + δ(‖�̃‖TH−1/2(∂D) + 1)

)
(4.17)

for all ỹ ∈ S0 ∪ S1. Here, it is noted that for ỹ ∈ �1, (ỹ − 2n) ∈ �2, we define
ψ̃(ỹ) := ã(ỹ − 2n) for ỹ ∈ �1 and ψ̃(ỹ) := ã(ỹ + 2n) for ỹ ∈ �2. By using the
fact that

νỹ−2nỹ = −νỹ = −n for ỹ ∈ �1,

and the definition in (4.10), one obtains (assuming for a while that x̃ ∈ S0)

ã(ỹ − 2n) = ψ̃(ỹ) =
( I

2
+ Mω

S0

)−1[
n × Ei (zx̃ )

]
(ỹ)

+ O
(
‖x‖−1

(
‖�̃‖TH−1/2(S0) + δ(‖�̃‖TH−1/2(∂D) + 1)

))

(4.18)
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for all ỹ ∈ �1. By inserting (4.17) and (4.18) into (4.13), one then has that for
x ∈ R

3\D,

Sω
Dδ

[a](x) =
∫

S0
Gω(x − zỹ)ã(ỹ) dσỹ + O

(
‖x‖−1

(
δ(‖�̃‖TH−1/2(∂D) + 1)

))

=
∫

�1
Gω(x − zỹ)

(
ã(ỹ) + ψ̃(ỹ)

)
dσỹ + O

(
‖x‖−1

(
δ(‖�̃‖TH−1/2(∂D) + 1)

))

=
∫

�1
Gω(x − zỹ)M̂[n × Ei (z)](ỹ) dσỹ

+ O
(
‖x‖−1

(
‖�̃‖TH−1/2(S0) + δ(‖�̃‖TH−1/2(∂D) + 1)

))
,

where M̂ is defined by

M̂ := 2

(

− I

2
+ Mω

S0

)−1

Mω
S0

(
I

2
+ Mω

S0

)−1

. (4.19)

Since the function �(z) := n × Ei (z) depends only on z ∈ �0, and hence by the
definition in (4.16), one readily verifies that

Mω
�0

[�](zx̃ ) = 1

2
Mω

S0 [�̂(ỹ)](zx̃ + n), x̃ ∈ �1,

for �̂(ỹ) = n×Ei (zỹ), ỹ ∈ S0. Therefore, we can replace the operator M̂ in (4.19)
to be

M :=
(

− I

4
+ Mω

�0

)−1

Mω
�0

(
I

4
+ Mω

�0

)−1

,

and the proof is complete. ��

By using Theorem 4.2, we next consider a particular case by assuming that
�̃ ≡ 0. Physically speaking, this corresponds to the case that Dδ is a so-called
perfectly electric conductor. The result in the next theorem already partly reveals
the partial-cloaking effect.

Theorem 4.3. Let Dδ be as described in (4.2) and (4.3). Consider the following
scattering problem

⎧
⎨

⎩

∇ × Ep
δ − iωHp

δ = 0 in R
3\Dδ,

∇ × Hp
δ + iωEp

δ = 0 in R
3\Dδ,

ν × Ep
δ

∣
∣+ = 0 on ∂Dδ,

(4.20)

subject to the Silver–Müller radiation condition:

lim|x|→∞ ‖x‖((Hp
δ − Hi ) × x̂ − (Ep

δ − Ei )) = 0. (4.21)
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Let Eδ∞(x̂;Ei ) be the corresponding scattering amplitude to (4.20)–(4.21). Then
there holds

∥
∥
∥Eδ∞(x̂;Ei ) + 1

2π

∫

�0

e
−iω 4π

3

1∑

m=−1
Ym
1 (x̂)Ym

1 (ẑỹ)|zỹ |
M[n × Ei (z)](zỹ) dσz ỹ

∥
∥
∥ � Cδ,

(4.22)

whereM is defined in (4.15) and C depends only on ω and D. Furthermore, if there
holds

‖n × p‖ � ε, ε � 1, (4.23)

then for sufficient small δ ∈ R+, one has

‖Eδ∞(x̂;Ei )‖ � C(ε + δ), (4.24)

where C depends only on ω and D.

Proof. We start with the following addition formula (see, example, [33]),

1

‖x − y‖ = 4π
∞∑

n=0

n∑

m=−n

1

2n + 1
Ym
n (ξ, ϑ)Ym

n (ξ ′, ϑ ′) q ′n

qn+1 , (4.25)

where (q, ξ, ϑ) and (q ′, ξ ′, ϑ ′) are the spherical coordinates ofx andy, respectively;
and Ym

n is the spherical harmonic function of degree n and order m. For simplicity,
the parameters (q, ξ, ϑ) and (q ′, ξ ′, ϑ ′) shall be replaced by (‖x‖, x̂) and (‖y‖, ŷ),
respectively. It then follows by (4.25) that

‖x − y‖ = ‖x‖
(

1 − 4π

3

1∑

m=−1

Ym
1 (x̂)Ym

1 (ŷ)
‖y‖
‖x‖

)

+ O(‖x‖−1). (4.26)

The solution Ep
δ in (4.20) and (4.21) can be represented by

Ep
δ = Ei + Aω

Dδ
[a] in R

3\Dδ,

with a satisfying
(

− I

2
+ Mω

Dδ

)
[a](y) = −νy × Ei (y), y ∈ ∂Dδ.

Then one can easily derive from the expansion formula (4.14) with �̃ = 0 that

(Eδ − Ei )(x) = 2
∫

�0

Gω(x − zỹ)M[n × Ei (z)](zỹ) dσz ỹ + O(‖x‖−1δ), x ∈ R
3\Dδ,

(4.27)

where M is defined by (4.15). By combining (4.27) and (4.26), we then have

Eδ∞(x̂;Ei ) = − 1

2π

∫

�0

e
−iω 4π

3

1∑

m=−1
Ym
1 (x̂)Ym

1 (ẑỹ)|zỹ |
M[n × Ei (z)](zỹ) dσz ỹ + O(δ),

(4.28)
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which readily proves (4.22). Next by the definition of M in (4.15), one can show
that

‖M[n × Ei (z)]‖TH−1/2(�0)
� C‖n × Ei (z)‖TH−1/2(�0)

,

where C depends only on �0 and ω. This together with (4.28) further implies that

‖Eδ∞(x̂;Ei )‖ � C(‖n × Ei (z)‖TH−1/2(�0)
+ δ). (4.29)

Finally, by inserting the condition (4.23) into (4.29) and direct calculations, one
can easily show (4.24).

The proof is complete. ��

4.2. Proof of Theorem 4.1

In this section, we present the proof of Theorem 4.1, which follows a simi-
lar spirit to that of Theorems 3.1 and 4.3. The major idea is to control the norm
‖�̃‖TH−1/2(∂D), which was taken to be identically zero in Theorem 4.3. Before this,
we present two auxiliary lemmas.

Lemma 4.2. Let D j , j = 0, 1, 2 be defined at the beginning of this section. Let
D j
1,δ , j = 0, 1 be constructed similarly as those in Lemma 3.3. Let V, W and V̂,

Ŵ be defined similarly as those in Lemma 3.2. Then one has
∫

∂D j
1,δ

(νx̃ × Ṽ(x̃)) · W(x̃) dσx̃ = δ− j
∫

∂D j
1,δ

(νx̃ × V̂(x̃)) · Ŵ(x̃) dσx̃ , j = 0, 1,

∫

∂D2
(νx̃ × Ṽ(x̃)) · W(x̃) dσx̃ = δ−2

∫

∂D2
(νx̃ × V̂(x̃)) · Ŵ(x̃) dσx̃ .

Proof. The proof follows directly from (3.17), (3.18) by using change of variables
in the corresponding integrals. ��
Lemma 4.3. Let (Eδ,Hδ) be the pair of solutions to (1.14) with {�; εδ, μδ, σδ} ⊂
{R3; εδ, μδ, σδ} defined in (1.3) and {Dδ\Dδ/2; εδ, μδ, σδ} given in (4.4). Then
there hold the following estimates for j = 0, 1, 2,
∫

D j
δ \Dδ/2

‖Eδ‖2dx �Cδ j−t
(
‖ν × E+

δ ‖2
TH−1/2

div (∂BR)
+ ‖ã‖TH−1/2(S0) + δ‖ã‖TH−1/2(∂D)

)
,

where the constant C depends only on R and ω.

Proof. We first note that (3.40) still holds for the scattering problem described in
the present lemma. Then one has

∫

Dδ\Dδ/2

σlEδ · Eδdx � C‖ν × E+
δ ‖

TH−1/2
div (∂BR)

‖�(ν × E+
δ )‖

TH−1/2
div (∂BR)

+ R1 + R2,
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where by using (2.8) and (4.12) one further has

R1 =
∣
∣
∣�

∫

∂Dδ

(ν × Ei ) · (ν × ν × H+
δ )

∣
∣
∣+dσx

∣
∣
∣ =

∣
∣
∣�

∫

∂Dδ

Ei · (ν × H+
δ )

∣
∣
∣+ dσx

∣
∣
∣

� 1

ω

∣
∣
∣

∫

S0
Ei (zx̃ ) · Lω

S0 [ã](x̃) dσx̃
∣
∣
∣ + O(δ‖ã‖TH−1/2(∂D)),

and by using (4.11),

R2 =
∣
∣
∣�

∫

∂Dδ

(ν × E+
δ )

∣
∣
∣+ · (ν × ν × Hi ) dσx

∣
∣
∣ =

∣
∣
∣�

∫

∂Dδ

E+
δ

∣
∣
∣+ · (ν × Hi ) dσx

∣
∣
∣

� δ

∣
∣
∣

∫

S0
Mω

S0 [ã](x̃) · Hi (zx̃ ) dσx̃
∣
∣
∣ + O(δ2‖ã‖TH−1/2(∂D)).

Combining the above estimates with (4.5), (4.6) and the definition of σl in (4.4),
we can complete the proof. ��
Proof of Theorem 4.1. First, by using (4.14) and (4.7) one obtains

‖Aδ∞(x̂;p,d)‖ � C
(
ε + ‖�̃‖TH−1/2(S0) + δ(‖�̃‖TH−1/2(∂D) + 1)

)
, (4.30)

where �̃(x̃) = �(x) := ν × Eδ

∣
∣
∣+(x) for x ∈ ∂Dδ . The following estimate can be

obtained by using the result in Lemma 4.2 and a completely similar argument as
that in the proof of Lemma 3.9,

‖�̃‖TH−1/2(S j ) � Cδ−( j+1)/2+β j ‖Eδ‖L2(Dδ\Dδ/2)3
, j = 0, 1, 2, (4.31)

where β j = min{1,− j + r + s,− j + t + s}, j = 0, 1, 2. On the other hand, by
using (4.17), Lemma 4.3 and (4.30), one has

∫

D j
δ \Dδ/2

‖Eδ‖2dx � Cδ j−t
(
‖�̃‖2

TH−1/2(S0)
+ δ2‖�̃‖2

TH−1/2(∂D)
(4.32)

+ ‖�̃‖TH−1/2(S0) + δ‖�̃‖TH−1/2(∂D)

+ ε + δ
)
, j = 0, 1, 2.

Inserting (4.32) back into (4.31), one can show

‖�̃‖TH−1/2(S j ) �Cδβ j−t/2− j/2−1/2
(
‖�̃‖TH−1/2(S0) + δ1/2‖�̃‖TH−1/2(∂D)

+ ‖�̃‖1/2
TH−1/2(S0)

+ ε1/2 + δ1/2
)
, j = 0, 1, 2. (4.33)

Noting that β2 � β1 � β0 and β2 − t/2 � 3/2, one has for δ ∈ R+ sufficiently
small that

‖�̃‖TH−1/2(∂D) � Cδβ2−t/2−3/2
(
‖�̃‖TH−1/2(S0) + ‖�̃‖1/2

TH−1/2(S0)
+ ε1/2 + δ1/2

)
.

(4.34)
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Inserting (4.34) back into (4.33) (for j = 0), there holds

‖�̃‖TH−1/2(S0) � Cδβ0−t/2−1/2
(
‖�̃‖TH−1/2(S0) + ‖�̃‖1/2

TH−1/2(S0)
+ ε1/2 + δ1/2

)
.

(4.35)
By β2 − t/2 � 3/2, it is directly verified that β0 − t/2 − 1/2 � 1 and hence

2(β0 − t/2) − 1 � β0 − t/2. (4.36)

Using (4.35) and (4.36), one readily infers for δ ∈ R+ sufficiently small that

‖�̃‖TH−1/2(S0) � C(δβ0−t/2 + ε). (4.37)

Now by inserting (4.37) into (4.34), one has

‖�̃‖TH−1/2(∂D) � Cδβ2−t/2−3/2(δ1/2 + ε1/2) � C(δβ2−t/2−1 + δ2(β2−t/2)−3 + ε).

(4.38)
Finally by plugging (4.37) and (4.38) into (4.30), we arrive at (4.8).

The proof is complete. ��
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